九年级数学求二次函数的函数关系式

合集下载

【人教版九年级数学上册教案】22.3实际问题与二次函数(第1课时)

【人教版九年级数学上册教案】22.3实际问题与二次函数(第1课时)

22.3 实质问题与二次函数第 1课时教课目标:1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y= ax2的关系式。

2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

3.让学生体验二次函数的函数关系式的应用,提升学生用数学意识。

要点难点:要点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y= ax2、y= ax2+b x + c 的关系式是教课的要点。

难点:已知图象上三个点坐标求二次函数的关系式是教课的难点。

教课过程:一、创建问题情境如图,某建筑的屋顶设计成横截面为抛物线型( 曲线 AOB)的薄壳屋顶。

它的拱高AB 为4m,拱高 CO为 0.8m。

施工前要先制造建筑模板,如何画出模板的轮廓线呢?分析:为了画出吻合要求的模板,平时要先建立合适的直角坐标系,再写出函数关系式,而后依据这个关系式进行计算,放样画图。

以下列图,以AB的垂直均分线为y 轴,以过点 O 的 y 轴的垂线为 x 轴,建立直角坐标系。

这时,屋顶的横截面所成抛物线的极点在原点,对称轴是 y 轴,张口向下,所以可设它的函数关系式为:y = ax2 (a< 0) (1)AB因为 y 轴垂直均分AB,并交 AB于点 C,所以 CB2= 2(cm) ,又 CO= 0.8m,所以点 B =的坐标为 (2 ,- 0.8) 。

因为点 B 在抛物线上,将它的坐标代人(1) ,得-0.8=a×22所以a=-0.2所以,所求函数关系式是y=- 0.2x 2。

二、引申拓展问题 1:能不可以以A点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系 ?让学生认识建立直角坐标系的方法不是独一的,以 A 点为原点, AB所在的直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系也是可行的。

问题 2,若以 A 点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂直为y 轴,建立直角坐标系,你能求出其函数关系式吗?分析:按此方法建立直角坐标系,则 A 点坐标为 (0 , 0) ,B 点坐标为 (4 , 0),OC 所在直线为抛物线的对称轴,所以有AC=CB, AC=2m, O点坐标为 (2 ; 0. 8) 。

北师大版九年级下册数学第7讲《待定系数法求二次函数的解析式》知识点梳理

北师大版九年级下册数学第7讲《待定系数法求二次函数的解析式》知识点梳理

1 2 北师大版九年级下册数学第 7 讲《待定系数法求二次函数的解析式》知识点梳理【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式1. 二次函数解析式常见有以下几种形式 :(1)一般式: y = ax 2 + bx + c (a ,b ,c 为常数,a ≠0);(2)顶点式: y = a (x - h )2 + k (a ,h ,k 为常数,a ≠0);(3)交点式: y = a (x - x 1 )(x - x 2 ) ( x 1 , x 2 为抛物线与 x 轴交点的横坐标,a ≠0).2. 确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如 y = ax 2 + bx + c 或 y = a (x - h )2 + k ,或 y = a (x - x 1 )(x - x 2 ) ,其中 a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为 y = ax 2 + bx + c ;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为y = a (x - h )2 + k ;③当已知抛物线与 x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为 y = a (x - x )(x - x ) .【典型例题】类型一、用待定系数法求二次函数解析式1. 已知抛物线 经过 A ,B ,C 三点,当 时,其图象如图 1 所示.求抛物线的解析式,写出顶点坐标.⎩∴ ⎪图 1【答案与解析】设所求抛物线的解析式为 ( ).由图象可知 A ,B ,C 的坐标分别为(0,2),(4,0),(5,-3).⎧c = 2, ⎨16a + 4b + c = 0, ⎪25a + 5b + c = -3, 解之,得抛物线的解析式为该抛物线的顶点坐标为 .【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围 .2. (2016•丹阳市校级模拟)形状与抛物线 y=2x 2﹣3x +1 的图象形状相同,但开口方向不同,顶点坐标是 (0,﹣5)的抛物线的关系式为 .【思路点拨】形状与抛物线 y=2x 2﹣3x +1 的图象形状相同,但开口方向不同,因此可设顶点式为 y=﹣2(x ﹣h ) 2+k ,其中(h ,k )为顶点坐标.将顶点坐标(0,﹣5)代入求出抛物线的关系式.【答案】y=﹣2x 2﹣5.【解析】解:∵形状与抛物线 y=2x 2﹣3x +1 的图象形状相同,但开口方向不同,设抛物线的关系式为 y=﹣2(x ﹣h )2+k ,将顶点坐标是(0,﹣5)代入,y=﹣2(x ﹣0)2﹣5,即 y=﹣2x 2﹣5.∴抛物线的关系式为y=﹣2x2﹣5.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.3.已知抛物线的顶点坐标为(-1,4),与轴两交点间的距离为6,求此抛物线的函数关系式.【答案与解析】因为顶点坐标为(-1,4),所以对称轴为,又因为抛物线与轴两交点的距离为6,所以两交点的横坐标分别为:,,则两交点的坐标为(,0)、(2,0);求函数的函数关系式可有两种方法:解法(1) :设抛物线的函数关系式为顶点式:(a≠0),把(2,0)代入得,所以抛物线的函数关系式为;解法(2) :设抛物线的函数关系式为两点式:y =a(x + 4()x- 2)(a≠0),把(-1,4)代入得,所以抛物线的函数关系式为:y=-4(x+4()x- 2);9【总结升华】在求函数的解析式时,要根据题中所给条件选择合适的形式.举一反三:【变式】(2014•永嘉县校级模拟)已知抛物线经过点(1,0),(﹣5,0),且顶点纵坐标为,这个二次函数的解析式.【答案】y=﹣x 2﹣2x+ .提示:设抛物线的解析式为y=a(x+2)2+,将点(1,0)代入,得a(1+2)2+=0,解得a=﹣,即y=﹣(x+2)2+ ,∴所求二次函数解析式为y=﹣x2﹣2x+ .类型二、用待定系数法解题⎩ ⎩4.(2015 春•石家庄校级期中)已知二次函数的图象如图所示,根据图中的数据,(1) 求二次函数的解析式;(2) 设此二次函数的顶点为 P ,求△ABP 的面积.【答案与解析】解:(1)由二次函数图象知,函数与 x 轴交于两点(﹣1,0),(3,0),设其解析式为:y=a (x+1)(x ﹣3),又∵函数与 y 轴交于点(0,2),代入解析式得,a ×(﹣3)=2,∴a=﹣ ,∴二次函数的解析式为:,即;(2) 由函数图象知,函数的对称轴为:x=1, 当 x=1 时,y=﹣×2×(﹣2)= ,∴△ABP 的面积 S===.【总结升华】此题主要考查二次函数图象的性质,对称轴及顶点坐标,另外巧妙设函数的解析式,从而来减少计算量.【答案与解析】(1)把 A(2,0),B(0,-6)代入 y = - 1 x 2 + bx + c 2得⎧-2 + 2b + c = 0, 解得⎧b = 4, ⎨c = -6, ⎨c = -6. ∴ 这个二次函数的解析式为 y = - 1 x 2 + 4x - 6 . 2(2)∵ 该抛物线的对称轴为直线 x = - 4 2 ⨯⎛ - 1 ⎫= 4 , 2 ⎪ ⎝ ⎭ ∴ 点 C 的坐标为(4,0),∴AC=OC-OA=4-2=2.∴S△ABC =1g AC g OB =1⨯ 2 ⨯ 6 = 6 .2 2【总结升华】求△ABC 的面积时,一般要将坐标轴上的边作为底边,另一点的纵(横)坐标的绝对值为高进行求解.(1)将A、B 两点坐标分别代入解析式求出b,c 的值.(2)先求出点C 的坐标再求出△ABC 的面积.举一反三:⎛0 3 ⎫【变式】已知二次函数图象的顶点是(-1,2) ,且过点 ⎝ ,⎪.2 ⎭(1)求二次函数的表达式;(2)求证:对任意实数m,点M (m,-m2 ) 都不在这个二次函数的图象上.【答案】(1)y =-1 x 2-x +3 ;2 2(2)证明:若点M (m,-m2 ) 在此二次函数的图象上,则-m2=-1(m+1)2+2.2得m2- 2m + 3 = 0 .△=4 -12 =-8 < 0 ,该方程无实根.所以原结论成立.。

人教版初中数学九年级上册第二十二章22.1.4用待定系数法求二次函数解析式

人教版初中数学九年级上册第二十二章22.1.4用待定系数法求二次函数解析式
表达式. 一设、二代、三解、四还原
解:设这个二次函数的解析式为y=a(x+2)2+1, 把点(1,-8)代入上式得:a(1+2)2+1=-8, 解得 a=-1.
∴所求的二次函数的表达式是y=-(x+2)2+1.
用顶点式求二次函数解析式
知道抛物线的顶点坐标,求表达式的方法叫做顶点法.其步骤 : ①设函数表达式是y=a(x-h)2+k; ②先代入顶点坐标,得到关于a的一元一次方程; ③将另一点的坐标代入原方程求出a值; ④a用数值换掉,写出函数表达式.
∴所求的二次函数的表达式是y=(x+3)(x+1), 即y=x2+4x+3.
用交点法求二次函数解析式
知道抛物线与x轴的两个交点,求解析式的方法叫做交点法. 其步骤是: ①设函数表达式是y=a(x-x1)(x-x2); ②先把两交点的横坐标x1,x2代入到表达式中,得到关于a的一 元一次方程; ③将方程的解代入原方程求出a值; ④a用数值换掉,写出函数表达式.
用一般式求二次函数解析式
【例3】一个二次函数的图象经过(0,1),(2,4),(3,10)三点,
求这个二次函数的表达式. 一设、二代、三解、四还原
解:设这个二次函数的解析式是y=ax2+bx+c,由于这个函数经
过点(0,1),可得c=1.又由于其图象经过(2,4),(3,10)两点,
可得
4a+2b+1=4,
用顶点式求二次函数解析式
1.一个二次函数的图象经点(0,1),它的顶点坐标为(8,9),求
这个二次函数的表达式.
解:设函数表达式为:y=a(x-8)2+9.
把点(0,1)代入上式得:0=a(0-8)2+9.

