建筑环境中的热湿环境 PPT
《室内热湿环境》课件
![《室内热湿环境》课件](https://img.taocdn.com/s3/m/9a436d91ac51f01dc281e53a580216fc700a533c.png)
室内热湿环境的形成
室外气候包括温度、湿度、太阳 辐射等,是影响室内热湿环境的 重要因素。
室内设备如空调、暖气、加湿器 等,以及人员活动如人体散热、 照明等,也会对室内热湿环境产 生影响。
01
室内热湿环境是人类生活和工作 的主要环境,其形成主要受到室 外气候、建筑围护结构、室内设 备及人员活动等因素的影响。
室内热湿环境的影响因素
建筑围护结构
建筑物的保温、隔热性能以及窗 户、墙体等构造直接影响室内热 湿环境的形成。
人员活动
人体散发的热量和湿气,以及活 动产生的气流等,也是影响室内 热湿环境的重要因素。
01
室外气候
室外温度、湿度、太阳辐射等是 影响室内热湿环境的重要因素。
02
03
室内设备
空调、采暖设备以及家用电器等 的使用,会对室内热湿环境产生 显著影响。
气流速度的变化会影响人体对流散热和空气 交换,进而影响室内热湿环境的变化。
室内热湿环境的平衡与调节
01
室内热湿环境的平衡是指室内 各因素之间的协调与稳定状态 ,是保证人体舒适度和建筑节 能的重要条件。
02
通过合理的建筑设计和设备配 置,可以调节室内热湿环境, 使其达到平衡状态。
03
调节室内热湿环境的方法包括 使用空调、暖气、加湿器等设 备,以及合理控制室内外通风 换气等。
室内热湿环境在人体舒适度研究中的应用
人体舒适度模型
建立人体舒适度模型,研究不同热湿 环境下人体的生理和心理反应,为室 内热湿环境的优化提供科学依据。
人体散热与环境适应性
研究人体在不同热湿环境下的散热机 制和适应性,探讨人体对不同环境的 生理和心理需求,为室内环境的个性 化调节提供指导。
感谢您的观看
第三章 建筑热湿环境
![第三章 建筑热湿环境](https://img.taocdn.com/s3/m/efe88266011ca300a6c390ec.png)
第三章建筑热湿环境1、得热量某时刻在内外扰作用下进入房间的总热量。
得热量包括:显热(对流换热和辐射换热)和潜热,它有正负之分,主要来源是:室内外温差传热、太阳辐射进入热量、室内照明、人员、设备散热等。
2、冷负荷维持室内空气热湿参数为恒定值时,在单位时间内需要的从室内除去的热量。
分为显热负荷和潜热负荷。
3、热负荷维持室内空气热湿参数为恒定值时,在单位时间内需要的从室内加入的热量。
分为显热负荷和潜热负荷。
4、空气渗透由于室内外存在压力差,从而导致室外空气通过门窗缝隙和外围护结构上的其他小孔或洞口进入室内的现象,也就是所谓的非人为组织(无组织)的通风。
原因是由于建筑存在各种门、窗和其他类型的开口,室外空气有可能进入房间,从而给房间空气直接带入热量和湿量,并即刻影响到室内空气的温湿度。
计算负荷时仅考虑渗入空气。
目前常用方法是基于实验和经验基础上的估算方法,即:缝隙法和换气次数法1、简述得热量和冷负荷之间的关系。
任一时刻房间瞬时得热量的总和未必等于同一时间的瞬时冷负荷。
得热量转换为冷负荷一般要经过幅值上衰减、时间上延迟。
