组合变形时的强度计算演示文稿
12组合变形的强度计算.
例 一桥墩如图示。承受的荷载为:上部结构传递给桥墩的压力F0= 1920kN,桥墩墩帽及墩身的自重F1=330kN,基础自重F2=1450kN, 车辆经梁部传下的水平制动力FT=300kN。试绘出基础底部AB面上的 正应力分布图。已知基础底面积为b×h=8m×3.6m的矩形。
3700kN 1740kNm
例
FB
FAx
FBy
FAy
FBx
F
49.7kN
30kNm
B左截面压应力最大
max
FN M z A Wz
3
Mz Wz
Wz 187.5cm3
查表并考虑轴力的影响:
20a Wz 237cm
A 35.5cm
2
max
49.7 103 30 106 140.6MPa 2 3 35.5 10 237 10
bh 2 a b 1.786mm 12 F
12.1 弯扭组合变形的强度计算
一、弯扭组合变形的应力分析F
MBy B Iz M max max Wz
a
L
F Fa
T IP T max WP
2
B
x x 2 13 x 2 2
B
FL
1 3
2 4 2
1 1 2 2 2 3 2 3 1 2 2
Fa
2 3 2
二、弯扭组合变形的强度计算
图示圆轴.已知,F=8kN,M=3kNm,[σ]=100MPa,试用第 三强度理论求轴的最小直径. T 3kNm M max FL 4kNm F
12-2 工程力学-组合变形的强度计算
故,安全。
3 2 4 2
6.37 2 435.7 2 71.7 MPa
[例7] 方形截面杆的横截面面积在 mn 处减少一半,试求由 轴向载荷 P 引起的 mn 截面上的最大拉应力。
解:
N M m ax A W
a2 a a a2 P P/ P / 8 2 2 4 4 6 a
§12–3
拉(压)弯组合 偏心拉(压)
一、拉(压)弯组合变形:杆件同时受横向力和轴向力的作用而产
生的变形。
P P R
x z
P
x y z Mz
P
My
y My
二、应力分析: x z Mz P
P
MZ
My
y My
P xP A
Mzy xM z Iz
xM
y
Myz Iy
P Mz y Myz x A Iz Iy
max
F1 M max A Wz F1 F e A Wz
m
m
4)强度计算 因危险点的应力是单向应力 状态,所以其强度条件为:
F1 F e max 135MPa [ ] A Wz
例11-11 如图所示为一起重支架。已知a =3.0m, b=1.0m,F=36.0kN,AB梁材料的许用应力[ ]=140 MPa。试确定AB梁槽钢的型号。
拉压与弯曲组合变形的分析步骤
(1)、外力分析:
y
x
y P1
y
y P
x
=
P1
x
+
x P2
P2
P
P1 P cos
P2 P sin
(2)、内力分析:
组合变形的强度计算
组合变形的强度计算 组合变形的概念拉伸与弯曲的组合一.组合变形的概念1.组合变形:在外力的作用下,构件若同时产生两种或两种以上基本变形的情况在小变形和线弹性的前提下,可以采用叠加原理研究组合变形问题所谓叠加原理是指若干个力作用下总的变形等于各个力单独作用下变形的总和(叠加)在复杂外载作用下,构件的变形会包含几种简单变形PRzxyPP2、组合变形的研究方法——叠加原理叠加原理应用的基本步骤:①外力分析:将载荷进行分解,得到与原载荷等效的几组载荷,使构件在每一组载荷的作用下,只产生一种基本变形.②内力分析:分析每种载荷的内力,确定危险截面.③应力分析:分别计算构件在每种基本变形情况下的危险将各基本变形情况下的应力叠加,确定最④强度计算:二.弯曲与拉伸(的组合杆件在外力作用下同时产生弯曲和拉伸(压缩)变形称为弯曲与拉伸(压缩)的组合偏心拉伸:弯曲与拉伸的组合变形链环受力立柱受力拉伸与弯曲组合的应力分析ϕϕsin p p cos p p y x ==A P x ='σy I M x l P M zy =''-=σ)(作用下:z T W M A N max max +=σzC W M A N max max -=σ危险截面处的弯矩抗弯截面模量y I M A N z +=''+'=σσσ根据叠加原理,可得x 横截面上的总应力为[]T z max max T W M A N σσ≤+=[]c zmax max C W M A N σσ≤-=强度条件为例:悬臂吊车,横梁由25 a 号工字钢制成,l =4m ,电葫芦重Q 1=4kN ,起重量Q2=20kN , α=30º, [σ]=100MPa,试校核强度。