九年级数学求二次函数的函数关系式

九年级数学求二次函数的函数关系式
淘装修网 /
龙胆草的功效是。A.既能清热燥湿,又能止血、安胎B.既能清热燥湿,又能泻火解毒C.既能清热解毒,又能凉血消斑D.既能清热燥湿,又能清肝火E.既能清热凉血,又能养阴生津 [单选,案例分析题]男,45岁,原位肝移植(胆管端端吻合术)术后1周,胆汁分泌每日100ml,ALT由72U/L升至253U/L,TBiL由43μmol/L升至134μmol/L诊断肝移植术后急性排斥反应的金标准是A.B超B.肝穿活检C.肝功能检查D.MRCPE.T管造影 智能网是在的基础上为快速提供新业务而设置的附加网络结构。 在衡量太阳电池输出特性参数中,表征最大输出功率与太阳电池短路电流和开路电压乘积比值的是。A.转换效率B.填充因子C.光谱响应D.方块电阻 医疗卫生机构、医疗废物集中处置单位违反《医疗废物管理条例》相关规定并逾期不改正的,最高可处以元以下的罚款;转让、买卖医疗废物,邮寄或者通过铁路、航空运输医疗废物的,可处以违法所得的罚款。 采用热装法装配轴承时,将轴承放入机油槽中加热,温度不超过℃为宜A.200B.150C.100D.50 下列哪项为乌梅丸的主要功效A.温脏清腑B.平调寒热C.缓急止痛D.温脏安蛔E.驱蛔消疳 下列各项,不属外阴阴道念珠菌病的治疗药物。A.制霉菌素栓B.克霉唑栓C.甲硝唑D.伊曲康唑E.达克宁栓 触酶是A.过氧化氢酶B.氧化酶C.细胞色素氧化酶D.超氧化物歧化酶E.还原酶 心理学家的研究表明.中学生一般达到了()A.前运算阶段B.感知运动阶段C.具体运算阶段D.形式运算阶段 下列合同及证照,不缴纳印花税的是。A.以电子形式签订的购销凭证B.商标注册证C.企业集团内部执行使用的出库单D.专利申请转让协议 下列哪一种植物性饲料将引起犬的红细胞和骨髓受到破坏,从而导致溶血和贫血。A、块根饲料的芽B、谷类饲料的糠麸C、洋葱D、胡萝卜 加强型塑料件维修用的工具主要是。A.黏合剂枪和搅拌配料器B.电热工具C.超声波焊枪 若外界的温度在-18℃—35℃之间,ECB将APU速度设置到A、98%B、99%C、100% 国家对部分重点中药材购销实行严格管理,下列属于第二类的是A.川芎B.甘草C.杜仲D.厚朴E.麝香 适合做大规模筛检的疾病是A.原位子宫颈癌B.艾滋病C.麻疹D.流行性感冒E.全民检查HBsAg 二尖瓣狭窄时左心房内附壁血栓在SE序列表现为A.无信号B.极低信号C.高信号D.中高信号E.中低信号 为规范空间开发秩序,形成合理的空间开发结构,我国根据资源环境承载能力、现有开发密度和发展潜力,将国土空间划分为四类主体功能区。A.鼓励开发、允许开发、限制开发和禁止开发B.优先开发、一般开发、限制开发和禁止开发C.优化开发、重点开发、限制开发和禁止开发D.优先开发、重 党执政兴国的第一要务是A.改革B.发展C.依法治国D.依德治国 行政机关对于申请人申请延续行政许可的申请逾期未作出决定的,视为 产后出血的主要原因不包括A.胎膜早破,宫内感染B.胎盘因素C.软产道裂伤D.子宫收缩乏力E.凝血功能障碍 矿业工程进度计划编制的基本程序是。A.调查研究、确定方案、划分工序并估算时间、绘制进度计划图表B.调查研究、确定方案、分组编制、总体合成C.调查研究、划分项目、确定方案、分组编制、总体合成D.调查研究、划分项目、确定方案、划分工序、计算时间、编制计划、审查计划、确定计 分配阀紧急放风阀膜板鞲鞴上侧是列车管压力,下侧为压力。 《医疗机构从业人员行为规范》的执行和实施情况,应列入A.医疗机构校验管理和医务人员年度考核B.定期考核和医德考评C.医疗机构等级评审D.医务人员职称晋升、评先评优的重要依据E.以上都对 男性,55岁。喉结核不规则服用异烟肼半年,2周前突发言语不清,右侧肢体肌力下降,胸片两肺弥漫性小结节影,上中部较多部分有融合,颅脑CT示脑梗死。其治疗方案为。A.2HRE/4HRB.2HRS2/4HRC.4HRE/2HED.顺铂+长春碱酰胺E.顺铂+异环磷酰胺 在客户服务中心品质监控中监听人员应在完成电话监听后及时给予客服代表与指导。 甘油试验阳性是指()A.250~1000Hz气导听力改善&ge;5dBB.250~1000Hz气导听力改善&ge;10dBC.250~1000Hz气导听力改善&ge;15dBD.250~1000Hz气导听力改善&ge;20dBE.250~1000Hz气导听力改善&ge;25dB 补中益气汤和参苓白术散中均有的药是苓、桔梗B.当归、陈皮C.黄芪、甘草D.白术、人参E.山药、升麻 货物平均运价率的影响因素有()。A.个别运价率B.货运量按货种别的构成C.零担货物比重D.平均运程比重 家畜环境 多发性抽动症的基本病理改变是A.瘀血阻窍B.痰瘀互阻C.肝风内动D.肝风痰火胶结成疾E.痰蒙清窍 以下属于宣传类展览会的是。A.广交会B.高交会C.投洽会D.反走私展 对于公路工程注册建造师施工管理签章文件目录中未涵盖的内容,应按照相关,补充表格,并签章生效。A.行政主管部门要求B.业主对项目管理的规定C.监理工程师对项目管理的规定D.建设单位对项目管理的规定E.承包单位对项目管理的规定 [配伍题,B1型题]“五脏六腑之大主”是。</br>“气血生化之源”是。A.肝B.心C.脾D.肺E.肾 有关休克的临床表现中,不包括A.烦躁不安或表情淡漠、神志昏迷B.呼吸急促、脉搏细速C.血压均下降D.面色苍白或潮红、发绀E.尿少或无

九年级数学求二次函数的函数关系式

九年级数学求二次函数的函数关系式
万族之劫 /ddk244374/ 开展建筑活动的主要依据是。A.合同主体B.合同内容C.合同客体D.合同程序 下列关于高中数学课程结构的说法不正确的是。A.高中数学课程可分为必修与选修两类B.高中数学选修课程包括4个系列的课程C.高中数学必修课程包括5个模块D.高中课程的组合具有固定性,不能发生改变 患者,男,70岁。脑干出血,经积极抢救医治无效而死亡。医生开具死亡诊断后,护士进行尸体护理时,下列哪一项不妥()A.撤去治疗用物B.头下置枕、口眼闭合C.填塞孔道、擦净全身D.按要求系好尸体识别卡E.取下义齿交给家属保管 目前治疗伤寒的首选药物是A.头孢菌素B.氯霉素C.喹诺酮类D.庆大霉素E.氨苄西林 酶与一般催化剂的相同点是A.催化效率极高B.高度专一性C.降低反应的活化能D.改变化学反应的平衡点E.催化活性可以调节 麻疹最易并发A.喉痹B.惊厥C.肺炎喘嗽D.心悸E.小便难 社会主义医德基本原则三个方面的内容是A.单独存在,互不联系B.相互联系,互不渗透C.相互联系,不可分割D.相互联系,可分可合E.相互依存,相互渗透 炉渣泡沫化严重时,短时间可借助氧流压制泡沫和防止喷渣。A.降枪B.提枪C.枪位不变D.都不对 下列情况中,能引起肾小球滤过率减少的是A.血浆胶体渗透压减低B.血浆胶体渗透压升高C.血浆晶体渗透压降低D.血浆晶体渗透压升高E.肾小球毛细血管血压升高 关于人身伤害损害赔偿的诉讼时效期间,下列说法正确的有。A、均从当事人受伤之日起算B、均从伤势确诊之日起算C、伤害明显的,从受伤之日起算D、伤害当时未发现,后经检查确诊的,从伤势确诊之日起算 适用于2~30个月小儿智力水平的评价A.丹佛发育筛查测验(DDST)B.贝利婴幼儿发育量表C.发育量表D.韦氏儿童智力量表(WISC.E.绘人测验 矿业工程施工的技术准备工作主要包括掌握施工要求与检查施工条件、掌握与会审施工图纸以及。A."五通一平"B.编制施工组织设计及相关工作C.技术交底和技术培训工作D.及时完成施工图纸的收集和整理 急性血源性骨髓炎与急性化脓性关节炎鉴别时,下列意义不大的是A.疼痛主要在关节B.迅速出现关节积液C.早期关节活动障碍,一活动即剧痛D.压痛局限在关节周围E.全身感染中毒症状 将当前盘当前目录下的ASCII文件ASD的内容显示在屏幕上,可键入命令或。 房屋修缮管理是中的一个重要环节。A.房地产经营B.房地产销售C.房地产管理D.房地产开发 以下不是普通感冒主要特点的是A.起病较急,病程短B.常有高热,全身血白细胞正常或偏低 “扫描仪”的驱动程序安装是在之后完成。A、"鼠标"安装B、"扫描仪"硬件安装C、"音箱"安装D、"调制解调器"安装 肠梗阻诊断明确后,最重要的是确定。A.梗阻的原因B.梗阻的部位C.梗阻的程度D.梗阻的性质E.有无发生肠绞窄 下列哪项情况禁止输入血小板()A.血栓性血小板减少性紫癜B.特发性血小板减少性紫癜C.再生障碍性贫血D.DICE.血小板功能异常 负责对保健食品注册申请进行技术审评的机构是A.国家药典委员会B.国家中药品种保护审评委员会C.国家食品药品监督管理总局药品审评中心D.国家食品药品监督管理总局药品评价中心E.中国食品药品检定研究院 钩蚴可引起_____和______症状,钩虫成虫可引起_____、______、______为主的表现,严重者可致_____和_____。 道德最显著的特征是A.继承性B.实践性C.自律性D.他律性E.客观性 重型肝炎肝性脑病患者口服乳果糖是为了A.预防消化道出血B.防止腹泻C.预防肠道真菌感染D.加速黄疸消退E.降低肠道pH值,保持大便通畅,减少氨的形成和吸收 在诊疗同意制度中,如果病人方面的意见不统一,医师应当以谁的意见为准A.病人家属或者关系人B.病人本人C.对病人诊疗有利者D.应当等病人和家属或者关系人意见统一后才能决定诊疗方案E.医师独立作出决定 可提高婴儿出生后局部免疫屏障的是A.IgAB.IgGC.IgMD.IgDE.IgE 个人空间的范围.A.前后大B.左右大C.前后左右等同D.各人都不同 从2008年9月19日起,基金卖出股票时__________印花税,买人股票时__________印花税。A.征收;征收B.征收;不征收C.不征收;征收D.不征收;不征收 下列关于高中数学课程中常用逻辑用语内容的说法不正确的是。A.在常用逻辑用语中,课程的目标是帮助学生正确使用常用逻辑用语,避免产生错误B.在常用逻辑用语中,课程的重点放在理解充分条件、必要条件、充分必要条件在数学中的含义C.在常用逻辑用语中,课程要 求通过实例介绍两种基本的逻辑用语--全称量词和存在量词D.在常用逻辑用语中,课程要求学生形式的理解命题和命题的演算 细菌的合成代谢产物有()A.热原质B.毒素与侵袭性酶C.维生素D.色素E.细菌素 气管内插管的适应证有A.心跳呼吸骤停B.严重呼吸衰竭C.不能自主清除上呼吸道分泌物D.存在有上呼吸道损伤、狭窄E.呼吸肌麻痹 患者,女性,60岁,高血压病史20年。2小时前突发左眼视力丧失,自诉似"电灯开关关闭"。眼底检查。最有特征的体征是()A.黄斑区樱桃红斑B.视乳头水肿C.黄斑出血D.黄斑渗出E.视网膜剥离 按财政补贴的经济性质分类,财政补贴可分为()。A.生产补贴B.价格补贴C.生活补贴D.房租补贴E.外贸补贴 下面的哪一项不是淋巴结的功能A.过滤淋巴液,清除异物B.进行免疫应答C.产生抗体D.淋巴结可以产生淋巴细胞,但不能储存淋巴细胞E.形成红细胞、粒细胞及血小板 主治下焦瘀热互结的方剂是A.血府逐瘀汤B.大黄牡丹汤C.桃核承气汤D.温经汤E.生化汤 简述食管的3个生理性狭窄。 清除焊点时,的操作方法是错误的。A.要清理掉所有的焊点油漆B.不能破坏下层板C.可以用钻和磨削的方法切割 急性小脑幕切疝,患侧瞳孔扩大的病理机制是A.视神经受损B.动眼神经受刺激C.交感神经受刺激D.动眼神经损伤E.脑干受压 中央《决定》指出,全面统筹解决人口问题的五大任务? 按照《企业会计准则》的规定,“资产是企业拥有或者控制的能以货币计量的经济资源。”包括A.各种财产B.各种债权C.各种所有权D.其他权利 河北省中部有哪些关于节气物候的农谚?