2、谐波反应法和冷负荷系数法的特点、共性、区别答:(1)两种方法的特点为:①使用谐波反应法求解冷负荷a 边界条件按傅里叶级数展开b 求对单元扰量的响应(a)把室内空气温度固定(b)给出常规室内热源的对流和辐射热的比例(c)各内表面的辐射热量的分配比例(d)给出常规建筑对常规扰量的各阶衰减倍数和延迟时间c 把对单元扰量的响应进行叠加求和②使用冷负荷系数法求解a 边界条件按等时间间隔离散b求对单元扰量的响应(a)把室内空气温度固定(b)把外扰通过围护结构形成的瞬时冷负荷表述为瞬时冷负荷温差(c)不计算房间蓄热特性的影响c 把对单元扰量的响应进行叠加求和(2)两种方法的共性为:二者没有实质的区别,只是处理手法的不同而已①针对相同类型的围护结构,两者计算结果基本相同②在一定程度上反应了得热和冷负荷之间的区别③把室内空气温度作为常数④对长波辐射做了简化处理⑤忽略了透过玻璃窗的日射在围护结构内表面之间的光斑的影响⑥对辐射造成的影响做了过多的简化⑦如果被研究的房间与这些假定差的比较远,所求得的冷负荷就有较大误差(3)两种方法的区别是:①边界条件的离散方法不同②是否考虑了房间内蓄热的影响③外窗日射冷负荷的计算(4)两种方法的计算精度差不多,但经多名专家计算结果表明:谐波反应法的精度一般较高。
第2-2讲建筑室外热环境
![第2-2讲建筑室外热环境](https://img.taocdn.com/s3/m/d3859ca44693daef5ef73d83.png)
7 12.515.2
8 15.318.2
9 18.321.5
10 21.625.1
11 25.229.0
12 >29.0
6 9.912 12.4
强风
粗枝摇摆,呼
呼响
2018年10月24日星期三
风名 风的目测标准
疾风 大风 烈风
树杆摇摆,迎 风步艰
大树摇摆,细 枝折断
大枝折断
狂风 拔树
暴风 有重大损毁
建筑朝向对太阳辐射的影响
* 对于北半球,水平面最强、南向次之、西向和
东 向再次之,北向最弱。
6
2018年10月24日星期三
建筑热工
第一章 室内外热环境
1. 2 室外热环境(气候)
➢ 空气温度 室外气候分类的主要因素,热工设计的主要依据 空气温度的主要影响因素: ❖ 太阳辐射,迟滞效应; ❖ 地表状况(下垫面)大气的对流作用 ❖ 海拔高度、地形地貌 空气温度的变化特点 ❖ 周期性变化——日周期和年周期 ❖ 日较差和年较差,自南向北逐渐增大
11
2018年10
第一章 室内外热环境
1. 2 室外热环境(气候)
风级 风速 风名 风的目测标准 风级 风速
0 0-0.5 无风 缕烟直上 1 0.6-1.7 软风 缕烟一边斜 2 1.8-3.3 轻风 树叶沙沙响 3 3.4-5.2 微风 细枝动不息 4 5.3-7.4 和风 细枝摇动 5 7.5-9.8 清风 大枝摆动
7
2018年10月24日星期三
建筑热工
第一章 室内外热环境
1. 2 室外热环境(气候)
➢ 空气湿度 空气中水蒸汽的含量,常用相对湿度或绝对湿度 来表示 空气湿度变化的特点及主要影响因素 ❖ 相对湿度的日变化主要受地面性质、水陆分布、 季节寒暑、天气阴晴等因素影响 ❖ 一般陆地大于海面;夏季大于冬季;晴天大于 阴天 ❖ 相对湿度的日变化及年变化趋势一般与气温变 化相反,但由于我国南方大多地区受海洋气候 影响较大,夏季的相对湿度要高于冬季
建筑环境学PPT教学课件
![建筑环境学PPT教学课件](https://img.taocdn.com/s3/m/396ddde34a7302768f99398d.png)
词语闹分家
赛龙舟 蒙古包 旱地 鱼米之乡 滑雪 窑洞
荒漠 草原
水田 沙漠 地势平坦 骆驼 牦牛 森林 绿洲 湿润 人口密集 椰树
羊群 湿润 赛马 干燥 落叶松 干旱
苹果 雪山连绵 船 橘子 马拉大车
Hale Waihona Puke 千沟万壑 竹楼打雪仗人口稀疏
根据什么分的?