取横梁AB为研究对象,受力如图b所示。
梁上载荷为P =Q1+Q2= 24kN,斜杆的拉力S 可分解为X B和Y B(1)外力计算横梁在横向力P和Y A、Y B作用下产生弯曲;同时在X A和X B作用下产生轴向压缩。
建筑力学课件 第十三章 组合变形
max
M
m
ax
cos Iz
ymax
s in
Iy
z
m
ax
【注】斜弯曲时,梁内剪应力很小 ,通常不予计算。
13.2 斜弯曲
三、强度条件
进行强度计算,首先要确定危险截面和危险点的位置。 对于图13-3所示的悬臂梁,固定端截面的弯矩值最大 ,是危险截面。对矩形、工字形等具有两个对称轴及 棱角的截面,最大正应力必定发生在角点上(图134d)。将角点坐标代入式(13-2)式便可求得任意截 面上的最大正应力值。
13.2 斜弯曲
由式(13-2)可见,应力σ是坐标y、z的线性函数,所以 它是一个平面方程。正应力σ在横截面上的分布规律 可用一倾斜平面表示(如图13-4d)。斜平面与横截
面的交线就是中性轴,它是横截面上正应力等于零的
各点的连线,这条连线也称为零线。零线在危险截面
上的位置可由应力σ = 0的条件确定,即:
与轴力FN (x)对应的正应力为
N
FN (x) A
与弯矩M(x)对应的弯曲正应力为
M
M (x)y Iz
13.3 压缩(拉伸)与弯曲组合
将两项应力叠加后得总应力,即
N
M
FN (x) M (x) y
A
Iz
(13-6)
叠加后的应力分布如图13-9(d)所示。显然,最大拉应力
发生在DD边,最大压应力发生在CC边。对于抗拉
3EI z
因Fz所引起的挠度为
fz
Fzl 3 3EI y
Fl3 sin
3EI y
由叠加原理,自由端的总挠度是两个方向挠度的矢量和(
如图13-6a),即 f
f
2 y
f
第八章组合变形时的强度计算
Iy
IY
由 mz 产生的正应力
s"' MZ .y Fyp y
IZ
IZ
假设C 点在第一象限内,根据杆件的变形可知, s ',s '',s ''' 均为拉应
力,由叠加原理,即得 C点处的正应力为:
σ σ' σ'' σ'''
任意横截面 n-n上的 C点的正应力为
c
σ F F zP z F yP y
与y轴的夹角θ为:
tgθ z0 Mz Iy Iy tgφ y0 My Iz Iz
公式中角度 是横截面上合成弯矩 M 的矢量与 y 轴的夹角 . 横截面上合成弯矩 M 为:
M
M
2 y
M
2 z
tgθ Iy tgφ Iz
讨论:
(1) 一般情况下,截面的 IzIy ,故中性轴与合成弯矩 M 所在平面不垂直,此为斜弯曲的受力特征。导致挠曲线与外 力(合成弯矩)所在面不共面,此为斜弯曲的变பைடு நூலகம்特征。
s s ' s '' My z - Mz y
Iy
Iz
式中,Iy和Iz分别为横截面对于两对称轴y和z的惯性矩; M y和Mz分别是截面上位于水平和铅垂对称平面内的弯矩,且 其力矩矢量分别与y轴和z轴的正向相一致。在具体计算中,
也可以先不考虑弯矩M y、Mz和坐标y、z的正负号,以它们的 绝对值代入,然后根据梁在P1和P2分别作用下的变形情况, 来判断上式右边两项的正负号。
FN A
Mz Wz
158 MPa
s
所以强度是安全
【例8-4】矩形截面柱如图所示。P1的作用线与杆轴线重合, P2作用在 y 轴上。已知, P1= P2=80kN,b=24cm , h=30cm。 如要使柱的m—m截面只出现压应力,求P2的偏心距e。
第5章_杆件强度与刚度计算.ppt
Q [ ]
S
式中 τ—剪切面上的切应力; S-横截面积; Q—剪力。
27
许用切应力[τ]是利用剪切试验求出抗剪强度 τb,再除以安全系数n得到的,即 [τ]= τb/n。