九年级数学求二次函数的函数关系式

九年级数学求二次函数的函数关系式
得税法律制度的规定,下列各项中,属于工资、薪金所得项目的是。A.年终加薪B.托儿补助费C.差旅费津贴D.独生子女补贴 施工中遇到恶劣天气或以上大风,烟囱要暂停施工,大风大雨后要先检查架子是否安全,然后才能作业。A.3级B.5级C.6级D.12级 病灶部位在优势侧颞叶峡部、岛叶皮质下的弓状束和联络纤维,属于()A.传导性失语B.命名性失语C.经皮质运动性失语D.运动性失语E.完全性失语 急性间质性肾炎光镜下可见间质水肿伴炎症细胞浸润,其中不常见的炎症细胞为A.淋巴细胞B.中性粒细胞C.嗜酸性细胞D.单核细胞E.嗜碱性粒细胞 阀型避雷器中阀片电阻是非线性电阻。A.正确B.错误 固定义齿修复的最佳时间一般是A.拔牙后3周B.拔牙后4周C.拔牙后2个月D.拔牙后6周E.拔牙后3个月 急性下壁心肌梗死的心电图诊断包括。A.V1、V2出现异常Q波,时限&gt;0.04sB.Ⅱ、Ⅲ、aVF、ST段弓背上抬,与T波形成单向曲线C.Ⅱ、Ⅲ、aVF出现异常Q波,时限&gt;0.04sD.Ⅰ、aVL出现ST段弓背型上抬,T波直立E.Ⅰ、aVL出现异常Q波,时限&gt;0.04s 朱砂常采用的粉碎方法是A.低温粉碎B.单独粉碎C.串料粉碎D.水飞法E.超细粉碎 小脑幕上出血表现为脑性尖叫、激惹、惊厥等______________症状,若病情进一步发展,可出现________________状态。 过电压的研究应主要考虑。A.操作或故障前的运行工况B.操作情况C.故障情况D.避雷器的配置情况 垫治疗TMD的作用机制不包括.A.诱导下颌位发生改变,使颞下颌关节结构趋于协调B.减小关节内压,恢复关节滑膜的血供,减轻关节疼痛症状C.对患者的心理暗示作用D.息止颌位时,肌电活动幅度下降,改善咀嚼肌功能E.限制了下颌运动,有助于放松咀嚼肌 [单选,案例分析题]患者男性,60岁,1年前因心绞痛行冠状动脉造影及搭桥手术,此后未再发作胸痛。10天前晨起胸痛,发作时心电图sT段Ⅱ、Ⅲ、aVF抬高大约3毫米。患者最合适的药物是A.阿司匹林200mgB.氯吡格雷75mgC.低分子肝素D.消心痛E.硝苯地平 碳素结构钢Q235-A-F中的F表示A、屈服强度B、化学成分C、质量等级D、脱氧方法 我国1979年刑法在1997年3月14日经过全国人大修订以后重新发布,史称新刑法。请问,修订后的新刑法施行时间是()A、1997年03月15日B、1997年04月01日C、1997年10月01日D、1998年01月01日 车身修复操作中破坏钢板防腐性能的原因是。A.形成电化学腐蚀B.内部的应力没有消除C.破坏了防腐涂层 外阴鳞状上皮细胞增生最主要的症状是A.外阴疼痛B.外阴瘙痒C.白带增多D.外阴皮疹E.外阴结节 高层主体建筑内设置装有可燃性油的电气设备的变配电所。A.不宜B.不应C.必须D.不可 什么是Virchow淋巴结? 椎体结核和椎体肿瘤在CT上的主要鉴别点是A.椎体破坏程度B.是否有死骨形成C.椎旁是否有软组织肿块D.椎间隙是否变窄或消失E.椎体是否有错位 犬的饲料种类? 委托贷款属于我行业务。A、资产业务B、负债业务C、中间业务D、理财业务 下列是苯巴比妥生成玫瑰红色产物的反应是()A.硝化反应B.磺化反应C.碘化反应D.甲醛&mdash;硫酸反应E.硫酸&mdash;亚硝酸钠反应 对于链球菌感染后急性肾炎,下列说法不正确的是A.电镜可见肾小球上皮细胞下有驼峰状大块电子致密物沉积B.免疫病理可见IgG、C3呈线条样沿毛细血管壁和系膜区沉积C.多在感染后1~3周起病,起病急、预后良好D.有持续性高血压、大量蛋白尿和肾功能损害者预后差E.有的患者可表现为肾病 甘油试验阳性是指()A.250~1000Hz气导听力改善&ge;5dBB.250~1000Hz气导听力改善&ge;10dBC.250~1000Hz气导听力改善&ge;15dBD.250~1000Hz气导听力改善&ge;20dBE.250~1000Hz气导听力改善&ge;25dB 下列有关公务员法定条件说法正确的是。A、具有正常履行职责的身体条件B、拥护社会主义的外籍人士C、具有良好品行D、大专以上文化程度 成人输血速度一般控制在A.5~10ml/minB.1~2ml/minC.3~4ml/minD.5~8ml/minE.2~4ml/min 全身麻醉按药物进入体内的途径,可分为和两种。 合理储存的内容有:合理储存量;合理储存结构;合理储存时间;。A.合理储存网络B.合理储存时间C.合理储存组织D.合理储存管理 EAD的含义是A、债项预期损失率,根据债项等级与违约损失率的映射关系取得B、违约风险暴露,即贷款风险敞口,就是贷款违约时的余额C、客户违约概率,通过历史数据统计的客户信用等级对应的平均违约概率D、客户贡献率,根据客户的存款、贷款(含票据贴现)和中间业务收入计算 下列矿业工程项目中,不属于单位工程的是。A.立井井筒工程B.斜井井筒工程C.井架安装工程D.井筒防治水工程 对绩效表现好坏的衡量涉及的选择问题。A.业绩计算时期B.操作策略C.风险水平D.比较基准 检查腹股沟疝时,压迫内环的位置应在()A.腹股沟韧带中点B.耻骨结节外上方C.精索的前内方D.腹股沟韧带中点上方1.5cmE.肿块隆起最明显处 ALT、AST增高见于()</br>LD总酶活性明显或中度增高,以LD4、LD5增高为主见于()</br>溶菌酶明显增高见于()A.脑肿瘤B.细菌性脑膜炎C.帕金森病D.脑萎缩E.结核性脑膜炎 患者,女,25岁。身体状况良好,主诉近期计划怀孕,到妇幼保健医院口腔科进行口腔检查,并咨询相关口腔保健问题。妊娠期间治疗口腔疾病,应注意A.妊娠前3个月可拍摄X线片B.待妊娠结束后再进行治疗C.出现口腔疾病后应注意休息,减少运动D.妊娠4~6个月是治疗口腔疾病的适宜时机E.妊 抗癌药最常见的严重不良反应是()A.肝脏损害B.神经毒性C.胃肠道反应D.抑制骨髓E.脱发

九年级数学 二次函数顶点公式

九年级数学 二次函数顶点公式

二次函数顶点公式对于二次函数y=ax^2+bx+c其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]其中x1,2= -b±√b^2-4ac顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)注:在3种形式的互相转化中,有如下关系:h=-b/2a= (x₁+x₂)/2 k=(4ac-b^2)/4a 与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a抛物线y=ax²+bx+c 的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b²-4ac>0,图象与x轴交于两点A( ,0)和B( ,0),其中的 , 是一元二次方程y=ax²+bx+c(a≠0)的两根.这两点间的距离AB=| - |.当△=0,图象与x轴只有一个交点;当△<0,图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).二次函数顶点坐标公式及推导过程二次函数顶点式及推导过程二次函数的一般形式:y=ax^2+bx+c(a,b,c为常数,a≠0) 二次函数的顶点式:y=a(x-h)^2+k k(a≠0,a、h、k为常数),顶点坐标为(h,k)推导过程:y=ax^2+bx+cy=a(x^2+bx/a+c/a)y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)y=a(x+b/2a)^2+c-b^2/4ay=a(x+b/2a)^2+(4ac-b^2)/4a对称轴x=-b/2a顶点坐标(-b/2a,(4ac-b^2)/4a)2二次函数的其他表达式交点式[仅限于与x轴即y=0有交点时抛物线,即b2-4ac≥0] a,b,c为常数,a≠0,且a决定函数的开口方向。

新人教版初三数学二次函数公式及知识点总结

新人教版初三数学二次函数公式及知识点总结

新人教版 初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:21. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:y=-2x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

北师版九年级数学下册教学课件(BS) 第二章 二次函数 第二章小结与复习

北师版九年级数学下册教学课件(BS) 第二章 二次函数 第二章小结与复习

解:(1)由题意,得
1 b c 4, 4 2b+c 5,
解得
b 2, c -3.
所以,该抛物线的解析式为y=x2-2x-3;
(2)若抛物线与x轴的两个交点为A、B,与y轴交于点C. 在该抛物线上是否存在点D,使得△ABC与△ABD全等? 若存在,求出D点的坐标;若不存在,请说明理由.
(2)∵抛物线y=x2-2x-3的对称轴为x=1,
抛物线的平移
抛物线的顶点坐 标和对称轴

次 函 数
应 用


最质值源自(-3,y1),(3 2
,y2)是抛物线上两点,则y1>y2.
其中正确的是
(B)
y
A.①②③ C.①②④
B.①③④ D.②③④
O x=-1
2x
针对训练
3.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,
则实数b的取值范围是( D )
A.b≥-1
B.b≤-1
C.b≥1
D.b≤1
六、二次函数与一元二次方程的关系
二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有一个交点, 没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当 y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
二次函数y=ax2+bx+c的图象和x
轴交点
2.顶点式:y=a(x-h)2+k(a≠0)
若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式 y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数的值,最后将解析式 化为一般式.
3.交点式:y=a(x-x1)(x-x2)(a≠0)

(常考题)人教版初中数学九年级数学上册第二单元《二次函数》检测(包含答案解析)(1)

(常考题)人教版初中数学九年级数学上册第二单元《二次函数》检测(包含答案解析)(1)

