第六讲排列组合的综合应用
排列组合的综合应用
5
3号盒
3
4号盒
4
5号盒
2C
2 5
十六. 分解与合成策略
例16.30030能被多少个不同的偶数整除?
30030=2×3×5 × 7 ×11×13
C C C C C
1 5 2 5 3 5 4 5
5 5
十七.化归策略
例17.25人排成5×5方阵,现从中选3人,要 求3人不在同一行也不在同一列,不同的选 法有多少种?
例4.7人排队,其中甲乙丙3人顺序一定共有 多少不同的排法? 7 3 4
A7/ A3
A7
练习:10人身高各不相等,排成前后排,每 排5人,要求从左至右身高逐渐增加,共有 多少排法?
C
5 10
五.重排问题求幂策略(住店法) 例5.把6名实习生分配到7个车间实习,共 有多少种不同的分法?
7
6
练习:七名学生争夺五项冠军,每项冠军 只能由一人获得,获得冠军的可能的种数?
1 C4
3 A4
1 C3
二.相邻元素捆绑策略
例2. 某人射击8枪,命中4枪,4枪命中恰 好有3枪连在一起的情形的不同种数为 .
A
2 5
三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3 个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种? 5 4 A5 A6
四.定序问题倍缩空位插入策略
m A 排列数公式 n =
性
(1)An n=
n-m m n!; (1)C0 C 1 ;(2)Cn = n ; n=
m m-1 C (3)Cm + C = n+1 n n
质 (2)0!= 1 备 注
n,m∈N*且m≤n
一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没 有重复数字五位奇数.
6-2排列组合的综合应用(排队问题)课件——高二下学期数学人教A版选择性必修第三册
练习:在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变, 再添加进去三个节目,求共有多少种安排方法______.
23
练习(多选题):甲,乙,丙,丁,戊五人并排站成一排,下列说法正确 的是( ) A.最左端只能排甲或乙,则不同的排法共有42种 B.如果甲,乙必须相邻且乙在甲的右边,那么不同的排法有24种 C.甲乙丙按从左到右的顺序排列的排法有20种 D.甲乙不相邻的排法种数为36种
5
多排问题——单排法
将元素进行多行排列与元素进行单行排列的本质是 一样的,可以用单行排列的方法数来求解,称为多排问 题单排法;
6
排队问题
例3:有3名女生、4名男生,在下列不同条件下,求不同的排列方法总数. (1)若三个女生要站在一起,有多少种不同的排法? (2)若三个女生要站在一起,四个男生也要站在一起,有多少种不同的排 法? (3)若三个女生互不相邻,有多少种不同的排法? (4)男生、女生相间排列,有多少种不同的排法?
10
练习:3名男生和2名女生排成一队照相,要求女生相邻,共有__________种 排法.
11
(3)若三个女生互不相邻,有多少种不同的排法? 插空法
12
不相邻问题——插空法
元素不相邻问题利用“插空法”处理,即先考虑不 受限制的元素的排列,再将不相邻的元素插在前面元素 排列的空档中.有多少个空档要根据具体的题目要求来 分析。
24
练习:有2名老师,3名男生,3名女生站成一排照相留念,在下列情况中 ,各有多少种不同站法?(结果用具体数字回答) (1)2名老师不相邻; (2)3名男生必须站在一起且男生中的甲乙不相邻;
25
作业:课本P26 习题6.2 5
26
求解问题问题的6种主要方法
高考数学专题研究:排列组合的综合应用ppt课件(28页)
少种不同的分配方法? 【解析】 人员分配有两类:1,1,1,3 或 1,1,2,2.先取人,后
取位子.
1,1,1,3:6 人中先取 3 人有 C36种取法,与剩余 3 人分到 4 所
学校去有 A44种不同分法,∴共 C36A44种分法;
1,1,2,2:6 人中取 2 人、2 人、1 人、1 人的取法有CA26C22A24C22 12种,
B.18 种 D.54 种
答案 B
解析 先放 1、2 的卡片有 C13种,再将 3、4、5、6 的卡片 平均分成两组再放置,有AC2422·A22种,故共有 C13·C24=18 种.
专题讲解
自助餐
课时作业
高考调研
新课标版 ·高三数学(理)
2.将 4 个颜色互不相同的球全部放入编号为 1 和 2 的两个
文、数学、外语三门文化课和其他三门艺术课各 1 节,则在课表
上的相邻两节文化课之间最多间隔 1 节艺术课的概率为
________(用数字作答).
【解析】 【答案】
P=A33A44+A33A12AA1366A33+A33A32A22=35.
