第四章 函数与过程

合集下载

北师大版八年级数学上册 第四章 一次函数 4.1函数

北师大版八年级数学上册 第四章 一次函数 4.1函数

第四章:一次函数4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据. 自变量与另一个变量的对应关系若y 是x 的函数,当x 取不同的值时,y 的值不一定不同.如:y =x 2中,当x =2,或x =-2时,y 的值都是4. 函数的定义中包括三个要素 ① 自变量的取值范围;② 两个变量之间的对应关系;③ 后一个变量被唯一确定而形成的变化范围. 注意:①自变量可以用任意字母表示;②两个变量之间的关系必须是“唯一确定”的; ③函数不是数,而是一种特殊的对应关系.规律方法:判断两个变量是否存在函数关系,关键是看两个变量之间是否是一一对应,即给一个变量一个数值,另一个变量是否有唯一确定的值与之对应.【例1】下列图像给出了变量x 与y 之间的对应关系,其中y 不是x 的函数的是( )【例2】 下列关于变量x ,y 的关系式:①x -3y =1;②y =|x |;③2x -y 2=9.其中y 是x 的函数的是( ).A .①②③B .①②C .②③D .①②【例3】 已知y =2x 2+4,(1)求x 取12和-12时的函数值;(2)求y 取10时x 的值..函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式. 函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y =x +1是表示y 是x 的函数.若写成x =y -1就表示x 是y 的函数.也就是说:求y 与x 的函数关系式,必须是用只含变量x 的代数式表示y ,即得到的等式(解析式)左边只含一个变量y ,右边是含x 的代数式.【例4】 已知等腰三角形的周长为36,腰长为x ,底边上的高为6,若把面积y 看做腰长x 的函数,试写出它们的函数关系式.3.自变量的取值范围使函数有意义的自变量的全体取值叫做自变量的取值范围. 自变量的取值必须使含自变量的代数式都有意义。

第四章可测函数

第四章可测函数
n
fn
(x)
G(x)
lim n
fn (x)
也在E上可测,特别当
F ( x)
lim n
fn(x) 存在时,
它也在可测。
4、简单函数及其性质
(1)定义:设f (x) 的定义域E可分为有限个互不相交的可测集
s
E1,..., Es 即 E Ei ,使 f (x)在每个 Ei上都等于某常数 c ,则称 f (x)
则称 fn在E上几乎一致收敛于 f ,记为 fn f a.u.于E
注:1°”一致收敛”强于“收敛”, “收敛”强于“几乎处处收敛” 2°叶果洛夫定理得逆命题就是若 fn f a.u.于E ,则 fn f a.e.于E 3°叶果洛夫定理揭示了可测函数列几乎处处收敛与一致收敛的关系, 根据这个定理,对于任意几乎处处收敛的可测函数列,都可在E的一 个子集 上E当 作一致收敛的函数列来处理。
黎斯条件下的子列在叶果洛 夫条件下
(3)著名的勒贝格微分定理:若 f (x) 是[a,b]上的单调函数,则 f (x) 在[a,b]上几乎处处可导。 (4)[0,1]上的狄利克雷函数 D(x) 0 a.e.于 [0,1]
性质:
(1)1 a.e.于E
且 2
a.e.于E
,则 1
或 2
a.e.于E


1
2
a.e.于E
.
(2)f和g是定义在可测集E上几乎处处相等的函数,如果f是E的可测函
1 f (x), f (x) g(x),(g(x) 0 集中在零测集上)可测集。
可 测
定理 5:设 fn(x) 是E上一列(或有限个)可测函数,则
函 数
(x) inf n
fn (x)与

第四章一次函数知识点总结

第四章一次函数知识点总结

第四章 一次函数知识点总结一、函数:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一值与x 对应,则x 称为自变量,把y 称为因变量,y 是x 的函数。

二、函数的表示法:列表法;关系式法;图象法。

三、描点法画函数图形的一般步骤(通常选五点法):(一):列表;(二):描点;(三):连线。

四、一次函数与正比例函数定义:一般地,形如y=kx +b(k,b 是常数,k ≠0),叫做y 是x 的一次函数,当b=0时,即形如y=kx(k 是常数,k ≠0),叫做y 是x 的正比例函数。