一、选择题1.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③ 2.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个 3.如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(﹣2,﹣3),(1,﹣3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为( )A .﹣1B .﹣3C .﹣5D .﹣7 4.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小 5.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个6.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个7.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个8.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)9.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( ) x… ﹣1 0 1 2 3 … y … 3 0 ﹣1 0 3 …A .4个B .3个C .2个D .1个 10.抛物线()2512y x =--+的顶点坐标为( )A .()1,2-B .()1,2C .()1,2-D .()2,1 11.抛物线()2526y x =-+-可由25y x =-如何平移得到( )A .先向右平移2个单位,再向下平移6个单位B .先向右平移2个单位,再向上平移6个单位C .先向左平移2个单位,再向下平移6个单位D .先向左平移2个单位,再向上平移6个单位12.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( )A .3a 1-<<-B .2a 1-<<C .1a 0-<<D .2a 4<<二、填空题13.如图,在平面直角坐标系中,抛物线2y x x 2=--分别交y 轴,x 轴于点A ,B ,动点E 在抛物线上,EF x ⊥轴,交直线AB 于点F .则EF 的长为______(用含字母x 的式子来表示).14.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.15.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.16.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.17.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________18.二次函数2y ax bx c =++的图象经过(1,0)A ,对称轴为1x =-,其图像如图所示,则化简2244||b bc c a b c +++-+的结果为___________.19.将抛物线223y x x =---向右平移三个单位,再绕原点O 旋转180°,则所得抛物线的解析式____.20.抛物线y =x²-x 的顶点坐标是________三、解答题21.已知二次函数y =ax 2+bx+c 中自变量x 和函数值y 的部分对应值如表:(1)求该二次函数的函数关系式;(2)在所给的直角坐标系中画出此函数的图象;(3)作该二次函数y =ax 2+bx+c 的图象关于x 轴对称的新图象,则新图象的函数关系式为 .22.在“万众创业、大众创新”的新时代下,大学毕业生小张响应国家号召,开办了家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:售价每下降1元每月要多卖20件,为了获得更大的利润且让利给顾客,现将饰品售价降价x (元/件)(且x 为整数),每月饰品销量为y (件),月利润为w (元).(1)写出y 与x 之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润等于6000元时,应如何确定销售价格.23.如图1,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若OC =2OA .(1)求抛物线的解析式;(2)抛物线对称轴l 上有一动点P ,当PC +PA 最小时,求出点P 的坐标;(3)如图2所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点.过点M 作直线l '∥l ,交抛物线于点N ,连接CN ,BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?24.已知二次函数2(21)3y x m x m =-+-.(1)若2m =,写出该函数的表达式,并求出函数图象的对称轴.(2)已知点()1,P m y ,()24,Q m y +在该函数图象上,试比较1y ,2y 的大小.(3)对于此函数,在13x -≤≤的范围内函数最大值为-2,求m 的值.25.已知抛物线的顶点为()1,4-,且过点()2,5-.(1)求抛物线的解析式;(2)当0y >时,自变量x 的取值范围是______(直接写出结果).26.已知关于x 的方程222(1)2()10a x a b x b +-+++=.(1)若2b =,且2x =是此方程的根,求a 的值;(2)若此方程有实数根,当51a -<<-时,求函数242y a a ab =++的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③.【详解】由图象知,抛物线与x 轴有两个交点,方程ax 2+bx+c=0有两个不相等的实数根,∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <,抛物线与y 轴交于正半轴0c >,对称轴直线为1x =-, ∴102b a-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >,∴420a b c -+>,故③正确.故选:B .【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键2.B解析:B【分析】根据△=24b ac -与零的关系即可判断出二次函数的图象与x 轴的交点问题;【详解】∵ ()()22356y x x x x =--=-+, ∴ △=24b ac -=25-24=1>0∴二次函数()()23y x x =--与x 轴有两个交点;故选:B .【点睛】本题考查了二次函数与x 轴的交点问题,熟练掌握判别式△=24b ac -是解题的关键; 3.C解析:C【分析】当图象顶点在点B 时,点N 的横坐标的最大值为4,求出a =13;当顶点在点A 时,M 点的横坐标为最小,此时抛物线的表达式为:y =13(x +2)2﹣3,令y =0,求出x 值,即可求解.【详解】当图象顶点在点B 时,点N 的横坐标的最大值为4,则此时抛物线的表达式为:y =a (x ﹣1)2﹣3,把点N 的坐标代入得:0=a (4﹣1)2﹣3,解得:a =13, 当顶点在点A 时,M 点的横坐标为最小, 此时抛物线的表达式为:y =13(x +2)2﹣3, 令y =0,则x =﹣5或1,即点M 的横坐标的最小值为﹣5,故选:C .【点睛】本题考查的是二次函数与x 轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.4.D解析:D【分析】根据二次函数的性质进行判断即可.【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误; B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0,∴函数图象与x 轴有两个交点,故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大,故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确,故选:D .【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.5.B解析:B【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确.【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2b a=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误; ∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误;综上,正确的有①②④.故选:B .【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键.6.B解析:B【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断.解:①∵由二次函数的图象可知:抛物线的开口向上,∴a >0;又∵二次函数的图象与y 轴的交点在负半轴,∴c <0;∴ac <0,即①正确;②由图象知,对称轴x =2b a-=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确;④由图象可知当x >1时,y 随x 的增大而增大;故④错误.综上所述,正确的结论是:①②③.故选:B .【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.7.D解析:D【分析】根据抛物线的开口方向、对称轴、顶点坐标、最值、以及不等式的性质进行判断即可.【详解】抛物线开口向下,因此a <0,对称轴为x =−b 2a =1>0,a 、b 异号,因此b >0,且2a +b =0,抛物线与y 轴的交点在正半轴,因此c >0,所以:abc <0,因此①正确;当x =2时,y =4a +2b +c >0,因此②正确;当x =−1时,y =a−b +c <0,即,a +c <b ,因此③不正确;∵a−b +c <0,2a +b =0,∴−12b−b +c <0,即2c−3b <0,因此④正确; 当x =1时,y 最大值=a +b +c ,当x =n (n≠1)时,y =an 2+bn +c <y 最大值,即:a +b+c >an 2+b +c ,也就是2a+b an +bn(n 1)>≠,因此⑤正确,正确的结论有:①②④⑤,故选:D .【点睛】考查二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.8.A解析:A根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y =x +2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2020的坐标.【详解】∵A 点坐标为(1,1),∴直线OA 为y =x ,A 1(−1,1),∵A 1A 2∥OA ,设直线A 1A 2为y =x +b把A 1(−1,1)代入得1=-1+b解得b=2∴直线A 1A 2为y =x +2,解22y x y x=+⎧⎨=⎩ 得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴A 2(2,4),∴A 3(−2,4),∵A 3A 4∥OA ,设直线A 3A 4为y =x +n ,把A 3(−2,4)代入得4=-2+n ,解得n=6∴直线A 3A 4为y =x +6,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴A 4(3,9),∴A 5(−3,9)同理求出A 6(4,16),A 7(-4,16)A 8(5,25),A 9(-5,25)A 10(6,36),A 11(-6,36) …,∴A 2n 为22222,22n n ⎡⎤++⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ∴A 2020(1011,10112),故选A .【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.9.B解析:B【分析】根据二次函数的性质和表格中的数据,可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由表格数据可知:当x=0时,y=0,∴抛物线y =ax 2+bx +c 经过原点;①正确; 抛物线对称轴为:直线0212x +==,即12b a-=,∴2a +b =0,②正确; 当y=0时,x=0或x=2且抛物线顶点坐标为(1,-1)∴抛物线开口向上,当y >0时,x 的取值范围是x <0或x >2;③正确由以上分析可知当x=1时,y 取得最小值为a+b+c 若点P (m ,n )在该抛物线上,则am 2+bm+c≥a+b+c .即am 2+bm≥a+b ,④错误 故选:B【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10.B解析:B【分析】由于给的是二次函数顶点式的表达式,可直接写出顶点坐标.【详解】解:∵y=-5(x-1)2+2,∴此函数的顶点坐标是(1,2).故选:B .【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数顶点式的表示方法.11.C解析:C【分析】按照“左加右减,上加下减”的规律求则可.【详解】解:因为()2526y x =-+-.所以将抛物线25y x =-先向左平移2个单位,再向下平移6个单位即可得到抛物线()2526y x =-+-.故选:C .【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减. 12.C解析:C【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9,0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C .【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题13.【分析】先分别令y=0x=0求出AB 点的坐标求出直线AB 的解析式在用字母分别表示出EF 点的纵坐标相减即可【详解】令y=0得解得:B (20)令x=0得y=-2A (0-2)设AB 所在直线解析式为:代入A 解析:22x x -【分析】先分别令y =0,x =0,求出A 、B 点的坐标,求出直线AB 的解析式,在用字母分别表示出E 、F 点的纵坐标,相减即可.【详解】令y =0,得220x x --=解得:121,2x x =-=∴ B (2,0)令x =0,得y =-2,∴A (0,-2)设AB 所在直线解析式为:y kx b =+代入A 、B 解得:2y x =-设动点E 的横坐标为x ,∴ F 点的横坐标为x ,E 点的纵坐标为:22x x -- 又F 点在直线AB 之上,∴F 点的纵坐标为:2x -又EF x ⊥∴EF 的长度为:22(2)x x x ---- 化简得:22x x - 故答案为:22x x -【点睛】本题主要考查了二次函数与坐标轴的交点问题,二次函数与一次函数的综合问题以及线段长度的计算,分别用字母表示出E 、F 点的纵坐标是解决本题的关键. 14.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小 解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得.【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上, ∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258, 137y y ,即123y y y <<,故答案为:123y y y <<.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.15.【分析】先把配成顶点式再利用顶点式写出平移后的抛物线的解析式【详解】此抛物线的顶点坐标为()把点()向下平移个单位长度再向左平移个单位长度所得对应点的坐标为()即()所以平移后得到的抛物线的解析式为解析:2710y x x =++【分析】先把2y x x =+配成顶点式,再利用顶点式写出平移后的抛物线的解析式.【详解】 2211()24y x x x =+=+-,此抛物线的顶点坐标为(12-,14-),把点(12-,14-)向下平移2个单位长度,再向左平移3个单位长度, 所得对应点的坐标为(132--,124--),即(72-,94-), 所以平移后得到的抛物线的解析式为279()24y x =+-,即2710y x x =++. 故答案为:2710y x x =++.【点睛】 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 16.【分析】先求出函数图像的对称轴然后根据二次函数的增减性即可解答【详解】解:∵函数图像的对称轴为x=1∴当数值随的增大而减小故答案为【点睛】本题考查了二次函数的增减性确定二次函数的对称轴是解答本题的关键解析:1x <【分析】先求出函数图像的对称轴,然后根据二次函数的增减性即可解答.【详解】解:∵函数223y x x =--图像的对称轴为x=1∴当1x <,数值y 随x 的增大而减小.故答案为1x <.【点睛】本题考查了二次函数的增减性,确定二次函数的对称轴是解答本题的关键.17.【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 18.【分析】根据二次函数的性质及绝对值的非负性二次根式的性质求解即可【详解】解:观察图象得:a<0c>0把A(10)代入得a+b+c=0∴c=-a-b ∵=-1∴b=2a<0∴c=-a-2a=-3a>0∴解析:2a b c -+-【分析】根据二次函数的性质及绝对值的非负性,二次根式的性质求解即可.【详解】解:观察图象得:a<0,c>0,把A(1,0)代入2y ax bx c =++得a+b+c=0,∴c= -a-b , ∵2b a -= -1,∴b=2a<0,∴c=-a-2a=-3a>0,∴2b+c=4a-3a=a<0,a-b+c=a-2a-3a=-4a>0,∴||a b c -+=a b c -+=-(2b+c)+a-b+c=-2b-c+a-b+c= -3b+a=-5a ,故答案为-5a .【点睛】本题考查了二次函数的性质及绝对值的非负性,解题的关键是熟练掌握二次函数的性质. 19.【分析】先求出抛物线的顶点坐标再根据向右平移横坐标加求出平移后的抛物线的顶点坐标再根据旋转的性质求出旋转后的顶点坐标然后根据平移旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可【详 解析:2(2)2y x =++【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,再根据旋转的性质求出旋转后的顶点坐标,然后根据平移、旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可.【详解】223y x x =---()22113x x =-+++-2(1)2x =-+-,所以,抛物线的顶点坐标为(-1,-2).∵向右平移三个单位,∴平移后的抛物线的顶点坐标为(2,-2).∵再绕原点O 旋转180°,∴旋转后的抛物线的顶点坐标为(-2,2),且开口向上∴所得抛物线解析式为2(2)2y x =++.故答案为:2(2)2y x =++.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便.20.【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.(1)y =x 2﹣4x+5.(2)见解析;(3)y =﹣x 2+4x ﹣5.【分析】(1)当x=1或3时,y 均等于2,那么此二次函数的对称轴是2,则顶点坐标为(2,1),设出顶点式,把表格中除顶点外的一点的坐标代入可得a 的值,也就求得了二次函数的值;(2)描点、连线画出函数图象即可;(3)根据关于x 轴对称的点的坐标特征即可求得.【详解】解:(1)由图表可知抛物线y =ax 2+bx+c 过点(1,2),(3,2),∴对称轴为x =132+=2; ∴顶点坐标为:(2,1),∴设y =a (x ﹣2)2+1,将(0,5)代入可得:4a+1=5,解得:a =1,∴二次函数的解析式为:y =(x ﹣2)2+1,即y =x 2﹣4x+5,所求二次函数的关系式为y =x 2﹣4x+5.(2)描点、连线画出函数图象如图:;(3)∵新图象与二次函数y =ax 2+bx+c 的图象关于x 轴对称,∴﹣y =x 2﹣4x+5,∴新图象的函数关系式为y =﹣x 2+4x ﹣5,故答案为y =﹣x 2+4x ﹣5.【点睛】本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式,二次函数的图象与性质,熟练掌握待定系数法是解题的关键.22.(1)y =300+20x ;(2)当售价为57元时,利润最大,最大利润为6120元;(3)将销售价格为55元,才能使每月利润等于6000元.【分析】(1)由售价每下降1元每月要多卖20件,可得y 与x 之间的函数解析式;(2)由月利润=单件利润×数量,可得w 与x 的函数解析式,由二次函数的性质可求解; (3)将w=6000代入解析式,解方程可求解.【详解】(1)由题意可得:30020y x =+;(2)由题意可得:()()2203002020( 2.5)6125w x x x =-+=--+, 由题意可知x 应取整数,当2x =或3元时,w 有最大值,∵让利给顾客,∴3x =,即当售价为57元时,利润最大,∴最大利润为6120元;(3)由题意,令w=6000,即25600020()61252x =--+,解得10x =(舍去),25x =,故将销售价格为55元,才能使每月利润等于6000元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,二次函数的性质,找出正确的函数关系式是本题的关键.23.(1)y =x 2-3x +2;(2)点P 的坐标为(32,12);(3)当t =1时,S △BCN 的最大值为1.【分析】(1)先确定c ,然后再根据OC =2OA 确定A 点的坐标,再将A 点的坐标代入解析式求得b 即可解答;(2)如图:作点A 关于直线l 对称的对称点,即点B ,连接BC ,与直线l 交于点P ',此时PA+PB 最小;然后求得直线BC 的解析式,最后确定P '的坐标即可;(3)先求出M 点坐标,然后再根据S △BCN =S △MNC +S △MNB 确定二次函数关系式,最后运用二次函数求最值即可.【详解】解:(1)∵抛物线y =x 2+bx +c 过点C (0,2),∴c =2又∵OC =2OA ,∴OA =1,即A (1,0);又∵点A 在抛物线y =x 2+bx +2上,∴0=12+b ×1+2,b =-3;∴抛物线对应的二次函数的解析式为y =x 2-3x +2;(2)如图:作点A 关于直线l 对称的对称点,即点B ,连接BC ,与直线l 交于点P ', 则PA +PC 的最小值为P 'B +P 'C =BC ,设BC 的解析式为y =mx +n ,令x 2-3x +2=0,解得:x =1或2,∴B (2,0),又∵C (0,2), ∴202m n n +=⎧⎨=⎩,解得:12m n =-⎧⎨=⎩, ∴直线BC 的解析式为:y =-x +2,令x =32,代入,得:y =12,∴当PC +PA 最小时,点P 的坐标为(32,12); (3)如图:∵点M 是直线l '和线段BC 的交点,∴M 点的坐标为(t ,-t +2)(0<t <2),∴MN =-t +2-(t 2-3t +2)=-t 2+2t ,,∴S △BCN =S △MNC +S △MNB =12MN ▪t +12MN ▪(2-t )=12MN ▪(t +2-t )=MN =-t 2+2t (0<t <2), ∴S △BCN =-t 2+2t =-(t -1)2+1,∴当t =1时,S △BCN 的最大值为1.【点睛】本题考查了二次函数的综合应用,正确求出函数解析式并掌握数形结合思想是解答本题的关键.24.(1)256y x x =--,直线52x =;(2)21y y >;(3)4 【分析】(1)把m=2代入y=x 2-(2m+1)x-3m 即可求得函数的表达式,进而根据对称轴x=-2b a 求得对称轴;(2)把P (m ,y 1),Q (m+4,y 2)两点代入y=x 2-(2m+1)x-3m 比较即可; (3)分132m +>,1132m -≤+≤,112m +<-三种情况,列式求解即可. 【详解】解:(1)2(21)3y x m x m =-+-,∴当2m =时,256y x x =--,对称轴:直线55222b x a -=-=-=, ∴函数的解析式为:256y x x =--,对称轴为:直线52x =. (2)2(21)3y x m x m =-+-,∴对称轴为直线(21)1222b m x m a -+=-=-=+, ∵抛物线开口向上,(,)P m y 距对称轴为:1122m m +-=, ()24,Q m y +距对称轴为:17422m m +--=, ∴Q 离对称轴更远,2y 值更大. 21y y ∴>.(3)2(21)3y x m x m =-+-, ∴对称轴为:12x m =+, ①当132m +>,即52m >, 当1x =-时,max 2y =-,12132m m ∴++-=-,4m ∴=,符合52m >. .②当1132m -≤+≤时,即3522m -≤≤, 若1x =-时,y 取最大-2, 12132m m ∴++-=-,解得4m =,不符合:3522m -≤≤(舍) 若3x =时,y 取最大-2,则93(21)32m m -+-=-,解得:89m =,符合3522m -≤≤, 当89m =时,对称轴:81259218x =+=, 2518x =离3x =距离为:2918,2518x =离1x =-距离为:4318, ∴离1x =-更远,最大值应在1x =-处取得,与3x =处取最大值矛盾,故舍去.③当112m +<-时,即32m <-时,3x =处,取最大值,如图,93(21)32m m ∴-+-=-,解得:89x =, 不符合32m <-, 故舍去.综上所述,m 的值为4.【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,解题的关键是根据题意得到一元一次不等式.25.(1)()214y x =--或223y x x =--; (2)1x <-或3x >【分析】(1)直接利用顶点式求出二次函数解析式即可;(2)首先求出图象与x 轴交点,再利用抛物线图象得出当函数值y >0时,自变量x 的取值范围.【详解】(1)设抛物线的解析式为()214y a x =--把点()2,5-代入得()25214a =---∴1a =∴()214y x =--或223y x x =-- (2)(2)当y =0可得,0=(x−1)2−4,解得:1x =3,2x =−1,故抛物线与x 轴的交点为:(−1,0),(3,0),如图所示:可得:当函数值y >0时,自变量x 的取值范围为:x <−1或x >3.【点睛】此题主要考查了利用顶点式求抛物线解析式以及抛物线与x 轴的交点,正确画出函数图象是解题关键.26.(1)12;(2)27y -≤< 【分析】(1)把2b =、2x =代入方程可得()()22212222210a a +⋅-+⋅++=,然后解a 关于的方程即可得解;(2)根据根的判别式的意义可得()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦,整理得()210ab -≤,利用非负数的性质得到1ab =,则函数242y a a ab =++为:()222y a =+-,再由51a -<<-可求得函数的取值范围.【详解】解:(1)∵若2b =,且2x =是此方程的根∴()()22212222210a a +⋅-+⋅++= ∴2102a ⎛⎫-= ⎪⎝⎭ ∴1212a a ==∴a 的值为12. (2)∵方程222(1)2()10a x a b x b +-+++=有实数根∴()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦ ∴()210ab -≤ ∴10ab -=∴1ab =∴函数242y a a ab =++为:()224222y a a a =++=+-∵51a -<<-∴可画出函数图象,如图:∴函数242y a a ab =++的取值范围是:27y -≤<.【点睛】本题考查了含参数的一元二次方程、一元二次方程的根的判别式、由自变量取值范围求函数取值范围等,熟练掌握相关知识点是解题的关键.。