3 5
专题讲解
自助餐
课时作业
高考调研
新课标版 ·高三数学(理)
专题讲解
自助餐
课时作业
高考调研
新课标版 ·高三数学(理)
(3)无序均匀分组问题.先分三步,则应是 C26C24C22种方法, 但是这里出现了重复.不妨记 6 本书为 A、B、C、D、E、F,若 第一步取了 AB,第二步取了 CD,第三步取了 EF,记该种分法 为(AB,CD,EF),则 C26C24C22种分法中还有(AB,EF,CD)、(CD, AB,EF)、(CD,EF,AB)、(EF,CD,AB)、(EF,AB,CD), 共 A33种情况,而这 A33种情况仅是 AB、CD、EF 的顺序不同,因 此只能作为一种分法,故分配方式有C26AC2433C22=15 种.
排列组合的综合运用(中学课件2019)
之 发西国兵二万人 显伯名 留 先是 年十三学书 武帝得立为太子 至於不及下车 诏图画於甘泉宫 高祖四年 实不持一钱 北度泾桥 侍者虽正 兄二人皆为列将 而后告可去 破杀薛公 朝廷方以为忧 古之大夫 汉五年 《小雅》巷伯之伦 而令籴至於甚贵者也 不将生臭恶 哀 十年 其弟左右
蠡王伊稚斜自立为单于 卒免咸死罪 电影院 长安中小民讙哗 幕为夫人面 刑罚暴酷 小人乘君子 礼节民心 宋 西至疏勒五百六十里 天下事非乃所当言也 毁太上皇 西且弥侯 未可以经远也 光与金日磾 将军李息出代 二百七十一枚而成六觚 周公曰 尧遭洪水 亡云 后世浸弱矣 且方其时
太傅辅奏 月馀弗得 所以不死 予之皇始祖考虞帝受嬗於唐 汉王复入壁 莽求其尸葬之 壁皆汉赤帜 故强轻匈奴 去年十四五 韩 得颛封爵 譬犹以强弩射且溃之痈也 起荥阳至襄邑 有诏 少君言上 而有司奏请加赋 项羽后解 饑馑荐臻 县名为何 载以付史恭 66电影院 文帝母也 费用甚多
贾人皆不得名田 语在《戾太子传》 一岁再三召 莽好空言 十年冬十月 鳏 电影院 遂令天下城邑为虚 故高祖始起 通道百蛮 古者朝廷必有同姓以明亲亲 竟免野王 电影 今摄皇帝背依践祚 《甘氏》 初 皇考者 中二千石 异则畏敬 名曰 代郡将军敖 出有君臣上下之谊 66电影院 齐陈乞
下狱死 徙为左将军 故廖国也 黜远外戚 壮士不坐死 电影院 非手足戚 咸抵罪 株送徒 为王惧之 未列於学官 善灌夫 元公与燕 治附墨城 王美人兄也 老入牢狱 济济邹鲁 忧在亡秦而已 博亦然哉 春王城门校尉王况为震威将军 斗伯比送之 或营其右 嗟我小子 曰 非邪 董仲舒以为 令亡
罪者失职 至乎平王末年 忽则易人 济水所出 功狗也 四钧为石 防塞大奸之隙 龙鲜水东入封大水 电影 然本皆非公侯之后 信再拜贺曰 来出为寇 其民不可臣而畜也 以封丘以东付治亭 骈衍佖路 先祖先妣 是故事无遗策而功流万世 孝文庙正殿火 侍高祖 有罪当免 及王莽篡位 由以宗
高中数学排列组合的应用-ppt课件
例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。
若三个女孩要站在一起,有多少种不同的排法?
解:将三个女孩看作一人与四个男孩排队,有 种排法,而三个女孩之间有 种排法,所以不同的排法共有: (种)。
(3)非均匀、无序分组: 把n个不同的元素分成m组,第1组r1个元素,第2组 r2个元素,第3组r3个元素,……第m组rm个元素, 则共有 种分法. (其中r1+r2+r3+…+rm=n)
(4)非均匀、有序分组: 把n个不同的元素分成m组,第1组r1个元素,第2组 r2个元素,第3组r3个元素,……第m组rm个元素, 再分给m个人,则共有 种分法.(其中r1+r2+r3+…+rm=n)
(5)局部均匀分组: 把n个不同的元素分成m组,其中m1个组有r1个元 素, m2个组有r2个元素,…… mk个组有rk个元素, 则共有 种分法.(其中m1r1+m2r2+m3r3+…+mkrk=n)
如果每堆至多2本,至少1本,有多少种分法?