正比例函数是特殊的一次函数.注意:⑴解析式中自变量x 的次数是1次;⑵比例系数k ≠0(k 又称为斜率)。

五、正比例函数与一次函数图象特点:(1)正比例函数y=kx 的图象是经过(0,0)的一条直线。

(2)一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)的一条直线,又称为直线y=kx+b 。

六、一次函数图象与正比例函数图象性质: (一)作正比例函数描点:(0,0)和(1,k );作一次函数函数描点:(0,b )和(-k b ,0) (二)k 决定函数增减性、直线的倾斜方向和倾斜程度:(1)增减性:k>0,y 随x 的增大而增大(变化相同);k<0,y 随x 增大而减小(变化相反).(2)倾斜方向:k>0,图象向右倾斜;k<0,图象向左倾斜。

(3)倾斜程度:|k|越大,图象越靠近于y 轴,直线越陡,变化速度越快。

k 相等则倾斜程度相同,即两条直线平行。

(三)b 的正、负决定直线与y 轴交点的位置:(1)当b >0时,直线与y 轴交于正半轴上;(2)当b <0时,直线与y 轴交于负半轴上;(3)当b=0时,直线经过原点,是正比例函数。

七、正比例函数与一次函数图象之间的关系:一次函数y=kx +b 的图象可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移):上加下减,左加右减。

第四章格林函数法1

第四章格林函数法1

边界条件有三种类型,应用较多的是第一、第二边界条件。 1)第一边值问题:
边界条件 u f , (是的边界,f 是上的连续函数)
要求的解u C 2 () C 0 (),即u在内有二阶连续偏导数,在( )上 连续,满足Laplace方程,且在边界上与f 吻合。
第一边值问题也称为狄利克莱(Dirchlet)问题,简称狄氏问题。
两式相减可得 v u (u v v u )dV (u v )dS n n
2 2
第二格林公式
二、调和函数的基本性质
1).调和函数的积分表达式
定义:所谓调和函数的积分表达式,就是用调和函数及其在区域
边界上的法向导数沿的积分来表达调和函数在内任一点的值。
0
注意,当 0时,有 lim u u ( M 0 ), (u连续)
1 u(M 0 ) 4 1 1 u [u ( ) ]dS n r r n

1 4
1 1 u [u(M ) ( ) ]dS n rMM0 rMM0 n
注1:当M 0取在区域之外或边界上,也可用同样的方法导出公式,
2 2 2 u u u 2 u 2 2 2 0, ( x, y, z ) R3 \ x y z
3)Dirichlet外问题
边界条件为: u f ,f 是连续函数.
要求的解u ( x, y, z ), 在外部区域内调和,在 上连续, 并且满足边界条件。
[u(M )
Ka
1 1 u ( ) ]dS n r r n
1 4
1 4
1 4 a 2
1 1 u 1 1 u u ( M ) dS dS [ u ( M )( ) ] dS 2 2 4 a K 4 a K n r r n Ka

C++程序设计-第四章-函数的定义和调用

C++程序设计-第四章-函数的定义和调用
教学方案
授课题目
第四章函数的定义和调用
课型
理论讲解
课次
第11次教学目的ຫໍສະໝຸດ 要求:1、了解函数的作用和方法
2、掌握函数参数和函数的值的概念
教学重点及难点:
1、定义函数的一般形式
2、函数的参数的概念
教学过程设计:
【课程引入】课前回顾,知识点说明
【课程讲解】4.1函数的相关概念
1、函数的概念,为什么引入函数?
2、函数调用示意图
3、函数模式的程序
4、void的编程方法
5、(void)的编程方法
6、函数的平等调用
7、函数的执行顺序
8、函数的调用顺序
9、函数的分类
4.2定义函数的一般形式
1、定义无参函数
2、定义有参函数,返回值的概念
4.3函数参数和函数的值
1、形式参数和实际参数
2、形式与实参之间的参数传递
3、返回值的概念
4.4函数的调用
1、主调函数与被调函数
2、函数调用的3种方法
3、函数传参的过程
复习思考题:
作业:P852. P8610.11 P872.4(函数方法)
上机调试
教学参考资料:
谭浩强《C++程序设计》(第2版)
教学效果分析:
学生对VB可视化编程方式有深入的了解,对对象、类、事件、属性、方法有初步认识,学会VB通用属性设置和窗体的属性、方法和事件,并利用这些进编写一些小程序。