塑性材料 [τ]=(0.6~0.8)[σ] 脆性材料 [τ]=(0.8~1.0)[σ]
23
5.3.2 剪切和挤压的实用计算
(1)剪切的实用计算
简图
受力图
分离体 假定分布
24
1)剪力计算
求内力的方法:截面法 (截、取、代、平)
Q=F
25
2)剪应力的计算
剪力Q在截面上的分布比较复杂,在 工程中假定它在截面上是均匀分布的,则 可得切应力计算公式:
Q
S
26
3)剪切的强度条件
为了保证受剪构件安全可靠地工作,
?1第55章杆件的强度与刚度计算直杆轴向拉伸与压缩时的强度与变形计算杆件的强度条件与刚度条件杆件剪切时的强度计算圆轴扭转时的强度与刚度计算平面弯曲梁的强度与刚度计算直杆组合变形时的强度计算超静定问题简介?252直杆轴向拉伸与压缩时的强度与变形计算53杆件剪切时的强度计算54圆轴扭转时的强度与刚度计算56直杆组合变形时的强度计算第55章杆件的强度与刚度计算目录57超静定问题简介51概述55平面弯曲梁的强度与刚度计算?351概述?构件中的最大应力需视其受力与变形的具体情况而有所不同?对于杆件变形的基本形式通常采用其横截面上正应力或切应力建立强度条件组合变形情况的强度条件建立则比较复杂需要考虑材料的力学性能研究危险点的应力状态选用合适的强度理论?许用应力是构件正常工作时所允许承受的最大应力构件中的最大应力许用应力通用的强度条件式为
组合变形时的强度计算
§84弯曲与扭转组合变形
一、单向弯曲与扭转组合变形
1.引例:以钢制摇臂轴为例。
①外力向形心简化(建立计算模型):
②作弯矩、扭矩图(找危险截面):
由弯矩图知:A截面|M|→max;全梁Mn处处相同,
∴A截面为危险截面:
|TMn AP|aPL
③危险截面的危险点:A截面K1、K2点,t、s数值均为最大,
⑤用强度准则进行强度计算
§8-2 两相互垂直平面内的弯曲
平面弯曲:对于横截面具有对称轴的梁,当横向外力或
外力偶作用在梁的纵向对称面内时,梁发生对称弯曲。这时, 梁变形后的轴线是一条位于外力所在平面内的平面曲线。
斜弯曲:双对称截面梁在水平和垂直两纵向对称平面内
同时承受横向外力作用的情况,这时梁分别在水平纵对称面
∴K1、K2点均为危险点:
K1点:
sstmax|M W A z|
tMn W n
K2点:sscmax|M W A z|
tMn W n
y
A d
z
L
Tn
_
PL
M
_
P C
B a x
P Pa
K1
st Pa
K1 A
t s
s K2 t
K2
ss t
s
Байду номын сангаас
④对危险点进行应力分析:(从K1、K2点取单元体,因它们的 s、t数值分别相同,危险程度也相同,不妨取K1点研究):
一、单向弯曲与扭转组合变形
④对危险点进行应力分析(s1≥s2≥s3)
在梁的任意横截面m—m上,由P1和P2引起的弯矩值依次为:
在梁的任意横截面m—m上,由P 和P 引起的弯矩值依次为: 试校核此夹具竖杆的强度。
材料力学第七章组合变形
P2=406N
外力向形心简化并分解 弯扭组合变形
每个外力分量对应 的内力方程和内力图
M (x)
M
2 y
(
x)M
2 z
(
x)
解续
MMZz ((NNmm)) 71.25
40.6
MMyy ((NNmm)) MT n ((NNmm))
7.05 120 Mn
+
MM ((NNmm)) Mmax=71.3
41.2
核心边界上的一个角点;
截面角点边界
核心边界上的一条直线;
截面曲线边界
核心边界上的一条曲线。
例:
求右图示矩形截面的截面核心。
解:取截面切线 l1作为中性轴,其截距:
b
az
b 2
ay
4
3
a
并注意到: iz2 Iz / A h2 /12 iy2 I y / A b2 /12
故
h
5 21 z
34
ay
iz2 yP
az
iy2 zP
当偏心外力作用在截面 形心周围一个小区域内, 而对应的中性轴与截面周 边相切或位于截面之外时, 整个横截面上就只有压应 力而无拉应力。
2.截面核心的性质及其确定
(1)性质:是截面的一种几何特征,它只与截面的形状、尺
寸有关,而与外力无关。
(2)确定:根据中性轴方程知,截面上中性轴上的点的坐标
cmax