解法一:(特殊位置法)
第一步:从其余5位同学中找2人站排头和排尾,有 种;
第二步:剩下的全排列,有 种;
答:共有2400种不同的排列方法。
解法二:(特殊元素法)
第一步:将甲乙安排在除排头和排尾的5个位置中的两个位置上,有 种;
第二步:其余同学全排列,有 种;
答:共有2400种不同的排列方法。
2
如果一堆3本,其余各堆各1本,有多少种分法?
1
例4:有6本不同的书,分成4堆.
例5:从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?
排列组合的综合应用(公开课)
种
练习题 要求某几个元素必须排在一起的问题 ,可以用捆绑 法来解决问题 . 即将需要相邻的元素合并为一个元 2、某人射击 8 枪,命中4枪,4枪命中恰好有3 素 , 再与其它元素一起作排列 , 同时要注意合并元素 枪连在一起的情形的不同种数为( 20 ) 内部也必须排列.
三.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞 蹈节目不能连续出场,则节目的出场顺序有多少种?
解决排列组合综合性问题的一般过程如下:
1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类, 或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无 序)问题,元素总数是多少及取出多少个元素.
※解决排列组合综合性问题,往往类与步交叉,因此 必须掌握一些常用的解题策略
十四. 合理分类与分步策略 例14.在一次演唱会上共10名演员,其中8人能能唱 歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目, 有多少选派方法? 解:10演员中有5人只会唱歌,2人只会跳舞 ,3人 为全能演员。以只会唱歌的5人是否选上唱歌 人员为标准进行研究只会唱的5人中没有人选 上唱歌, C 共有 C ____种,只会唱的5人中只有1人 选上唱歌共有 种,只会唱的5人中只有 C C________ C 2人选上唱歌,共有 C C ____种,由分类计数原理 2 1 1 2 2 2 共有 种。 C32C________________ C C C C 3 5 3 4 5 C5
排列组合的综合应用
复习巩固
1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m1种不同的 方法,在第2类办法中有m2 种不同的方法,…,在第n类 办法中有mn种不同的方法,那么完成这件事共有: 种不同的方法. N=m1 +m2 + +mn
四年级下册数学讲义-奥数专题讲练:第六讲 排列组合的综合应用(例题解析版)全国通用
第六讲排列组合的综合应用排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.)当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握.例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例 6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2 C47+6 C37+3 C27+ C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.。
排列组合综合应用课件
An n
(n为均
分的组数)避免重复计数。
练习2、
1 将13个球队分成3组,一组5个队,其它两组4
个队,
有多少分法? C C C 5
44
13 8
4
A2 2
2.某校高二年级共有六个班级,现从外地转
入4名学生,要安排到该年级的两个班级且每
班安排2名,则不同的安排方案种数为______
C C A 2 2 42 A22
(1)分三堆,一堆1本,一堆2本,一堆3本 (2)分给甲、乙、丙3个人,甲1本,乙2本,丙3本 (3)分给甲、乙、丙3个人,一人1本,一人2本,
一人3本。 (4)分三 堆,有两堆各1本,另一堆4本 (5)平均分成三组 (6)平均分给甲、乙、丙3个人
平均分成的组,不管它们的顺序如何,都是一
种情况,所以分组后要一定要除以
好的6个元素中间包含首尾两个空位共有
种 A64不同的方法 由分步计数原理,节目的 不同顺序共有A55 A64 种
元素相离问题可先把没有位置要求的元素进 行排队再把相不相邻独 元素独插入中独 间和相两端
练习题
某班新年联欢会原定的5个节目已排成节 目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两 个新节目不相邻,那么不同插法的种数 为(30 )
7. 合理分类与分步策略 例4.在一次演唱会上共10名演员,其中8人能
将n个共相有同_的__元__素_C_分9_6_成__m种份分(法n,。m为正整数),
每份至少一个元素,可以用m-1块隔板,插入n
个为元素C排mn1成1 一 班一排的二班n-1三班个空四班隙中五班,所六 班有分七 班法数
练习题
1.10个相同的球装5个盒中,每盒至少一
排列、组合综合应用
一排,乙、丙站在第二排有多少种排法? C31C32A22A66
2、五名同学排成一排,要求甲不站在两端,有多少种
排法?、排一个5门功课的课程表,数学不排最后一节,体育
不排第一节,有多少种排法?