根据什么分的?
根据什么分的?
根据什么分的?
根据什么分的?
b. 室内环境与人体健康的问题 室内空气品质的恶化引起“病态建筑综合症”
案例
❖ 案例1:北京居民家,1998年7月装修房子一年后, 室内甲醛超标20倍,他本人得“喉乳头状瘤)2001年8月 将装修公司告上法庭,为我国第一例因装修而打的官司。
❖ 案例2:北京全市抽查,6座新建写字楼发现NH3超标 率达80.56%,O3超标率达50%,甲醛超标率达42%。 ❖ 案例3:北京每年发生有建筑材料中毒事件约400余起, 中毒人数1万余人,慢性中毒约有10万人。
7、下列说法可信的是 A 秦岭—淮河一线是我国东南半壁与西北半壁的分界线 B 黄河冬季不结冰 C 秦岭—淮河以北的农作物一般一年两熟或两年三熟或一年一熟 D 油菜、甘蔗主要分布在秦岭——淮河以北
秦岭-淮河南北在修建住房的时 候在哪些方面会有显著不同?为什么?
为什么南方许多桥都是拱形的,而北 方的桥多是平坦的?
教学程序与学时分配
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
绪论 建筑外环境 建筑环境中的空气环境 建筑环境中的热湿环境 人体对热湿环境的反应 建筑光环境 建筑声环境
工业建筑的室内环境要求
2学时 6学时 9学时 9学时 7学时 5学时 5学时 2学时
第一章 绪论
第三章建筑热湿环境(103)
![第三章建筑热湿环境(103)](https://img.taocdn.com/s3/m/6b4a3ffa910ef12d2af9e7c8.png)
室内产热与产湿 • 室内湿源包括人员、水面、产湿设备
– 散湿形式:直接进入空气 – 得热往往考虑围护结构和家具的蓄热,“得湿” 一般不考虑“蓄湿”
• 湿源与空气进行质交换同时一般伴随显热交换
– 有热源湿表面:水分被加热蒸发,向空气加入了 显热和潜热,显热交换量取决于水表面积 – 无热源湿表面:等焓过程, 室内空气的显热转化为潜热 – 蒸汽源:可仅考虑潜热交换
常规的送风方式空调需 要去除荷与得热有关,但不一定相等 • 决定因素
– 空调形式
• 送风:负荷=对流部分
• 辐射:负荷=对流部分+辐射部分
– 热源特性:对流与辐射的比例是多少? – 围护结构热工性能:蓄热能力如何?如果内表面 完全绝热呢? – 房间的构造(角系数)
• 总得热:HGsolar=HGglass,τ + HGglass,a
通过玻璃窗的得热 • 可利用对标准玻璃的得热 SSGDi 和 SSGdif 进行修正
来获得简化计算结果:
实际照射面积比
窗的有效面积系数
HGsolar = ( SSGDi X s + SSGdif )CsCn X glassFwindow
• 增透覆层(保证可见光的透过率)~太阳光过滤成“冷光源”! • 高透光型(冬季型、高近红外线透过率),低透光型(遮阳型)
(5)中空玻璃(双层玻璃、中间抽真空、加充氩气、氪气)
• 吸热玻璃与LOW-E玻璃的组合
2、当量室外气温~室外空气综合温度tz
太阳直射 辐射 大气长波 • 辐射 太空散射 辐射 对流换 热
冷负荷温差法
常用的负荷求解法 • 稳态算法
– 不考虑建筑蓄热,负荷预测值偏大
• 动态算法,积分变换求解微分方程
– 冷负荷系数法、谐波反应法:夏季设计日动态模 拟。
《建筑热湿环境》课件
![《建筑热湿环境》课件](https://img.taocdn.com/s3/m/680303fdf021dd36a32d7375a417866fb84ac03b.png)