九年级数学二次函数知识点归纳

九年级数学二次函数知识点归纳

九年级数学二次函数知识点归纳九年级数学二次函数学问点归纳大约在公元前480年,古巴比伦人和中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。

公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。

下面是课件网为大家梳理归纳的九年级数学二次函数学问点归纳。

九年级数学二次函数学问点1一、基本概念1.方程、方程的解〔根〕、方程组的解、解方程〔组〕2. 分类:二、解方程的根据等式性质1.a=ba+c=b+c2.a=bac=bc 〔c0〕三、解法1.一元一次方程的解法:去分母去括号移项合并同类项系数化成1解。

2. 元一次方程组的解法:⑴基本思想:"消元'⑵方法:①代入法②加减法四、一元二次方程1.定义及一般形式:2.解法:⑴直接开平方法〔留意特征〕⑵配方法〔留意步骤推倒求根公式〕⑶公式法:⑷因式分解法〔特征:左边=0〕3.根的判别式:4.根与系数顶的关系:逆定理:若,则以为根的一元二次方程是:。

5.常用等式:五、可化为一元二次方程的方程1.分式方程⑴定义⑵基本思想:⑶基本解法:①去分母法②换元法〔如,〕⑷验根及方法2.无理方程⑴定义⑵基本思想:⑶基本解法:①乘方法〔留意技巧!!〕②换元法〔例,〕⑷验根及方法3.简洁的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

六、列方程〔组〕解应用题一概述列方程〔组〕解应用题是中学数学联系实际的一个重要方面。

其具体步骤是:⑴审题。

理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元〔未知数〕。

①直接未知数②间接未知数〔往往二者兼用〕。

一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷查找相等关系〔有的由题目给出,有的由该问题所涉及的等量关系给出〕,列方程。

一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

九年级数学求二次函数的函数关系式(新编教材)

九年级数学求二次函数的函数关系式(新编教材)
26.2.5
求二次函数的 函数关系式
二次函数解析式有哪几种表达式?
• 一般式:y=ax2+bx+c • 顶点式:y=a(x-h)2+k
1.若把抛物线y=x2+bx+c向左平移2个单位,再向上平
移3个单位,得抛物线y = x2 - 2x+1,则 ( B )
A.b=2
B.b= - 6 , c= 6
C.b= - 8
D.b= - 8 , c= 18
2.若一次函数 y= ax + b 的图象经过第二、三、四象限,
则二次函数y = ax2 + bx - 3的大致图象是
( C)
y
y
y
yБайду номын сангаас
ox -3
A
ox -3
B
ox -3
C
ox -3
D
;优游注册 / 优游注册 ;
元恶既殄 百官拜伏 间者杨骏之难 冤魂哭于幽都 广武将军赵诱受侃节度 左腋犹痛 与臣隔山 乃令给协 {臣闻明君思隆其道 随才补授 历阳太守沛国武嘏 所向皆平 非圣朝之令典 畏也宜哉 伦大震 与亲昵乘船就之饮宴 甘受专辄之罪 且始事而诛大将 假节 二征奔走 及琨为匹磾所害 欲扬 威西土 而胡戍饑久 迁散骑常侍 若恭得志 遗晋怖威 镇南大将军 投空自窜 收晏付廷尉 将杀嘉 皆封侯 敛板曰 矩谋夜袭之 寻掘地 茂弘 帝然之 暨东海王越迎大驾 谧字稚远 晞以京邑荒馑日甚 峻勇而无谋 纵兵寇抄 获御史驺人问曰 有死难之名 谢浮等十馀部 收吴太妃 不许 纲维不举 古 人举至极以为验 季龙伏骑断其后 时帝方拓定江南 永康初 罕有所推 侃不听 冀东军可罢 下附州征野战之比 爰立章程 兵年过六十 夏殷繁帝者之约法 其后并州刺史 帝爱之 遣尚书和郁持节送贾庶人于金墉