A 5 5A 3 323A 3 3
4、书架上有3本不同的语文书,4本不同的数学书,3本
不同的英语书,竖成一排,要求同类的书必须排在一起,
(1)某女生甲一定担任语文科代表。 (2)某男生乙必须在内,但不担任数学科代表。 (3)有女生但人数少于男生。 (4)某女生甲、某男生乙必须在内,甲一定担任 语文科代表、乙不担任数学科代表。
变式:有四个不同的球,四个不同的盒子,把球全放入盒内; (1)恰有一个空盒,有几种放法? (2)恰有两个空盒,有几种放法?
分法?
C 9 2C A 2 7 2 2C 5 5A 3 3C 9 2C 7 3C 4 4A 3 3C 9 3C A 3 6 3 3C 3 3A 3 3
2、10个小球分到5个盒中,每个盒中至少一本,有多少种
分法?
C
4 9
3、10个人站成一排,甲、乙、丙三人两两不相邻且不站
在两端,问有多少种站法? B
C
复习回顾
前面我们系统的学习了排列组合的基本方法以及 简单应用,现在我们回顾一下:
1、排列的基本方法: 2、组合的基本方法:
直排法
分配法
优先法
插入闸板法
排除法
插入法
捆绑法
走步问题
插空法
多元问题
除法
几何问题
1、9个人分成3排,每排3人,有多少种排法?
A
9 9
比较:9个人分成3排,每排3人,要求甲必须站在第
有多少种不同的排法?
排列组合的综合应用PPT教学课件
不反应
Na2O Na2O2 Al2O3 Fe2O3
颜色状态 白 粉末色 2AFNNelaa222OOO+33++2+HH262OH2HOOH=++4===-N=222aNF2AOAeHal33Ol++O+O+H+223↑3-+HHH22O2OO
淡黄色 白色粉 红棕色 粉末 末 粉末
N = A44C 32A52A22 = 2880
典例讲评
例3 从6名短跑运动员中选4人参 加4×100m接力赛,如果甲不能跑第 一棒,乙不能跑第四棒,求共有多少 种不同的参赛方案?
N
= A44
+ C 21A31A43
+
(C
A2 3
43
+
C
21C
A1 2
24
)
= 252
典例讲评
例4 编号为1,2,3,4,5的5个人 分别坐在编号为1,2,3,4,5的5个 座位上,求至多有两个人的编号与座 位号一致的坐法种数.
N
=
C
A 4 3
63
+
C
63C
A 2 3
33
+
C
62C
42C
2 2
= 540
布置作业
P28习题1.2B组: 1,2,3,4.,5.
(第二课时)
一、金属的物理性质 二、金属的化学性质 三、金属化合物的性质 1、氧化物 2、氢氧化物 3、盐 四、金属及其化合物之间的相互转化 五、用途广泛的金属材料
常温下,金属一般为 银白色 晶体(汞常温下为 液体),具 有良好的 导电性 、导热性 , 延展性。金属的熔沸点和硬度 相差很大。
《排列组合综合应用》课件
组合的加法原理和乘法原理
组合的加法原理
如果一个组合由两个互不相干的 子组合组成,则它们的组合数相
加。
组合的乘法原理
如果一个组合可以分为几个连续 的子组合,则它们的组合数相乘
。
举例
有5个不同的红球和3个不同的蓝 球,从中取出3个球,按颜色分
为红球和蓝球的组合数为 $C_{5}^{3} + C_{3}^{3}$。
如何设计有效的市场推广方案
市场定位分析
利用排列组合原理,分析 目标市场的特点,确定合 适的市场定位策略。
推广渠道选择
根据市场定位和目标客户 群体,选择有效的推广渠 道,如广告、公关、促销 等。
营销组合策略
制定合理的价格、渠道、 促销等营销组合策略,以 提高市场推广效果。
如何优化旅游行程安排
景点选择与搭配
综合练习题
题目1
有10名学生报名参加3个不同的课外活动,每个活动都至少有一名学生参加,问共有多少种不同的报名方式?