B
Fp A
MB Wz
Fp 6M B 13.4MPa bh bh2
在 B 截面右边缘处
3、最大拉应力
t
max
Fp A
MB Wz
3.4MPa
4、最大剪应力
第五章 应力状态分析 强度理论 组合变形.ppt
min
N A
M WZ
130103 0.18h
6 106 0.18h2
6
0
h 276.9mm,取h 280mm
min
N M A WZ
130103 6106 180 280 180 28026Βιβλιοθήκη 0.029MPa28
2 xy
min
x
y
2
x y
2
2
2 xy
主应力按代数值排序:σ1 σ2 σ3
17
§5.2 平面应力状态分析——解析法
例题1:一点处的平面应力状态如图所示。
已知 x 60MPa xy 30MPa, y 40MPa, 30。
2
2
xy
cos 2
15
§5.2 平面应力状态分析——解析法
2. 主平面和主应力
确定正应力极值
( x
y )
2
( x
y ) cos 2
2
xy
sin
2
d d
2
(
x
y ) sin
2
2
xy cos 2
0
(σx
σy
) s
x 2 xy
y
1
1
2
max min
x
2
y
2
2 xy
23
平面应力状态重要公式
max min
材料力学-第十一章组合变形(讲稿)
第十一章组合变形一、教学目标1、掌握组合变形的概念。
2、掌握斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的概念和区分、危险截面和危险点的确定、应力计算、强度计算、变形计算、中性轴的确定等。
3、正确区分斜弯曲和平面弯曲。
4、了解截面核心的概念、常见截面的截面核心计算。
二、教学内容1、讲解组合变形的概念及组合变形的一般计算方法:叠加法。
2、举例介绍斜弯曲和平面弯曲的区别。
3、讲解斜弯曲的应力计算、中性轴位置的确定、危险点的确立、强度计算、变形计算。
4、讲解弯曲和扭转组合变形内力计算,确定危险截面和危险点,强度计算。
5、讲解拉伸(压缩)和弯曲组合变形的危险截面和危险点分析、强度计算。
6、讲解偏心拉伸(压缩)组合变形的危险截面和危险点分析、应力计算、强度计算。
7、简单介绍截面核心的概念和计算。
三、重点难点重点:斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的应力和强度计算。
难点:1、解决组合变形问题最关键的一步是将组合变形分解为两种或两种以上的基本变形:斜弯曲——分解为两个形心主惯性平面内的平面弯曲;弯曲和扭转组合变形——分解为平面弯曲和扭转;拉伸(压缩)和弯曲组合变形——分解为轴向拉伸(压缩)和平面弯曲(因剪力较小通常忽略不计);偏心拉伸(压缩)组合变形——单向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和一个平面弯曲,双向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和两个形心主惯性平面内的平面弯曲。
2、组合变形的强度计算,可归纳为两类:⑴危险点为单向应力状态:斜弯曲、拉(压)弯、偏心拉伸(压缩)组合变形的强度计算时只需求出危险点的最大正应力并与材料的许用正应力比较即可;⑵危险点为复杂应力状态:弯扭组合变形的强度计算时,危险点处于复杂应力状态,必须考虑强度理论。
四、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。
五、计划学时5学时六、讲课提纲(一)斜弯曲引言:*何谓平面弯曲?梁的弯曲平面与外力作用平面相重合的这种弯曲称为平面弯曲(或者说:梁的挠曲线是形心主惯性平面内的一条平面曲线)**平面弯曲与斜弯曲的比较(a) (b) (c)项目平面弯曲斜弯曲受力特点p F 平面与过y轴(形心主惯性轴)的纵平面重合pF平面过形心(这里也是弯心)但不与过y轴的纵平面重合。
工程力学组合受力与变形时的强度计算
FN A
M W
3103
d 2
8 103
d 3
81.1
MPa
81.9
4
32
位置?