九年级数学下册《求二次函数的关系式》教案、教学设计

九年级数学下册《求二次函数的关系式》教案、教学设计
因此,在教学过程中,教师应结合学生的实际情况,运用多样化的教学手段和方法,帮助学生克服困难,提高他们的数学素养,为高中数学学习打下坚实基础。
三、教学重难点和教学设想
(一)教学重难点
1.重点:二次函数的定义、关系式的求解及图像性质的理解。
2.难点:
(1)求解二次函数关系式的技巧和方法。
(2)二次函数图像的对称性、开口方向、顶点、最值等性质的灵活应用。
(一)导入新课,500字
在导入新课环节,我将通过生活中的实例,激发学生对二次函数的兴趣。我会向学生展示一个抛物面状的物体,如拱桥、篮球的抛物线等,引导学生思考这些物体背后的数学原理。然后,提出问题:“这些物体的形状有什么共同特点?它们与二次函数有什么关系?”通过这样的问题,让学生初步感知二次函数在实际生活中的应用,激发他们的学习兴趣。
5.思考题:设置一道拓展思维的题目,引导学生深入思考二次函数的本质和规律。如:“已知二次函数的图像开口方向和顶点坐标,如何快速判断它与x轴的交点个数?”
作业布置要求:
1.请同学们按时完成作业,保持书写工整、清晰。
2.对于实际应用题和提高拓展题,鼓励同学们积极思考、勇于尝试,培养解决问题的能力。
3.小组合作题要充分发挥团队合作精神,共同完成任务。
(6)总结本节课的知识点,布置课后作业,巩固学习成果。
4.教学评价:
(1)过程性评价:关注学生在课堂上的参与度、思考问题和解决问题的能力。
(2)终结性评价:通过课后作业、阶段测试等方式,了解学生对二次函数知识的掌握程度。
(3)增值性评价:关注学生的进步和成长,鼓励学生发挥潜能,提高自信心。
四、教学内容与过程
3.教学步骤:
(1)导入新课,展示生活中的二次函数实例,让学生初步感知二次函数。

九年级数学求二次函数的函数关系式

九年级数学求二次函数的函数关系式
天浩盛世娱乐
[问答题]北京某工程据统计混凝土实物工作量约为23000m3,混凝土为(商混)不考虑现场搅拌,混凝土养护用水定额取700L/m3;拟定结构及前期阶段施工工期为300d;每天按照1.5个工作班计算。其中:K1=1.1,Q1=23000m3,N1=7501/m3,T1=120d,t=1.5班,K2=1.5。生活区高峰人数为500人, [填空题]广告设计的本质在于(),广告主和广告策划者是广告的传播者,广告信息是广告传播的主要内容,刊播广告的各种媒介是广告传播的媒介,而接触广告的媒介受众则是()的受众。 [单选]是否做到(),是人员招聘成败的关键。A.公开招聘B.择优录用C.公平公正D.效率优先 [单选]锅炉水中H2S的危害是()。A、易结垢B、易产生微生物C、易减小炉水pH值,对金属有腐蚀D、无危害 [单选]实行()的建设项目,应在办理备案手续后和项目开工前完成环境影响评价文件报批手续。A.报告制B.核准制C.注册制D.备案制 [单选]在正常航速条件下,实施沉箱海上拖运时,牵引作用点设在沉箱()处最为稳定。A.重心B.浮心C.定倾中心以下10Cm左右D.定倾中心以上10Cm左右 [单选]下列关于飞机过载和速压的说法,正确的是()。A.速压反应了飞机总体受载的严重程度B.过载反应了飞机总体受载的严重程度C.过载反应了飞机表面所承受的局部气动载荷的严重程度D.飞机在飞行中不能超过最大使用过载,但允许超过最大允许速压 [单选]下列关于制定股利分配政策应考虑因素的表述中,错误的是()。A、按照资本保全的限制,股本和资本公积都不能发放股利B、按照企业积累的限制,法定公积金达到注册资本的50%时可以不再提取C、按照净利润的限制,五年内的亏损必须足额弥补,有剩余净利润才可以发放股利D、按照无 [问答题,简答题]影响精甲醇的质量标准? [单选]安装井架底座时先把()划出来,找好安放底座的位置,用吊车将大梁逐件摆上,连接固定好。A.底座对角线B.井口中心线C.底座边线D.井场边界 [判断题]空调压缩机润滑油的牌号越大,黏度越大,凝固点越高。()A.正确B.错误 [名词解释]大同之世 [单选]关于精神康复的主要内容,下列说法错误的是()A.生活技能训练,包括人际交往技能、解决问题技能、应付应激技能等B.使病人了解药物对预防与治疗的重要意义,自觉接受药物治疗C.使病人学习有关精神药物的知识,学会自己用药,从而做到自己管理自己而不需向医生求助D.使病人了 [单选]下列哪一项与葡萄胎超声鉴别无关A.过期流产B.子宫肌瘤变性C.子宫腺肌症D.子宫内膜癌E.子宫颈囊肿 [多选]下列对安全技术交底主要内容的叙述,()是正确的。A.安全负责人的电话B.针对危险部位采取的具体防范措施C.作业中应注意的安全事项D.作业人员应遵守的安全操作规程和规范 [名词解释]风力输沙量 [单选]船用离心泵为避免发生喘振,流量~扬程曲线应尽量避免()。A.陡降形B.平坦形C.驼峰形D.都无妨 [单选,A1型题]属于单次发情动物的是()A.马B.绵羊C.牛D.猪E.犬 [单选,A1型题]关于煎煮过程中药材浸泡的说法错误的是()A.煎药前饮片浸泡有利于有效成分的浸出B.在煎煮前必须用冷水在室温下浸泡C.浸泡的时间越长越好D.浸泡可以避免在加热煎煮时由于药材组织中淀粉、蛋白等糊化,有效成分不易渗出E.一般质地疏松的药材浸泡时间宜短 [单选]下列方剂中,哪项是治疗风寒湿痹的通用方剂()A.三痹汤B.防风汤C.蠲痹汤D.白虎加桂枝汤E.大秦艽汤 [单选]根据《建设工程质量管理条例》的规定,设计单位应当参与建设工程()分析,并提出相应的棱柱处理方案。A.工期延误B.投资失控C.质量事故D.施工组织 [单选]马氏体的硬度主要决定于()A.马氏体中合金元素的含量B.淬火时冷却速度C.马氏体的碳含量D.淬火加热温度 [单选]上下外国船舶的人员,必须向边防检查人员交验,经许可后,方可上船、下船。()A.出境、入境证件B.其他规定的证C.登轮证件D.以上都是 [单选,A1型题]产程正常胎儿娩出后30分钟,胎盘仍未排出,出血不多,恰当的处理方法()A.等待自然娩出B.压子宫及注射子宫收缩药C.肌注阿托品0.5mgD.立即手取胎盘E.立即剖宫取胎盘 [单选]变更控制过程中,对于需求变更的确立,监理人员必须遵守的规则是()。①每一个项目变更必须用变更申请单提出,它包括对需要批准的变更的描述以及该项变更在计划、流程、预算、进度或可交付的成果上可能引起的变更②在准备审批变更申请单前,监理工程师必须与总监理工程师商 [单选,A2型题,A1/A2型题]中性粒细胞吞噬能力显著下降见于()A.白色念珠菌感染B.糖尿病C.烧伤D.补体缺陷症E.肝癌 [单选]部件类型区分号在零件编码系统中代表纵向布置部件的符号是()。A.VB.PC.L [单选,A型题]患者女性,25岁,阵发性心悸6年。平时心电图显示为预激综合征,心电图如图3-16-4所示,旁路可初列各项中,不应计入营业外收人的是()。A.债务重组利得B.处置固定资产净收益C.收发差错造成存货盘盈D.确实无法支付的应付账款 [单选]上部为柔性结构但基础本身刚度较大的条形基础,其基础梁纵向内力计算方法应选取()。A.静定分析法B.倒梁法C.弹性地基梁法D.有限单元法 [单选,A2型题,A1/A2型题]婴儿痤疮()。A.表现为严重结节、囊肿、窦道及瘢痕,好发于男性青年B.少数患者病情突然加重,并出现发热、关节痛、贫血等全身症状C.雄激素、糖皮质激素、卤素等所致的痤疮样损害D.婴儿期由于母体雄激素在胎儿阶段进入体内E.与月经周期密切相关 [单选]皮肤真皮的主要成分是()A.纤维成分B.淋巴管C.神经D.血管E.真皮树枝状细胞 [单选,A2型题,A1/A2型题]以下主诉描述正确的是()A.月经停闭3年B.月经过多5天C.痛经3年D.每次月经期间及月经以后发热,五心烦热,口干咽燥1年E.小产3次 [问答题,简答题]列车机车与第一辆车的车钩、软管摘解是怎样规定的? [多选]在中华人民共和国沿海水域从事扫海、疏浚、爆破、打桩、拔桩、起重、钻探等作业,必须事先向所涉及的海区的区域主管机关申请办理和发布()。A.海上航行警告B.航行通告C.打桩令D.施工许可证E.疏浚令 [问答题,简答题]防止直接触电的措施? [单选]胡萝卜素是合成视紫红质的主要物顶,因此食用胡萝卜可以()。A、降低血液汞浓度B、预防对视网膜的伤害C、降低血压D、降低血脂 [单选,A2型题,A1/A2型题]对面神经失用的描述,不正确的是()。A.损伤限于髓鞘B.轴索结构正常C.出现暂时性神经传导阻滞D.无面瘫E.病因去除后神经功能可在短期内恢复 [名词解释]原口动物 [单选]利用航线前方导标方位导航,如实测方位小于导航方位,表明船舶()偏离计划航线,应()调整航向。A.向左;向左B.向左;向右C.向右;向右D.向右;向左

九年级数学上册第二十二章二次函数知识点总结归纳(带答案)

九年级数学上册第二十二章二次函数知识点总结归纳(带答案)