湿环境
1 湿度的影响
湿度对人体健康和建筑材料有着重要影响, 需要合理控制室内空气湿度。
2 室内空气湿度的控制
通过通风、空调和湿度控制设备等手段,可 以控制室内空气湿度,提供良好的湿环境。
3 湿度的测量方法
使用湿度计等工具可以准确测量室内湿度, 帮助评估建筑热湿环境。
4 利用建筑设计降低室内湿度
采用合适的建筑设计和材料选择可以帮助降 低室内湿度,提供舒适的湿环境。
在建筑计过程中, 需要充分考虑热湿环 境对建筑舒适度和节 能性的影响。
建筑节能与热湿环境
节能建筑的目标
节能建筑的目标是通过合理的 热湿环境设计和能源利用,减 少建筑能耗。
热湿环境的影响
热湿环境对建筑能耗有着直接 的影响,需要在设计中考虑节 能需求。
节能建筑的热湿环境 设计
采用绝缘材料、合理的通风和 空调系统等措施,可以实现节 能建筑的良好热湿环境。
参考文献
1. 张XX,施XX. 建筑热湿环境[M]. 上海:上海科技出版社,2008. 2. Smith A, Johnson B. Understanding Building Physics: Principles and Applications[J]. London: Taylor & Francis, 2013.
重要性
了解建筑热湿环境对于提供舒适的居住环境和设计节能建筑至关重要。
热环境
热平衡
热平衡是指建筑内的热量输入 和输出达到平衡状态,在此基 础上实现舒适的温度。
人体热舒适度
人体热舒适度受到环境温度和 湿度的影响,建筑设计应考虑 提供舒适的热环境。
降低室内温度的方法
通过建筑设计和热量控制技术, 可以降低室内温度,提供更舒 适的热环境。
建筑热湿环境
![建筑热湿环境](https://img.taocdn.com/s3/m/454d32b7e009581b6bd9eb6d.png)
外表面得热:
q
w (tw
w )
sI
Iy
w (tw
w )
sI w
I y w
w (tz
w )
4-16
4. 室外空气综合温度
tw
+
td(I)
=
tz
室外空气温度 当量空气温度 室外空气综合温度
Iy/w工程处理:
tz
tw
sI w
No4..11.11太阳辐射与室外空气综合温度
1. 大气透明度 dI x K dx
Ix
——呈指数衰减
I0 IN
I0
I0
法线直射强度:
IN I0 Pm
dIx
L
dx I1
IN
P=IL/I0=exp(-kL) L’=L/sinβ P——大气透明度(反应大 β m L / L 气污染、水蒸气等颗粒对日
我国将大气透明度 作了6个等级的分 区,1级最透明
大气透明度 P
0.85
0.8
0.75
0.7
0.65
0.6
0
2
4
6
8 10 12
月份
东京晴天的大气透明度逐月值4-7
我国的大气透明度分区
2 4
3
4 3
5 6
4
4-8
4.1 影响室内热环境的物理因素
4.1.1 太阳辐射与室外空气综合温度
1. 大气透明度
αw λ
导热特性:
tw
λ——墙体导热系数,W/mK
w
气体
液体
建筑材料
0.006~0.6
空气的热湿处理课件
![空气的热湿处理课件](https://img.taocdn.com/s3/m/b3084a844128915f804d2b160b4e767f5acf8028.png)
05
热湿处理对环境的 影响
能耗与碳排放
能耗
热湿处理过程中需要消耗大量能源, 如电、燃气等,导致能源消耗增加。