例题:图示钢板受集中力P=128KN作用,当板在
一侧切去深4cm的缺口时,求缺口截面的最大正应 力?若在板两侧各切去深4cm的缺口时,缺口截面 的最大正应力为多少?(不考虑应力集中) 10
P
360
求: 1.链环直段部分横截面上 的最大拉应力和最大压应力; 2. 中性轴与截面形心之间 的距离。
解:根据平衡,截面上将
作用有内力分量FNx 和Mz
Fx 0 M C 0
得到 FNx=800 N
Mz= 12 N·m
x FNx
FNx A
4FNx πd 2
π
4 800 122 106
简支梁在中点受力的情
形下,最大弯矩
Mmax=FPl / 4。得到两个 平面弯曲情形下的最大
d
弯矩:
c
M max
FPz
FPx l FPsin l
4
4
M max
(FPy )
FPy l 4
FP
cos l 4
在Mmax(FPy)作用的截面上,截面上边缘的角点 a、b 承受最大压应力;下边缘的角点c、d 承受最 大拉应力。
Pz P cos
以y为中性轴弯曲 M y Pz (l x)
P cos(l x) M cos
M z Py (l x)
P sin(l x) M sin
M z y M y sin M y z M z cos
材料力学组合变形的强度计算第3节 弯曲与扭转的组合变形
1)外力分析
=
+
2)内力分析,确定危险截面的位置 —— A+ 截面
M max Fl M T M B Fa
k、k 两点为危险点
M max
Wz
MT
WP
3)强度计算
危险点的应力是二向应力状态,轴类零件一般都采 用塑性材料——钢材,因此应选用第三或第四强度理 论建立强度条件,即:
r3
32
F
l2 πd 3
R2
[ ]
按第四强度理论得到强度条件为
r4 32 F
l 2 0.75 R2 πd 3
[ ]
例9-3 卷扬机结构尺寸如图所示,l = 0.8m,R =0.18m,AB轴径 d = 0.06m。已知电动机的功率 P = 22kW,轴AB的转速 n =150r/min,轴材料的许用
应力[ ] = 100MPa,试校核AB轴的强度。
解: 1)外力分析 — 计算电动机输入的力偶矩 M0
M0
9550
P n
9550 22 150
Nm
1.4
k
N m
卷扬机的最大起重量 G M0 1.4 kN 7.78 kN R 0.18
2)内力分析,确定危险截面的位置 —— C_截面
1 3
2
2
2
2
2 0
r3 2 4 2 [ ]
r4 2 3 2 [ ]
WZ
d3
32
,WP
第十五讲: 第十章组合变形-强度理论
FN F M F 350 75103
425F 103 N.m
50 150
A 15000 2 mm z0 75mm z1 125mm
(2)立柱横截面的内力 FN F M 425103 F N.m
t . max
Mz 0 FN Iy A
一、
斜 弯 曲
平面弯曲
斜弯曲
t ,max M y max M z max c ,max Wy Wz
D1点: t ,max [ t ] D2点: c,max [ c ]
强度条件:
挠度:
f f y2 f z2
fz
fz Iz tan tan fy Iy
2
3
2
3
结论: 代表单元体任意斜 截面上应力的点, 必定在三个应力圆 圆周上或圆内。
五、 广义胡克定律
1. 基本变形时的胡克定律
1)轴向拉压胡克定律
y x
x E x
横向变形
x
y x
2)纯剪切胡克定律
x
E
G
广义胡克定律
2、三向应力状态的广义胡克定律-叠加法
* z
(切应力强度条件)
max [ ]
max
max [ ] 满足 max [ ]
是否强度就没有问题了?