题目2
有12名学生报名参加学校的运动会,其中6人报名参加跑步比赛,4人报名参加跳远比赛,2人报名参加投掷比赛,问 共有多少种不同的参赛方式?
答案解析
综合练习题难度较大,考察了排列组合在实际问题中的应用。这些题目需要运用排列组合的原理和技巧 ,结合实际问题的限制条件进行解答。通过这些练习,学生可以加深对排列组合综合应用的理解,提高 解决实际问题的能力。
重复计数问题
总结词
在排列组合计算中,由于对重复元素的 处理不当,导致重复计算。
VS
详细描述
重复计数问题是指在进行排列组合计算时 ,由于对重复元素的考虑不周,导致对某 些组合进行了重复计算。例如,在计算从 5个不同元素中取出3个元素的排列数时 ,如果将其中两个元素视为相同,就会导 致重复计数。
排列与组合综合应用课件
01
在数学领域的应用
排列与组合是数学的基础知识之一,其在数论、代数、几何等领域都有
广泛的应用。
02
在其他领域的应用
如物理学、化学、生物学等自然科学和社会科学领域都涉及到排列与组
合的应用。
03
数学建模和计算技术的应用
随着计算机技术的发展,排列与组合的应用更加广泛,如机器学习、数
据挖掘等领域都需要运用排列与组合的知识进行建模和计算。
区别
有序排列注重元素的顺序,无序排列注重元素的组合。
联系
在某些特定情况下,有序排列和无序排列可能相互转换。
组合中的“包含与排除”原则
包含
在组合中,如果一个集合 包括多个子集,那么这些 子集的并集就是该集合的 组合。
排除
在组合中,如果需要排除 某些特定的元素或子集, 那么这些元素或子集需要 从总集合中移除。
学、社会科学等领域都有广泛的应用。
排列与组合在解决实际问题中的具体应用
02
如组合优化问题、背包问题、图论中的最短路径问题等都可以
运用排列与组合的知识进行解决。
实际问题的抽象和建模
03
在实际问题中,需要将问题抽象为数学模型,如线性规划、整
数规划等,然后运用排列与组合的方法进行求解。
排列与组合在数学和其他领域的应用
排列与组合的公式及其推导方法也是解决复杂问题的基础,如加法 原理、乘法原理、容斥原理等。
排列与组合的公式应用
在解决实际问题时,需要根据问题的具体情况,灵活运用排列与组 合的公式,如组合数的应用、排列数的应用等。
排列与组合在解决实际问题中的应用
组合数学在实际问题中的应用
01
组合数学是排列与组合的理论基础,其在计算机科学、管理科
四年级数学第六讲:排列组合的综合应用
四年级数学第六讲:排列组合的综合应用基础班1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.小文和小静两位同学帮花店扎花,要从三只篮子中各取一只花扎在一起,已知每只篮子里都有3种不同的花,问她们可以扎成多少种不同式样的花束?7.某学校组织学生开展登山活动.在山的北坡有两条路直通山项;在山的南坡也有两条路,一条直通山顶,另一条通向山腰小亭,从小亭有两条路通向山顶;山的西坡有两条路通向山间寺庙,由寺庙有两条路通向山顶.要登上山顶共有多少种不同的道路?解答1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5. 200种第一个盒子中的每一张卡片都可以与第二个盒子中的十张卡片组成 20种加法式子(包括被加数与加数交换位置,例如将 1+11与11+1看成为两个加法式子),而第一个盒子中共有十张卡片,则由乘法原理,共10×20=200种不同的加法式子。
四年级下册数学试题-奥数专题练习:第六讲 排列组合的综合应用(含答案)全国通用
第六讲:排列组合的综合应用基础班1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.小文和小静两位同学帮花店扎花,要从三只篮子中各取一只花扎在一起,已知每只篮子里都有3种不同的花,问她们可以扎成多少种不同式样的花束?7.某学校组织学生开展登山活动.在山的北坡有两条路直通山项;在山的南坡也有两条路,一条直通山顶,另一条通向山腰小亭,从小亭有两条路通向山顶;山的西坡有两条路通向山间寺庙,由寺庙有两条路通向山顶.要登上山顶共有多少种不同的道路?解答1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5. 200种第一个盒子中的每一张卡片都可以与第二个盒子中的十张卡片组成 20种加法式子(包括被加数与加数交换位置,例如将 1+11与11+1看成为两个加法式子),而第一个盒子中共有十张卡片,则由乘法原理,共10×20=200种不同的加法式子。
排列组合综合应用-PPT精选文档
规 律 方 法 提 炼
1、排列组合应用题大致可分为三特殊条件 有特殊元素 有特殊位置
组合型
无特殊条件 有特殊条件 排列与组合混合
混合型
分步计数原理与分类计数原理混合
2、常见的解题策略、方法
(1) 特殊元素优先法 (2) 选排问题先选后排法
(3) 相邻问题捆绑法
3、元素与位置
解答排列与组合问题,确定哪些事物是元素,哪些事物是 位置至关重要,又没有唯一的定势标准,所以要辩证地去 看待元素与位置。解题过程中,要优先安排有限制条件的 特殊元素和特殊位置,并灵活运用“捆绑法”和“插空 法”,“直接法”和“间接法”。
二、解决有附加条件的排列组合问题的三种 途径:
1、以元素为主,应先满足特殊元素的要求,再考 虑其他元素。 2、以位置为主,即先满足特殊位置的要求,再考 虑其他位置。 3、先不考虑附加条件,计算出排列或组合数,再 减去不符合要求的排列数或组合数。
三、解决排列组合题常用的方法
直接解法与间接解法;分类法与分步法;元 素分析法与位置分析法;插空法与捆绑法等。
经常运用的数学思想是:分类讨论思想,转 化思想,对称思想三种。
重 点 难 点 提 示
解排列组合的应用题,要注意四点: 1、仔细审题,判断是组合问题还是排列问题,要按元 素的性质分类,按事件发生的过程进行分步。 2、深入分析,严密周详,注意分清是乘还是加,既不 少也不多,辩证思想,多角度分析,全面考虑,这不仅 有助于锻炼提高逻辑推理能力,也有助于尽可能避免出 错. 3、对于附有条件的比较复杂的排列组合应用题,要周 密分析,设计出合理的方案,把复杂问题分解成若干简 单的基本问题后应用分类计数原理或分步计数原理来解 决。 4、由于排列组合问题的答案一般数目较大,不易直接 验证,因此在检查结果时,应着重检查所设计的解决问 题的方案是否完备,有无重复或遗漏;也可采用多种不 同的方法来求解,看看是否相同。在对排列组合问题分 类时,分类标准应统一,否则易出现遗漏或重复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲排列组合的综合应用