碳排放
热湿处理设备运行过程中会产生二氧 化碳等温室气体,对环境造成负面影 响。
对室内环境的影响
温度
热湿处理设备能够调节室内温度,保持适宜的室内温度,提 高居住舒适度。
湿度
通过热湿处理设备可以调节室内湿度,避免室内过于干燥或 潮湿,有利于人体健康。
自动化控制系统
通过自动化控制系统,实现空气处理过程的自动调节和控制。
人工智能技术
利用人工智能算法,优化控制策略,提高系统自适应和学习能力。
新材料与新技术的应用
新材料
采用新型的高导热、高强度材料,提高设备性能和寿命。
新工艺
采用新型的加工工艺,提高设备制造精度和可靠性。
新型过滤材料
采用新型的过滤材料,提高空气过滤效果和延长过滤器寿命。
处理方案
采用组合式空气处理机组,包 括过滤、加热、加湿、冷却等 功能,以满足不同季节和生产 需求。
效果评估
经过处理后的空气质量明显提 升,生产效率和员工满意度得
到提高。
某办公楼的空调系统
办公楼简介
某高端写字楼,入驻多家知名企业和 机构。
处理需求
办公楼内需要提供舒适、健康的空气 环境,以满足员工和客户的需求。
02
空气热湿处理的设 备
空气加热器
红外线辐射式空气加热器
利用红外线辐射原理,将电能转化为 热能,直接加热经过的空气。
燃气式空气加热器
利用燃气燃烧产生的热量加热经过的 空气,适用于需要大量热风的场所。
电热式空气加热器
通过电热元件加热空气,通常采用 PTC陶瓷加热元件,具有安全、高效 、节能的优点。
建筑热湿环境.ppt
![建筑热湿环境.ppt](https://img.taocdn.com/s3/m/0813a915ccbff121dd3683e3.png)
§1 太阳辐射对建筑物的热作用
一、围护结构外表面所吸收的太阳辐射热
1.非透光围护结构
不同的表面对辐射的波长有选择性,黑色表面对各种波长的辐射几乎都 是全部吸收,而白色表面可以反射几乎90%的可见光。
围护结构的表面越粗糙、颜色越深,吸收率就越高,反射率越低。
反射
吸收
§1 太阳辐射对建筑物的热作用
galss
10 1 r2 r 2n 10 2n
n0
10 1 r2 1 r 2 1 0 2
§1 太阳辐射对建筑物的热作用
两层半透明薄层的总透过率为:
galss
1 2
n0
1 2
n
1 2 1 12
空气的平均折射指数n=1.0;
在太阳光谱范围内,玻璃的平均折射指数n=1.526。
§1 太阳辐射对建筑物的热作用
射线单程通过半透明薄层的吸收百分比 0
对应其波长的材料的消光系数 K
射线在半透明薄层中的行程L
取决于:
半透明薄层对太阳辐射的吸收现象与大气层对太阳光辐射的吸 收规律相同,即不同波长的辐射按指数关系衰减:
低透low-e玻璃
§1 太阳辐射对建筑物的热作用
玻璃的吸收百分比a0 :
单层玻璃窗
入射
单程通过的吸收率
1
A
反射率 r
(1 -r
)(1 -a
o
2
)
r
C
(1 -r
2
)
(1
-a
o
2
)
r
(1 -r
)(1 -a
o
4
)
r
建筑环境学(3)
![建筑环境学(3)](https://img.taocdn.com/s3/m/012f977a7fd5360cba1adb9c.png)
白石子屋面
油毛毡屋面
0.62
0.86
水泥瓦屋面 暗灰
2.半透明物体在太阳照射时
半透明物体对不同波长的太阳辐射的 吸收,反射和穿透有选择性。 结论:玻璃对可见光和波长为3μm 以下的短波红外线来说几乎是透明的, 但却能有效地阻止长波红外线辐射 玻璃属于半透明体:
单层半透明层中的光的行程
对流得热
显热
得 热
潜热
辐射得热
围护结构热过程特点:由于围护结构热惯性 的存在,通过围护结构的得热量与外扰之间 存在着衰减和延迟的关系。
§3-1 太阳辐射对建筑物的热作用
一、围护结构外表面所吸收的 太阳辐射得热 二、室外空气综合温度 三、夜间辐射
一.围护结构外表面所吸收的太阳辐射得热
1. 太阳照射到非透明的围护结构外表面时;
不仅考虑了来自太阳对围护结构的短波 辐射,而且反映了围护结构外表面与天 空和周围物体之间的长波辐射。
有时这部分长波辐射是可以忽略的,这 时式就简化为
t z tair
I out
例:tz=30+0.73*800/23.3=55℃
三、夜间辐射
围护结构外表面与环境的长波辐射换热包括大 气长波辐射以及来自地面和周围建筑和其他物 体外表面的长波辐射。如果仅考虑对天空的大 气长波辐射和对地面的长波辐射,则有:
HGwall = HGwall,conv + HGwall,lw
ain[t ( , ) ta ,in ( )] ar , j [t ( , ) ta ,in ( )]
j 1 m
=
HG——得热,W/m2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 公式:
(2)透过玻璃窗的太阳辐 射得热
பைடு நூலகம்
(三)墙体、屋顶等建筑构件的传热 过程,可看作非均质板壁的一维不 稳定导热过程
墙体的传热量与温度对外扰的响应
❖ 结论:
❖ 1.温度波幅的衰减;时间的延迟;
❖ 2.当室外温度有所变化时,围护结构外表 面、围护结构本身各部位和内表面的温度 变化比室外空气温度的变化时间上有所滞 后。 距外表面距离越远,滞后的时间就越 长。
第四章 建筑环境中的热湿环境
本章学习要点:
❖ 室内热湿环境的形成原理 ❖ 室内热湿环境与各种内外扰之间的关系 ❖ 得热量与冷负荷之间的关系
第四章 建筑环境中的热湿环境
❖ §4-1概述 ❖ §4-2 太阳辐射对建筑物的热作用 ❖ §4-3 建筑围护结构的热湿传递 ❖ §4-4 以其它形式进入室内的热量和湿量 ❖ §4-5 冷负荷与热负荷
§4-2 太阳辐射对建筑物的热作用
一、围护结构外表面所吸收的 太阳辐射得热
二、室外空气综合温度 三、夜间辐射
一.围护结构外表面所吸收的太阳辐射得热
1. 太阳照射到非透明的围护结构外表面时; 一部分被反射,一部分被吸收,两者的比例取 决于围护结构表面的吸收率(或反射率)
非透明物体的吸收率取决于两方面的因素: a.投入射线的波长 b. 物体的自身状况(如表面光法度,颜色等)
分稳定得热;瞬变得热。 ❖ 按性质不同:
显热得热; 包括:对流、辐射两种方式传递的得热
潜热得热;
2、热负荷: 定义:维持一定室内热湿环境所需要的在 单位时间内向室内加入的热量。
分类:显热负荷;潜热负荷
3、冷负荷:
定义:为了连续保持室温恒定,在某时刻需向房 间供应的冷量,或需从室内排除的热量。
1)瞬时冷负荷:瞬时得热中,以对流方式传递 的显热,潜热部分,直接放散到房间空气中,立 刻构成房间瞬时冷负荷;
计算。
❖ 说明:照明和机械设备的对流和辐射的比例分配与其表 面温度有关,人体的显热和潜热比例分配也与人体所处 的状况有关。
(二)人体的散热与散湿 (三)设备的散湿量及潜热散热
(1)自由液面的散湿量; 如果室内有一个热的湿表面,散湿量为:
W(PbPa)FBB0