max
强度理论的概念
强度理论:人们根据大量的破坏现象,通过判断推 理、概括,提出了种种关于破坏原因的假说,找出
引起破坏的主要因素,经过实践检验,不断完善,
在一定范围与实际相符合,上升为理论。 为了建立复杂应力状态下的强度条件,而提出 的关于材料破坏原因的假设及计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
F
y
x
§9-2 拉伸(压缩)与弯曲的组合
F F
500
z yc
c
y
例9-2 图示压力机,最大压力 F=1400kN,
e
FN=F M=Fe
b ca
机架用铸 铁制成:[st]=35MPa, [sc]=140MPa,试校核该压力机立柱
部分强度。立柱截面几何性质:
yc=200mm,h=700mm, A=1.8×105mm2,Iz=8.0×109mm4。 F
§9-3 偏心压缩与截面核心
3.求截面核心方法
1)基本方法:将截面周界上一系列点的切线作为中性 轴,反求出相应压力F作用点位置,其连线即为截 面核心的周界。
设y、z轴为形心主惯性轴,周界某一点切线为中性
轴时,在y、z轴上的截距分别为ay、az,则压力F作
用点坐标为:
(
y
F
iz2
/
a
y
,zF
i
2 y
0,z
F
b 6
§9-4 扭转与弯曲的组合
一、单向弯曲与扭转组合变形
1.引例
My:s
'''
M I
y y
z
Fz I
F y
z
§9-3 偏心压缩与截面核心
z
zF zB
A
O y yF
3)组合应力(B点)
y
s
s
's
"s
'''
F A
FA(1
yF i z2
y
zF z
i
2 y
)
FyF Iz
y
Fz F Iy
z
式中:i
2 z
Iz A
,i
2 y
Iy A
——截面对z、y轴的惯性半径
3.中性轴方程
路标牌立柱——弯扭组合
§9-2 拉伸(压缩)与弯曲的组合
例9-1 图示起重机的最大吊重G=12kN,材料许用应力[s]=100MPa,试
为AB杆选择适当的工字梁。 FAy
FAx A
M
FC
FCy
FCx C
B
G
_
1.5m
A 2m
C
B
1m G FN
12kN·m
_ 24kN
解:1)作AB杆的受力简图
3)按弯曲正应力预选AB梁W
组合变形时的强度计算演示文 稿
(优选)组合变形时的强度计 算
§9-1 组合变形与叠加原理
二、基本解法(叠加法)
1.叠加原理:在线弹性、小变形下,每一组载荷引起
的变形和内力不受彼此影响,可采用代 数相加;
2.基本解法 1)将外力分解或简化:使每一组力只产生一种基本变 形; 2)分别计算各基本变形下的内力与应力; 3)将各基本变形应力进行叠加(主要对危险截面危险点);
'
Feyc Iz
(
拉
),s
b
'
Fey2 Iz
(
压)
4)组合应力
s
s
a b
s
N
s
a
'
F A
Feyc Iz
32.3MPa(拉)[s t
s
N
s
b
'
F A
Fey2 Iz
]
53.5MPa(压)[s c ]
立柱符合强度要求
§9-3 偏心压缩与截面核心
一、偏心压缩
1.构件压力与轴线平行但不重合时,即为偏心压缩。
2)中性轴在尖点B处
yF
i
2 z
yB
zF zB
i
2 y
y
B
i
2 z
——直线152
3)顺序连接1,2,3,4得 到矩形截面核心
1)中性轴在①位置时 a y h/2,az
则1点坐标:
yF zF
iz2 /a y h/6
i
2 y
/
a
z
0
同理:2点:yF
0,z F
b 6