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上必修二第四章《指数函数、对数函数与幂函数》知识点梳理§4.4 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α(α=-1,12,1,2,3)的图像与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念一般地,函数y =x α称为幂函数,其中x 是自变量,α是常数.提醒 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图像和性质1.幂函数的图像在同一平面直角坐标系中,幂函数y =x ,y =x 2,y =x 3,y =,y =x -1的图像如图.2.五个幂函数的性质y =xy =x 2y =x 3y =y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上是增函数在[0,+∞)上是增函数,在(-∞,0]上是减函数在R 上是增函数在[0,+∞)上是增函数在(0,+∞)上是减函数,在(-∞,0)上是减函数12x 12x公共点(1,1)1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x 3.( √ )3.y =与y =定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )一、幂函数的概念例1 (1)(多选)下列函数为幂函数的是( )A .y =x 3 B .y =(12)xC .y =4x 2D .y =x答案 AD解析 B 项为指数函数,C 中的函数的系数不为1,AD 为幂函数.(2)已知y =(m 2+2m -2)+2n -3是幂函数,求m ,n 的值.解 由题意得Error!解得Error!或Error!所以m =-3或1,n =32.反思感悟 判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.跟踪训练1 已知f (x )=ax 2a +1-b +1是幂函数,则a +b 等于( )A .2 B .1 C.12 D .0答案 A解析 因为f (x )=ax 2a +1-b +1是幂函数,所以a =1,-b +1=0,即a =1,b =1,则a +b =2.32x 64x 22m x二、幂函数的图像例2 如图所示,图中的曲线是幂函数y =x n 在第一象限的图像,已知n 取±2,±12四个值,则对应于c 1,c 2,c 3,c 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2.反思感悟 解决幂函数图像问题应把握的两个原则(1)依据图像高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图像越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图像越远离x 轴(简记为指大图高).(2)依据图像确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图像(类似于y =x -1 或y =或y =x 3)来判断.跟踪训练2 函数f (x )=的大致图像是( )答案 A解析 因为-12<0,所以f (x )在(0,+∞)上单调递减,排除选项B ,C ;又f (x )的定义域为(0,+∞),故排除选项D.三、比较幂值的大小12x 12x例3 比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)与.解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的,又25>13,∴(25)0.5>(13)0.5.(2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35,∴(-23)-1>(-35)-1.(3)∵函数y 1=(23)x为R 上的减函数,又34>23,∴>.又∵函数y 2=在(0,+∞)上是增函数,且34>23,∴>,∴>.反思感悟 比较幂值大小的方法跟踪训练3 比较下列各组值的大小:(1),;(2),,1.42.解 (1)∵y =为R 上的偶函数,∴=.又函数y =为[0,+∞)上的增函数,且0.31<0.35,3423⎛⎫⎪⎝⎭2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭3423⎛⎫ ⎪⎝⎭23x 2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭2334⎛⎫ ⎪⎝⎭3423⎛⎫⎪⎝⎭()650.31-650.35121.2121.465x ()650.31-650.3165x∴<,即<.(2)∵y =在[0,+∞)上是增函数,且1.2<1.4,∴<.又∵y =1.4x 为增函数,且12<2,∴<1.42,∴<<1.42.幂函数性质的应用典例 已知幂函数y =x 3m -9 (m ∈N +)的图像关于y 轴对称且在(0,+∞)上单调递减,求满足的a 的取值范围.解 因为函数y =x 3m -9在(0,+∞)上单调递减,所以3m -9<0,解得m <3.又因为m ∈N +,所以m =1,2.因为函数的图像关于y 轴对称,所以3m -9为偶数,故m =1.则原不等式可化为.因为y =在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得23<a <32或a <-1.故a 的取值范围是Error!.[素养提升] (1)幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.