式中: Pb—水表面温度下的饱和空气的水蒸汽 分压力
Pa—空气中的水蒸汽分压力 B—当地实际大气压; F—水表面蒸发面积;
—蒸发系数;=0+3.63×10-8v
La= n﹒V n——换气次数
美国: n=a+bv+c(tout- tin)
§4-5 冷负荷与热负荷
❖ 一.负荷的概念 ❖ 二.瞬时得热与瞬时冷负荷的关系 ❖ 三.照明和实际冷负荷之间的关系
一.负荷的定义 ❖ 1、得热量:指某时刻进入房间的总热量。
来源:室内外温差传热、太阳辐射进入热量、室 内照明、人员、设备散热等。 ❖ 得热量分类: ❖ 按是否随时间变化:
通过玻璃窗的日射得热。 ❖ (一)通过非透明围护结构的热传导
❖ 非透明围护结构的传入室内的热量来源 两方面:
❖ 1.室外空气与围护结构外表面之间的对流 换热;
❖ 2.太阳辐射通过墙体导热传入的热量。
(二)通过玻璃窗的 得热
❖ 一方面由于阳光的透射; 另一方面由于室内外存在 温度差
❖ (1)通过玻璃板壁的传 热量
❖ 2.若温度低于零度,会出现冻结;使得 维护
❖ 3.结构的传热系数大大增加,传热量增 加,加剧了维护结构的损坏,所以必须 设置蒸汽隔层。
§4-4 以其它形式进入室内的热量和湿量
❖ 一.室内产热产湿量 ❖ 二.空气渗透带来的得热
一.室内产热产湿量
(一)设备与照明的散热 室内设备分为加热设备和电动设备 照明设备散热量属于稳定得热,不随时间 变化 如:白炽灯 Q=n1N W 荧光灯: Q=n1(N+Nˊ) W
§4-1概 述
一、室内热湿环境的形成及其受到的影响
主要包括两部分:
1.外扰因素:室外气候参数(室外空气温、 湿度,风速,太阳辐射,风向变化及临时的空气温 湿度)。通过围护结构的传热、传湿、空气渗透使 热量与湿量进入室内。
2.内扰因素:室内设备、照明、人体等热湿 二、室内湿热的传递作用形式
对流质交换(对流换热)、导热(水蒸气渗 透)和辐射
三.照明和实际冷负荷之间的关系
❖ 图中:
❖ 灯具开启后,大部分 热量被蓄存起来; 随
着照明时间的延续,
蓄存的热量逐渐减少
开灯
关灯
时间(h)
❖ 关灯后,蓄存在结构
中的热量再逐渐放出
来成为房间冷负荷。
❖ 在计算空调负荷时,必须考虑围护结构的吸热、蓄热和 放热过程。
❖ 不同性质的得热量所形成的室内逐时冷负荷是不同的。 ❖ 在确定房间逐时冷负荷时,必须按不同性质的得热分别
❖ 图中表明: 实际冷 负荷的峰值大致比 太阳辐射热的峰值 少(约40%左右), 而且,出现的时间 也迟于太阳辐射热 峰值出现的时间。
结论:
❖ 1.得热量转化为冷负荷过程中,存在着衰 减和延迟的现象。主要由围护结构和家俱 等蓄热能力决定的。
❖ 2.蓄热能力强,冷负荷衰减愈大,延迟时 间也愈长。
❖ 3.蓄热能力取决于热容量,热容量大,蓄 热能力大。
计算风压作用造成的空气渗透
(1)缝隙法
La=kla l
la ——每m长门窗缝隙,每h渗入房间的空气量;
l ——门窗缝隙总长度;
k ——主导风向不同情况下的修正系数
(2)换气次数法
当缺少足够的门窗数据系数时,对于有门窗
的维护结构数目不同的房间给出一定室外平均风 速范围的平均换气次数,通过换气次数即可求得 空气渗透量。
结论:围护结构的表面越粗糙,颜色越深, 吸收率越高,反射率越低。
2.半透明物体在太阳照射时
❖ 半透明物体对不同波长的太阳辐射的吸收, 反射和穿透有选择性。
❖ 结论:玻璃对可见光和波长为3μm以下的 短波红外线来说几乎是透明的,但却能有 效地阻止长波红外线辐射