九年级数学上册第二十二章二次函数知识点总结归纳单选题1、定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x −m )2−m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1C .4,0D .5+√172,-1 答案:D分析:分别讨论当对称轴位于y 轴左侧、位于y 轴与正方形对称轴x =1之间、位于直线x =1和x =2之间、位于直线x =2右侧共四种情况,列出它们有交点时满足的条件,得到关于m 的不等式组,求解即可. 解:由正方形的性质可知:B (2,2);若二次函数y =(x −m )2−m 与正方形OABC 有交点,则共有以下四种情况:当m ≤0时,则当A 点在抛物线上或上方时,它们有交点,此时有{m ≤0m 2−m ≤2, 解得:−1≤m <0;当0<m ≤1时,则当C 点在抛物线上或下方时,它们有交点,此时有{0<m ≤1(2−m )2−m ≥0, 解得:0<m ≤1;当1<m ≤2时,则当O 点位于抛物线上或下方时,它们有交点,此时有{1<m ≤2m 2−m >0, 解得:1<m ≤2;当m >2时,则当O 点在抛物线上或下方且B 点在抛物线上或上方时,它们才有交点,此时有{m >2m 2−m ≥0(2−m )2−m ≤2 ,解得:2<m≤5+√17;2,−1.综上可得:m的最大值和最小值分别是5+√172故选:D.小提示:本题考查了抛物线与正方形的交点问题,涉及到列一元一次不等式组等内容,解决本题的关键是能根据图像分析交点情况,并进行分类讨论,本题综合性较强,需要一定的分析能力与图形感知力,因此对学生的思维要求较高,本题蕴含了分类讨论和数形结合的思想方法等.2、如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点,若−2< x1<−1,则下列四个结论:①3<x2<4,②3a+2b>0,③b2>a+c+4ac,④a>c>b.正确结论的个数为()A.1个B.2个C.3个D.4个答案:B分析:根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点已经x=-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a-b+c<0,即可判断④.∵对称轴为直线x=1,-2<x1<-1,∴3<x2<4,①正确,∵−b= 1,2a∴b=- 2а,∴3a+2b= 3a-4a= -a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2 - 4ac > 0,根据题意可知x=-1时,y<0,∴a-b+c<0,∴a+c<b,∵a>0,∴b=-2a<0,∴a+c<0,∴b2 -4ac > a+ c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a-b+c<0,b=-2a,∴3a+c<0,∴c<-3a,∴b=–2a,∴b>c,以④错误;故选B小提示:本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.3、抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是( )A.0≤x1<x2B.x2<x1≤0C.x2<x1≤0或0≤x1<x2D.以上都不对答案:D分析:根据二次函数图象及性质,即可判定.∵抛物线y=x2+3开口向上,在其图象上有两点A(x1,y1),B(x2,y2),且y1<y2,∴|x1|<|x2|,∴0≤x1<x2,或x2<x1≤0,或x2>0,x1≤0且x2+x1>0,或x2<0,x1>0且x2+x1<0,故选:D.小提示:本题考查了二次函数的图象及性质,熟练掌握和运用二次函数的图象及性质是解决本题的关键.4、如图,某公司准备在一个等腰直角三角形ABC的绿地上建造一个矩形的休闲书吧PMBN,其中点P在AC上,点NM分别在BC,AB上,记PM=x,PN=y,图中阴影部分的面积为S,若NP在一定范围内变化,则y与x,S与x满足的函数关系分别是()A.反比例函数关系,一次函数关系B.二次函数关系,一次函数关系C.一次函数关系,反比例函数关系D.一次函数关系,二次函数关系答案:D分析:先求出AM=PM,利用矩形的性质得出y=﹣x+m,最后利用S=S△ABC-S矩形PMBN得出结论.设AB=m(m为常数).在△AMP中,∠A=45°,AM⊥PM,∴△AMP为等腰直角三角形,∴AM=PM,又∵在矩形PMBN中,PN=BM,∴x+y=PM+PN=AM+BM=AB=m,即y=﹣x+m,∴y与x成一次函数关系,∴S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +12m 2, ∴S 与x 成二次函数关系.故选D .小提示:本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式.5、二次函数y =x 的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限答案:A分析:由抛物线解析式可得抛物线开口方向及顶点坐标,进而求解.∵y =x 2, ∴抛物线开口向上,顶点坐标为(0,0),∴抛物线经过第一,二象限.故选:A .小提示:本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.6、关于x 的方程ax 2+bx +c =0有两个不相等的实根x 1、x 2,若x 2=2x 1,则4b −9ac 的最大值是( )A .1B .√2C .√3D .2答案:D分析:根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.解:由方程ax 2+bx +c =0有两个不相等的实根x 1、x 2可得,a ≠0,x 1+x 2=−b a ,x 1x 2=c a ∵x 2=2x 1,可得3x 1=−b a ,2x 12=c a ,即2(−b 3a )2=c a 化简得9ac =2b 2 则4b −9ac =−2b 2+4b =−2(b 2−2b)=−2(b −1)2+2故4b −9ac 最大值为2故选D小提示:此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.7、已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.−5或2B.−5C.2D.−2答案:B分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解:函数y=x2+kx−k2向右平移3个单位,得:y=(x−3)2+k(x−3)−k2;再向上平移1个单位,得:y=(x−3)2+k(x−3)−k2+1,∵得到的抛物线正好经过坐标原点∴0=(0−3)2+k(0−3)−k2+1即k2+3k−10=0解得:k=−5或k=2∵抛物线y=x2+kx−k2的对称轴在y轴右侧∴x=−k>02∴k<0∴k=−5故选:B.小提示:此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.8、在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是( )A.B.C.D.答案:D分析:根据二次函数与一次函数的图象与性质进行判断即可.解:当a>0,b>0时,y=ax2+bx的开口上,与x轴的一个交点在x轴的负半轴,y=ax+b经过第一、二、三象限,且两函数图象交于x的负半轴,无选项符合;当a>0,b<0时,y=ax2+bx的开口向上,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、三、四象限,且两函数图象交于x的正半轴,故选项A正确,不符合题意题意;当a<0,b>0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、二、四象限,且两函数图象交于x的正半轴,C选项正确,不符合题意;当a<0,b<0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的负半轴,y=ax+b经过第二、三、四象限,B选项正确,不符合题意;只有选项D的两图象的交点不经过x轴,故选D.小提示:本题考查二次函数与一次函数图象的性质,解题的关键是根据a、b与0的大小关系进行分类讨论.9、已知二次函数y=mx2−4m2x−3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤−1或m>0D.m≤−1答案:A分析:先求出抛物线的对称轴及抛物线与y轴的交点坐标,再分两种情况:m>0或m<0,根据二次函数的性质求得m的不同取值范围便可.解:∵二次函数y=mx2−4m2x−3,∴对称轴为x=2m,抛物线与y轴的交点为(0,−3),∵点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,∴①当m>0时,对称轴x=2m>0,此时,当x=4时,y≤−3,即m⋅42−4m2⋅4−3≤−3,解得m≥1;②当m<0时,对称轴x=2m<0,当0≤x≤4时,y随x增大而减小,则当0≤x p≤4时,y p≤−3恒成立;综上,m的取值范围是:m≥1或m<0.故选:A.小提示:本题考查了二次函数的性质,关键是分情况讨论.10、如图,某涵洞的截面是抛物线形,现测得水面宽AB=1.6m,涵洞顶点O与水面的距离CO是2m,则当水位上升1.5m时,水面的宽度为()A.0.4mB.0.6mC.0.8mD.1m答案:C分析:根据题意可建立平面直角坐标系,然后设函数关系式为y=ax2,由题意可知A(−0.8,−2),代入求解函数解析式,进而问题可求解.解:建立如图所示的坐标系:设函数关系式为y=ax2,由题意得:A(−0.8,−2),∴−2=0.8×0.8×a,,解得:a=−258∴y=−25x2,8x2,当y=-0.5时,则有−0.5=−258解得:x=±0.4,∴水面的宽度为0.8m;故选C.小提示:本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.填空题11、已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式−3m2+3m+2022的值为______.答案:2019分析:先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.所以答案是:2019.小提示:本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.12、如图,在平面直角坐标系中,抛物线y=−x2+2mx+m−2(m为常数,且m>0)与直线y=2交于A、B两点.若AB=2,则m的值为______.答案:√21−12分析:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得x2−2mx−m+4=0,利用根与系数关系求得AB,可建立关于m的方程并解出即可.解:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得:−x2+2mx+m−2=2,即:x2−2mx−m+4=0∴x1+x2=2m,x1x2=−m+4,∴AB=|x2−x1|=√(x2+x1)2−4x1x2=√(2m)2−4(−m+4)=2,∴m2+m−5=0,解得:m1=√21−12,m2=−√21−12(舍去),所以答案是:√21−12.小提示:本题考查了抛物线与x轴的交点、二次函数与一元二次方程的关系、二次函数图象上点的坐标特征,熟练掌握这三个知识点的综合应用是解题关键.13、平移二次函数的图象,如果有一个点既在平移前的函数图象上,又在平移后的函数图象上,我们把这个点叫做“关联点”.现将二次函数y=x2+2x+c(c为常数)的图象向右平移得到新的抛物线,若“关联点”为(1,2),则新抛物线的函数表达式为_______.答案:y=(x−3)2−2分析:将(1,2)代入y=x2+2x+c,解得c=-1,设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,然后将(1,2)代入得到关于m的方程,通过解方程求得m的值即可.解:将(1,2)代入y=x2+2x+c,得12+2×1+c=2,解得c=-1.设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,将(1,2)代入,得(1+1-m)2-2=2.整理,得2-m=±2.解得m1=0(舍去),m2=4.故新抛物线的表达式为y=(x-3)2-2.故答案是:y=(x−3)2−2.小提示:本题主要考查了二次函数图象与几何变换,二次函数图象上点的坐标特征以及待定系数法确定函数关系式,解题的关键是理解“关联点”的含义.14、如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.则当水位下降m=________时,水面宽为5m?答案:1.125分析:以抛物线的顶点为原点建立坐标系,则可以设函数的解析式是y=ax2,然后求得水面与抛物线的交点坐标,利用待定系数法求解抛物线的解析式,再利用点的坐标特点即可求解.解:如图,建立如下的坐标系:水面与抛物线的交点坐标是(-2,-2),(2,−2),设函数的解析式是y=ax2,则4a=-2,解得a=−12,则函数的解析式是y=−12x2.当水面宽为5米时,把x=52代入抛物线的解析式可得:y=12×(52)2=258=3.125,∴3.125−2=1.125(米),所以答案是:1.125.小提示:本题考查了待定系数法求二次函数的解析式,二次函数的性质,建立合适的平面直角坐标系,求得水面与抛物线的交点是解题的关键.15、根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是ℎ=−5t2+20t,当飞行时间t为___________s时,小球达到最高点.答案:2分析:将函数关系式转化为顶点式即可求解.根据题意,有ℎ=−5t2+20t=−5(t−2)2+20,当t=2时,ℎ有最大值.所以答案是:2.小提示:本题考查二次函数解析式的相互转化及应用,解决本题的关键是熟练二次函数解析式的特点及应用.解答题16、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.答案:(1)y=−3x+300;(2)售价60元时,周销售利润最大为4800元;(3)m=5分析:(1)①依题意设y=kx+b,解方程组即可得到结论;(2)根据题意得W=(−3x+300)(x−a),再由表格数据求出a=20,得到W=(−3x+300)(x−20)=−3(x−60)2+4800,根据二次函数的顶点式,求出最值即可;(3)根据题意得W=−3(x−100)(x−20−m)(x⩽55),由于对称轴是直线x=60+m2>60,根据二次函数的性质即可得到结论.解:(1)设y=kx+b,由题意有{40k+b=180 70k+b=90,解得{k=−3b=300,所以y关于x的函数解析式为y=−3x+300;(2)由(1)W=(−3x+300)(x−a),又由表可得:3600=(−3×40+300)(40−a),∴a=20,∴W=(−3x+300)(x−20)=−3x2+360x−6000=−3(x−60)2+4800.所以售价x=60时,周销售利润W最大,最大利润为4800;(3)由题意W=−3(x−100)(x−20−m)(x⩽55),其对称轴x=60+m2>60,∴0<x⩽55时上述函数单调递增,所以只有x=55时周销售利润最大,∴4050=−3(55−100)(55−20−m).∴m=5.小提示:本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.17、“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y1(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y1=ax2+ c,部分对应值如表:221.③1~7月份该蔬菜售价x1(元/千克),成本x2(元/千克)关于月份t的函数表达式分别为x1=12t+2,x2=1 4t2−32t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.答案:(1)a=−15,c=9(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元分析:(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w元,根据w=x售价−x成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x的值,再求出总利润即可.(1)把{x=3,y=7.2,{x=4,y=5.8代入y需求=ax2+c可得{9a+c=7.2,①16a+c=5.8.②②-①,得7a=−1.4,解得a=−15,把a=−15代入①,得c=9,∴a=−15,c=9.(2)设这种蔬菜每千克获利w元,根据题意,有w=x售价−x成本=12t+2−(14t2−32t+3),化简,得w=−14t2+2t−1=−14(t−4)2+3,∵−14<0,t=4在1≤t≤7的范围内,∴当t=4时,w有最大值.答:在4月份出售这种蔬菜每千克获利最大.(3)由y供给=y需求,得x−1=−15x2+9,化简,得x2+5x−50=0,解得x1=5,x2=−10(舍去),∴售价为5元/千克.此时,y供给=y需求=x−1=4(吨)=4000(千克),把x=5代入x售价=12t+2,得t=6,把t=6代入w=−14t2+2t−1,得w=−14×36+2×6−1=2,∴总利润=w⋅y=2×4000=8000(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.小提示:此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.18、一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少? 答案:(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14分析:(1)根据题意和函数图象,可以设出抛物线的解析式,然后根据抛物线过点F 和点M 即可求得该抛物线的解析式;(2)先求出抛物线的解析式,再根据题意判断该隧道能通过的车辆的最高高度,便可判断该车辆能安全通过.(3)射出H 的坐标,用n 表示出L ,利用二次函数的性质求解即可.解:(1)由题意得M (0,4),F (4,0)可设抛物线的解析式为y=ax 2+4,将F (4,0)代入y=ax 2+4中,得a=-14, ∴抛物线的解析式为y=-14x 2+4; (2)当x=3,y=74, 74+2-12=3.25>3.2,∴能安全通过; (3)由GH=n ,可设H (n 2,−n 216+4),∴GH+GA+BH=n+(−n 216+4)×2+2×2=−18n 2+n +12,∴L=−18n 2+n +12,∵a <0,抛物线开口向下,∴当n=-b=4时,L有最大值,最大值为14.2a小提示:本题考查了二次函数的实际应用,解题的关键是要注意自变量的取值范围必须使实际问题有意义.。