(2)通过具体实例抽象出幂函数的概念和性质,并应用单调性求解,体现了数学中数学运算与直观想象的核心素养.650.31650.35()650.31-650.3512x 121.2121.4121.4121.2121.433(1)(32)m m a a --+<-1133(1)(32)a a --+<-13x-1.下列函数是幂函数的是( )A .y =5x B .y =x 5C .y =5x D .y =(x +1)3答案 B解析 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.2.幂函数y =x α(α∈R )的图像一定不经过( )A .第四象限 B .第三象限C .第二象限 D .第一象限答案 A解析 由幂函数的图像可知,其图像一定不经过第四象限.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3答案 A解析 可知当α=-1,1,3时,y =x α为奇函数,又因为y =x α的定义域为R ,则α=1,3.4.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),则k +α等于( )A.12 B .1 C.32 D .2答案 A解析 ∵幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),∴k =1,f(12)=(12)α=2,即α=-12,∴k +α=12.5.已知f (x )=,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f(1a )<f(1b)B .f (1a )<f(1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f(1a )D .f (1a )<f (a )<f(1b )<f (b )12x答案 C解析 因为函数f (x )=在(0,+∞)上是增函数,又0<a <b <1<1b <1a ,故f (a )<f (b )<f(1b )<f(1a).1.知识清单:(1)幂函数的概念.(2)幂函数的图像.(3)幂函数的性质及其应用.2.方法归纳:数形结合.3.常见误区:幂函数与指数函数的区别;幂函数的奇偶性.1.幂函数f (x )=x α的图像经过点(2,4),则f (-12)等于( )A.12B.14 C .-14 D .2答案 B解析 幂函数f (x )=x α的图像经过点(2,4),则2α=4,解得α=2;∴f (x )=x 2,∴f (-12)=(-12)2=14.2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2 B .y =x -1C .y =x 2 D .y =答案 A解析 所给选项都是幂函数,其中y =x -2和y =x 2是偶函数,y =x -1和y =不是偶函数,故排除选项B ,D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意.3.设a =,b =,c =,则a ,b ,c 的大小关系是( )12x 13x13x 2535⎛⎫ ⎪⎝⎭3525⎛⎫⎪⎝⎭2525⎛⎫⎪⎝⎭A .a >c >bB .a >b >cC .c >a >bD .b >c >a答案 A解析 ∵y =(x >0)为增函数,又35>25,∴a >c .∵y =(25)x (x ∈R )为减函数,又25<35,∴c >b .∴a >c >b .4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图像可能是( )答案 C解析 选项A 中,幂函数的指数a <0,则y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则y =ax -1a 应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a在y 轴上的截距为正,D 错误.5.若幂函数f (x )的图像过点(2,2),则函数g (x )=f (x )-3的零点是( )A.3 B .9 C .(3,0) D .(9,0)答案 B解析 ∵幂函数f (x )=x α的图像过点(2,2),∴f (2)=2α=2,解得α=12,∴f (x )=,∴函数g (x )=f (x )-3=-3,由-3=0,得x =9.∴函数g (x )=f (x )-3的零点是9.6.已知幂函数f (x )=x α的部分对应值如表:x11225x 12x 12x 12xf (x )122则f (x )的单调递增区间是________.答案 [0,+∞)解析 因为f(12)=22,所以(12)α=22,即α=12,所以f (x )=的单调递增区间是[0,+∞).7.已知幂函数f (x )=x α(α∈R )的图像经过点(8,4),则不等式f (6x +3)≤9的解集为________.答案 [-5,4]解析 由题意知8α=4,故α=log 84=23,由于f (x )==x 2为R 上的偶函数且在(0,+∞)上递增,故f (6x +3)≤9即为f (6x +3)≤f (27),所以|6x +3|≤27,解得-5≤x ≤4.8.设a =,b =,c =,则a ,b ,c 从小到大的顺序是________.答案 b <a <c解析 由a =,b =,可利用幂函数的性质,得a >b ,可由指数函数的单调性得c >a ,∴b <a <c .9.已知幂函数f (x )=x α的图像过点P (2,14),试画出f (x )的图像并指出该函数的定义域与单调区间.解 因为f (x )=x α的图像过点P (2,14),所以f (2)=14,即2α=14,得α=-2,即f (x )=x -2,f (x )的图像如图所示,定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递增区间为(-∞,0).10.已知幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R 上单调递增.