❖ 玻璃属于半透明体:
围护结构外表面的热平 衡:壁体得热等于太 阳辐射热量(包括太 阳直射辐射,天空散 射辐射,地面反射辐 射),长波辐射得热 量(大气长波辐射、 地面长波辐射、环境 表面长波辐射)和对 流换热量之和。
❖ 室外空气综合温度,即综合表达了室外 空气温度、太阳辐射、围护结构外表面 与天空和周围物体之间的长波辐射,这 样一个综合热作用。
❖ 公式推导:
qout(tairtw)IQ L
out[(tair oIutQ oL ut)tw]
out(tztw)
tz
tair
I out
大家学习辛苦了,还是要坚持
则 v ∝△P
(3)对于门窗缝隙的空气渗透来说,介于孔口 出流和渗流之间,此时
v ∝△P1/1.5
所以,通过门窗缝隙的空气渗透量的计算式为:
La=vFcrack=al△P1/1.5 =Fd△P1/1.5 m3/h 式中: Fd——当量孔口面积; Fd =al
l ——门窗缝隙长度, a——实验系数,取决于门窗气密性
继续保持安静
三、夜间辐射
❖ 白天,长波辐射可忽略,夜间不可忽略 ❖ 经验值:对于垂直表面近似取QL=0,对
于水平面,取QL/aout=3.5—4.0℃
§4-3 建筑围护结构的热湿传递
一.通过围护结构的显热得热 二.通过围护结构的湿传递
一.通过围护结构的显热得热
❖ 包括两方面: ❖ 通过非透明围护结构的热传导;
二.空气渗透带来的得热
气体流动要消耗一定能量,即克 服一定阻力; 即
△P=RL+Z Pa
式中Z为局部阻力,与空气流动动
能成正比,即 Z=v2/2 △P≈Z≈v2/2
(1) 对于形状比较简单的孔口出流,
流速较高,流动多处于阻力平方区
v∝△P1/2
(2)对于渗流来说,流道断面细小而复杂,此
时可认为流动处于层流区,
围护结构最小蒸汽渗透阻值
在稳定条件下从围护结构内表 面算起,
1.计算第n层材料层外表面的温 度。
2.由计算出的温度查表对应出 第n层材料层的饱和压力。
3.计算在稳定条件下从围护结 构内表面算起,第n层材料层 外表面的水蒸汽压力。
4.如图:作出饱和水蒸气压力
和实际水蒸气压力曲线。
发生湿传递的后果
❖ 1.若围护结构内任一断面上的水蒸汽分 压力大于该断面温度所相应的饱和水蒸 汽分压力,则在此端面将有水蒸汽凝结;
(2)若蒸发过程是一个绝热过程,
则室内的总得热量并没有增加。空气 向水传递的热量为
Q=F(tr-trs) 式中:tr、trs -分别为空气干球温度、湿
球温度
这些热量全部用于水分的蒸发,湿地 面的散湿量为: W=Q/r 式中,r—水的汽化潜热,2450kJ/kg;
W=0.006(tr-trs)F kg/h
2)滞后冷负荷: 显热中的辐射成分不能立即转 化为冷负荷。 进入房间的辐射热要经过吸收、 反射、对流放热、辐射放热等多次过程才能最终 转化为对流热,被空气带走,形成冷负荷。
二. 瞬时得热与瞬时冷负荷的关系
❖ 结论: 任一时刻房间瞬时得热量的总和未 必等于同一时间的瞬时冷负荷。
瞬时日射得热量与冷负荷之间的关系:
❖ 3.围护结构的热容量愈大,滞后的时间就
愈长,波幅的衰减就愈大。
二.通过围护结构的湿传递
❖ 通过围护结构的湿传递与室内外水蒸气的 分压力有关,在稳定情况下,单位时间内 通过单位面积围护结构的水蒸气量w与两 侧空气中水蒸气压力差正比
W K V (P o u t P in)[kg/(S m 2)]
K V —比例常数,称为水蒸气渗透系数 P —水蒸气两侧分压力