圆切线的性质及判定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆切线的性质及判定
一.切线的判定方法:
⑴.切线的定义:与圆有唯一公共点的直线叫做圆的切线。
⑵.到圆心的距离等于半径的直线是圆的切线
⑶.经过半径的外端,并且垂直于这条半径的直线是圆的切线。
二.辅助线规律:
(1)直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证直线与半径垂直
简称:“有点,连接,证垂直”。
即当条件中已知直线与圆有公共点时,利用“⑶.经过半径的外端,并且垂直于这条半径的直线是圆的切线”证明。
(2)当直线与圆并没明确有公共点时,辅助线的作法是“过圆心向直线作垂线”,再证圆心到直线的距离等于半径
简称:“无点,作垂线,证(等于)半径”。
即当条件没有告诉直线与圆有公共点时,利用“(2)到圆心的距离等于半径的直线是圆的切线;”证明。
三.例题讲析:
例1. 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB
求证:直线AB是⊙O的切线。
例2. 如图,已知OA=OB=5厘米,AB=8厘米,⊙O的直径为6厘米
求证:AB与⊙O相切
例3. 如图,已知AB是⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°.
求证:DC是⊙O的切线。
例4. 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.
求证:AC平分∠DAB。
例5. 已知:AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于AD
求证:DC是⊙O的切线。
例6. 如图,A是⊙O外一点,连OA交⊙O于C,过⊙O上一点P作OA的垂线交OA于F,交⊙O于E,连结PA,若∠FPC=∠CPA.
求证:PA是⊙O的切线
例7. 如图,AB=AC,以AB为直径的⊙O交BC于D,DE⊥AC于E
求证:DE与⊙O相切
例8. 如图,已知AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=EB,E点在BC上。求证:PE是⊙O的切线。
四.练习:
1、如图7,AB为⊙O直径,PA、PC为⊙O的切线,A、C为切点,∠BAC=30°
(1)求∠P大小。
(2)AB=2,求PA的长。
2、如图8,RTΔABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC中点,连接DE。求证:直线DE是⊙O的切线
3、如图9,MP切⊙O于M,直线PO交⊙O于A、B,弦AC∥MP。
求证:MO∥BC
4、如图10,⊙O是ΔABC的外接圆,AB=AC,过点A作AP//BC,交BO的延长线于P 求证:AP是⊙O的切线。
5、如图4,ΔABC中,AB=AC,以AB为直径作⊙O交BC于D,
DE⊥AC于E。求证:DE是⊙O的切线。