北师大数学九年级下册第二章-确定二次函数的表达式(含解析)

北师大数学九年级下册第二章-确定二次函数的表达式(含解析)

第02讲_确定二次函数的表达式知识图谱二次函数解析式的求法知识精讲 一般式 ()20y ax bx c a =++≠已知任意3点坐标,可用一般式求解二次函数解析式待定系数法已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,求a b c、、的值解:把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,顶点式 ()2y a x h k =-+()0a ≠已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式顶点式求解析式 一抛物线和y =﹣2x 2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),求其解析式解:∵两条抛物线形状与开口方向相同,∴a =﹣2,又∵顶点坐标是(﹣2,1),∴y =﹣2(x +2)2+1易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+三.二次函数的两根式两根式 1.已知抛物线与x 轴的两个交点坐标,可用两根式求解析式; 2. 已知抛物线经过两点,且这两点的纵坐标相等时,可在两根式的基础上求解析式两根式求解析式 已知抛物线y =ax 2+bx +c 过点A (-1,1),B (3,1),3(2,)2C - 求解析式解:设抛物线的解析式为y =a (x +1)(x -3)+1把3(2,)2c -代入解析式,求出a 即可 易错点:(1)任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示(2)二次函数解析式的这三种形式可以互化三点剖析一.考点:二次函数解析式的求法.二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.三.易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+.待定系数法例题1、 已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,那么a b c 、、的值分别是( )A.164a b c =-=-=,,B.164a b c ==-=-,,C.164a b c =-=-=-,,D.164a b c ==-=,,【答案】 D【解析】 把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,故答案为D 选项.例题2、 已知二次函数的图象经过(0,0)(-1,-1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.【答案】 (1)y =4x 2+5x(2)(58-,2516-). 【解析】 (1)设所求二次函数的解析式为y =ax 2+bx +c (a≠0),根据题意,得019c a b c a b c =⎧⎪-+=-⎨⎪++=⎩,解得450a b c =⎧⎪=⎨⎪=⎩,∴所求二次函数的解析式为y =4x 2+5x .(2)由22525454()816y x x x x =+=+-, ∴顶点坐标为(58-,2516-). 例题3、 已知抛物线2y x bx c =-++经过点A (3,0),B (-1,0).(1)求抛物线的解析式;(2)求抛物线的对称轴.【答案】 (1)y=-x 2+2x+3(2)x=1【解析】 暂无解析随练1、 已知二次函数的图像经过点()1,5--,()0,4-和()1,1,则这个二次函数的解析式为( ) A.2634y x x =-++ B.2234y x x =-+- C.224y x x =+- D.2234y x x =+-【答案】 D【解析】 由待定系数法可求得2234y x x =+-.随练2、 已知一个二次函数过()0,0,()1,11-,()1,9三点,求二次函数的解析式.【答案】 210y x x =-【解析】 设二次函数的解析式为2y ax bx c =++(0a ≠),因为抛物线经过点()0,0,()1,11-,()1,9,所以0119c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得1010a b c =⎧⎪=-⎨⎪=⎩,所以二次函数解析式为210y x x =-.顶点式例题1、 函数21212y x x =++写成y =a (x -h )2+k 的形式是( ) A.21(1)22y x =-+ B.211(1)22y x =-+ C.21(1)32y x =-- D.21(2)12y x =+- 【答案】 D【解析】 22211121(44)21(2)1222y x x x x x =++=++-+=+-. 例题2、 二次函数的顶点为(﹣2,1),且过点(2,7),则二次函数的解析式为_____________.【答案】 y=23(x 2)18++ 【解析】 设抛物线解析式为y=a (x+2)2+1,把(2,7)代入得a•(2+2)2+1=7,解得a=38, 所以抛物线解析式为y=38(x+2)2+1。

华师大版数学九年级下册《求二次函数的关系式》教学设计

华师大版数学九年级下册《求二次函数的关系式》教学设计

华师大版数学九年级下册《求二次函数的关系式》教学设计一. 教材分析华师大版数学九年级下册《求二次函数的关系式》这一节内容,是在学生已经掌握了函数的概念、一次函数的性质等基础知识的基础上进行授课的。

二次函数是初中数学中的重要内容,它在实际生活和工作中有着广泛的应用。

本节课主要让学生了解二次函数的一般形式,掌握二次函数的解析式,并能够根据实际问题建立二次函数模型。

教材通过丰富的实例,引导学生探究二次函数的性质,培养学生的动手操作能力和数学思维能力。

二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数的概念和性质有所了解。

但是,二次函数相对复杂,学生可能存在理解上的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行引导和解答。

此外,学生对于实际问题的解决能力有待提高,教师在教学中应注重培养学生的建模能力和解决问题的能力。

三. 教学目标1.理解二次函数的一般形式,掌握二次函数的解析式。

2.学会根据实际问题建立二次函数模型,解决实际问题。

3.培养学生的动手操作能力、数学思维能力和解决问题的能力。

四. 教学重难点1.重点:二次函数的一般形式,二次函数的解析式。

2.难点:根据实际问题建立二次函数模型,解决实际问题。

五. 教学方法1.讲授法:教师讲解二次函数的一般形式、解析式等基本概念。

2.案例分析法:分析实际问题,引导学生建立二次函数模型。

3.动手操作法:学生动手操作,探究二次函数的性质。

4.小组讨论法:学生分组讨论,培养合作意识。

六. 教学准备1.教学课件:制作华师大版数学九年级下册《求二次函数的关系式》的课件,包括图片、文字、动画等元素,直观展示二次函数的性质。

2.实例素材:收集一些实际问题,作为教学案例。

3.练习题:准备一些有关二次函数的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示二次函数的图像,引导学生回顾一次函数的性质,为新课的学习做好铺垫。

二次函数

二次函数

第一讲初中九年级二次函数知识点总结我不但想要二次函数的详细知识点总结(包括所有细节)而且想要关于做题时的一些小捷径,我们老师讲的时候讲过许多小的方法在做填空和选择时直接用是很简便的,但现在人教版的数学书都没那么详细,很多老书中的知识点是没有的,哪位能不但给我提供二次函数知识点总结,还能给我很多作题的方法,答:二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x²的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P [ -b/2a ,(4ac-b^2;)/4a ]。

当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

新人教版九年级数学上册二次函数解析式的三种形式

新人教版九年级数学上册二次函数解析式的三种形式
个二次函数的关系式。
2. (选做)已知:抛物线在x轴上所截线段为 长度为4,顶点坐标为(2,4),求这个 函数的关系式.
汇报结束
谢谢大家! 请各位批评指正
下列这三题只给出图象,看看谁先做出(只要求列式):
(1)的图象如图1示,求此函数解析式. (2)二次函数的图象如图2示 ,求此函数解析式. (3)某抛物线如图3示,求此抛物线的解析式.
ya2xbxc
y
ya2 xbxc
y
ya2 xbxc
y
1 0
-1 2
3x
3
-2 图1
11
-1 1
1 0
x
2 1 0 11 2 x
例4.图象经过A(1,0)、B(0,-3),且 对称轴是直线x=2 ,求这个二次函数的关系 式
解:∵A(1,0),对称轴为x=2
∴抛物线与x轴另一个交点C应为(3,0) ∴设其解析式为y=a(x-1)(x-3)
∵B(0,-3)
∴-3 = a(0-1)(0-3) ∴a= -1
∴y= -(x-1)(x-3)= -x2+4x-3
新人教版九年级数学上册二次函数解析式的三 种形式
二次函数的三种解析式
1.一般式 y=ax2+bx+c(a≠0) 2.顶点式 y=a(x-h)2+k
其中点(h, k)为顶点,对称轴为x=h。
3.交点式 y=a(x-x1)(x-x2)
其中x1 , x2 是抛物线与x轴的交点的横坐标。
一般式y=ax2+bx+c(a≠0)
例3、已知抛物线与x轴交于点 A (-1,0),B(2,0)并经过点 M(0,1),求抛物线的解析式。
解:设抛物线的解析式为y=a(x+1)(x-2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]民法的各项基本原则中,对维护正常市场秩序具有重要作用,被学者称为“帝王条款”的原则是()。A.平等自愿原则B.诚实信用原则C.公平原则D.合法原则 [单选]胃十二指肠溃疡病出血的特点,错误的是()A.呕血前常有恶心B.量大的出血可解鲜血便C.短期内失血超过800ml,可出现休克症状D.多数患者只有黑便而无呕血E.是上消化道大出血最常见的原因 [填空题]单频是指通信的双方,使用()工作频率。 [单选]如无单独病室,同一类传染病患者可住同一房间,但床距应至少保持()A.1mB.3mC.1.5mD.80cmE.没有要求 [单选]车身上电弧钎焊焊接的板件可以用()的方法分离。A.砂轮切除钎焊B.钻头切割C.氧乙炔焊枪或丙烷焊枪熔化钎焊的金属 [填空题]数据通信网按传输技术分类可以分为交换网和()等。 [多选]下列属于刑法法定分类的是A.国事犯罪与普通犯罪B.亲告罪与非亲告罪C.基本犯、加重犯、减轻犯D.自然犯与法定犯 [单选]下列哪一种飞行时间不能记作单飞时间()A、在取得等级的航空器上作为操纵装置的唯一操作者的飞行时间B、在需要一名以上驾驶员的航空器上担任机长时的飞行时间C、飞行学员在需要一名以上飞行机组成员时,其行使机长职权 时间 [判断题]板牙在加工螺纹时,不允许倒转。A.正确B.错误 [单选]下列哪项最符合心力衰竭的概念()A.心脏每搏输出量降低B.静脉回流量超过心输出量C.心功能障碍引起大小循环充血D.心脏负荷过度引起心功能障碍E.心输出量不能满足机体的需要 [多选]综合的临床诊断应包括()A.病因诊断B.病理解剖诊断C.病理生理诊断D.疾病的分型与分期E.并发症及伴发疾病诊断 [多选]夹套管由内管和外管组成,当内管物料压力为0.8MPa、工作温度为300℃时,外管和内管之间的工作介质应选()A.联苯热载体B.蒸汽C.热空气D.热水 [单选,A2型题,A1/A2型题]正常人外周血中成熟的NK细胞占()A.5%B.10%C.15%D.20%E.30% [单选]经济增长的最佳定义是()。A.投资和资本量的增加B.由于要素供给增加或生产率提高而使潜在的国民收入有所提高C.实际国民收入在现有水平上有所提高D.人均货币收入的增加 [单选]100g水溶解20g非电解质的溶液,经实验测得该溶液在-5.85℃凝固,该溶质的分子量为()(已知水的Kf=1.86K&#8226;Kg/mol)A、33B、50C、67D、64 [单选,A2型题,A1/A2型题]患儿,男,5岁,行后尿道瓣膜切除。术后伤口愈合不良,输血浆110毫升。当输入30毫升时,发生寒战,体温升至40℃,减慢速度于10小时输完血浆,患儿休克,昏迷,白细胞为13.4×109/L,次日增至40×109/L( 93%)。给氧,除原用青霉素、链霉素外,第二天加用金霉素、肾上腺皮质激素。昏迷持续两天死亡。患儿最可能是死于()。A.发热反应B.过敏反应C.细菌污染反应D.溶血反应E.血液循环过荷 [单选]有助于超早期(发病6小时)脑梗死诊断的影像学检查有()A.DSAB.CTACTD.头颅X线E.CTP [填空题]所谓接通的任意性与快速性是指网内的一个用户应能快速地接通()任一其他用户。 [名词解释]待生催化剂 [单选,A1型题]下列各项,不属肝肾阴虚型阴痒主证的是()。A.阴部皮肤变白、干燥B.阴部干涩C.带下量多,色黄如脓D.阴道口缩小E.阴部萎缩、平坦
软文推广
ห้องสมุดไป่ตู้
相关文档
最新文档