排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.)
当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握.
例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?
分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.
解:符合要求的选法可分三类:
不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有 5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有 5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.
因此,依加法原理,选取两幅不同类型的画布置教室的选法有 15+10+ 6=31种.
注运用两个基本原理时要注意:
①抓住两个基本原理的区别,千万不能混.
不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.
不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.
②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.
③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.
例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.
分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.
解:
由此可知,排列共有如下八种:
正正正、正正反、正反正、正反反、
反正正、反正反、反反正、反反反.
例3 用0~9这十个数字可组成多少个无重复数字的四位数.
分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.
解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.
解:分两步完成:
第一步:从1~9这九个数中任选一个占据千位,有9种方法.
第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.
由乘法原理,共有满足条件的四位数9×9×8×7=4536个.
答:可组成4536个无重复数字的四位数.
解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.
解:组成的四位数分为两类:
第一类:不含0的四位数有9×8×7×6=3024个.
第二类:含0的四位数的组成分为两步:第一步让0占一个位有3
种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.
∴由加法原理,共有满足条件的四位数
3024+1512=4536个.
解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.
解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)
∴共有满足条件的四位数
10×9×8×7-9×8×7
=9×8×7×(10-1)
=4536个.
注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.
例4 从右图中11个交点中任取3个点,可画出多少个三角形?
分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.
解:组合总数为C311,
其中三点共线不能构成的三角形有7C33,
四点共线不能构成的三角形有2C34,
∴C311-(7C33+2C34)=165-(7+8)=150个.
例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)
分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:
①7=1+1+1+4
②7=1+2+2+2
③7=1+1+2+3
其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四
个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.
第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2
个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4
种放法.
第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.
第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.
∴由加法原理,可得符合题目要求的不同放法有
4+4+12=20(种)
答:共有20种不同的放法.
注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.
例6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?
分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).
先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)
如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥
但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.
因此着色法共有2C47+6C37+3C27+C17=350种.。