3点:yF h6,zF 0
4点:yF
/
az
)
2)特殊情况 a)截面周界有直线段时,对应的压力作用点只是一点;
b)截面周界有棱角时,对应压力作用点为一直线; c)中性轴不能穿过截面,则当截面周界有内凹时,取
中性轴为跨过内凹部分的切线。
§9-3 偏心压缩与截面核心
4.矩形截面核心的求解过程
z
①
④
2 5
b
1
3
y
⑤
4 h ③
② B(yB,zB)
4)对危险点进行应力分析(s1≥s2≥s3);
5)用强度准则进行强度计算。
§9-1 组合变形与叠加原理 二、组合变形工程实例
钻床立柱——压弯组合
§9-1 组合变形与叠加原理 二、组合变形工程实例
吊车臂 ——压弯组合
§9-1 组合变形与叠加原理 二、组合变形工程实例
厂房牛腿 ——偏心压缩
§9-1 组合变形与叠加原理 二、组合变形工程实例
M
A
0: FFCCxy
1.5G 4 FCy
18kN / 3 24kN
W |M |max /[s ]120cm3
4)查表选W=141cm3,按压弯组合变
2)作AB杆的内力图
形进行校核
C点左截面上,弯矩绝对值最大而轴 力与其它截面相同,故为危险截面。
|s |max
FN A
MC W
94.3MPa[s
]
1)利用中性轴处的正应力为零得到
s
F (1 A
yF y0
i
2 z
zF i
z0
2 y
)0
yF y0
i
2 z
zF z0
i
2 y
1
——直线方程
§9-3 偏心压缩与截面核心
z
ay
D1
zF zB
A
O y yF
2)中性轴在y、z轴上的截距分别为
y
a
y
i
2 z
yF
,az
i
2 y
zF
az D2
ay、az分别与yF、zF符号相反,故中性轴与偏心压力F 的作用点位于截面形心的两侧。
中性轴将截面分成两个区,压力F所在区受压,另一 区受拉。在截面周边上,D1和D2两点切线平行于中性 轴,它们是离中性轴最远的点,应力取极值。
§9-3 偏心压缩与截面核心
二、截面核心
1.定义 当压力F作用在截面某个区域内时,整个截面 上只产生压应力,该区域就称为截面核心。
2.研究意义 1)工程中的混凝土柱或砖柱,其抗拉性很差,要 求构件横截面上不出现拉应力; 2)地基受偏心压缩,不允许其上建筑物某处脱离 地基。
§9-2 拉伸(压缩)与弯曲的组合
1.如果材料许用拉应力和许用压应力不同,且截面部分 区域受拉,部分区域受压,应分别计算出最大拉应力 和最大压应力,并分别按拉伸、压缩进行强度计算;。
2.如果横向力产生的挠度与横截面尺寸相比不能忽略, 则轴向力在横截面上引起附加弯矩DM=Fy亦不能忽 略,这时叠加法不能使用,应考虑横向力与轴向力 之间的相互影响。
解:1)横截面形心到F距离e
y2 yc
e500 yc mm 2)横截面内力
M Fe FN F
h
e
Байду номын сангаас
FN=F
sa
M=Fe
sN
sa'
b
ca F
sb
sb'
y2
yc
§9-2 拉伸(压缩)与弯曲的组合
3)轴力FN对应的横截面上的应力
s N FN / AF / A(拉)
弯矩M对应的横截面上a、b点的
应力
s
a
2.横截面任意点的应力
x
Fz
F Mz
My
O
zF e yF
A
1)对于受偏心压缩的短柱,y、z
轴为形心主惯性轴,将F向形 心简化:M y FzF ,M z FyF y ( yF,zF)为F作用点坐标 2)各力在( y,z)点引起的应力为:
F :s 'F / A
Mz:s
"
M I
z z
y
FyF Iz
y
O