(1)求f (x )的解析式;(2)求满足f (a +1)+f (3a -4)<0的a 的取值范围.解 (1)由幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R上单调递增,可得9-3m >0,解得m <3,m ∈N +,可得m =1,2,12x 23x 2312⎛⎫⎪⎝⎭2315⎛⎫ ⎪⎝⎭1312⎛⎫⎪⎝⎭2312⎛⎫ ⎪⎝⎭2315⎛⎫⎪⎝⎭若m =1,则f (x )=x 6的图像不关于原点对称,舍去;若m =2,则f (x )=x 3的图像关于原点对称,且在R 上单调递增,成立.则f (x )=x 3.(2)由(1)可得f (x )是奇函数,且在R 上单调递增,由f (a +1)+f (3a -4)<0,可得f (a +1)<-f (3a -4)=f (4-3a ),即为a +1<4-3a ,解得a <34.11.若函数f (x )=(m +2)x a 是幂函数,且其图像过点(2,4),则函数g (x )= log a (x +m )的单调递增区间为( )A .(-2,+∞) B .(1,+∞)C .(-1,+∞) D .(2,+∞)答案 B解析 由题意得m +2=1,解得m =-1,则f (x )=x a ,将(2,4)代入函数的解析式得,2a =4,解得a =2,故g (x )=log a (x +m )=log 2(x -1),令x -1>0,解得x >1,故g (x )在(1,+∞)上单调递增.12.函数y =-1的图像关于x 轴对称的图像大致是( )答案 B解析 y =的图像位于第一象限且为增函数,所以函数图像是上升的,函数y =-1的图像可看作由y =的图像向下平移一个单位长度得到的(如选项A 中的图所示),将y =-1的图像关于x 轴对称后即为选项B.13.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.答案 9解析 由题意可知加密密钥y =x α(α为常数)是一个幂函数,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y =.由=3,得x =9,即明文是9.14.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________.12x 12x 12x 12x 12x 12x 12x 12x答案 (3,5)解析 ∵f (x )==1x(x >0),易知f (x )在(0,+∞)上为减函数,又f (a +1)<f (10-2a ),∴Error!解得Error!∴3<a <5.15.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图像三等分,即有BM =MN =NA ,那么,αβ等于________.答案 1解析 由条件,得M (13,23),N (23,13),可得13=(23)α,23=(13)β,即α=13,β=23.所以αβ=13·23=lg 13lg 23·lg 23lg 13=1.16.已知幂函数g (x )过点(2,12),且f (x )=x 2+ag (x ).(1)求g (x )的解析式;(2)讨论函数f (x )的奇偶性,并说明理由.解 (1)设幂函数的解析式g (x )=x α(α为常数).因为幂函数g (x )过点(2,12),所以2α=12,解得α=-1,所以g (x )=1x.(2)由(1)得f (x )=x 2+a x.①当a =0时,f (x )=x 2.12x 23log 13log 23log 13log由于f(-x)=(-x)2=x2=f(x),可知f(x)为偶函数.②当a≠0时,由于f(-x)=(-x)2+a-x=x2-ax≠x2+ax=f(x),且f(-x)=(-x)2+a-x=x2-ax≠-(x2+a x)=-f(x),所以f(x)是非奇非偶函数.综上,①当a=0时,f(x)为偶函数;②当a≠0时,f(x)为非奇非偶函数.。

第四章 指数函数与对数函数单元总结(思维导图+知识记诵+能力培养)(含解析)

第四章   指数函数与对数函数单元总结(思维导图+知识记诵+能力培养)(含解析)

第四章 指数函数与对数函数知识点一、指数及指数幂的运算 1.根式的概念a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈当n 为奇数时,正数的n 次方根为正数,负数的n 次方根是负数,当n 为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为 负数没有偶次方根,0的任何次方根都是0.n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:(1)当n a =;当n ,0,,0;a a a a a ≥⎧==⎨-<⎩(2)na =3.分数指数幂的意义:)0,,,1m na a m n N n =>∈>;()10,,,1m nm naa m n N n a-=>∈>要点诠释:0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:()0,0,,a b r s Q >>∈(1)r s r s a a a += (2)()r srsa a = (3)()rr rab a b =知识点二、指数函数及其性质 1.指数函数概念一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数函数性质:1.对数的定义(1)若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.2.几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.3.常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 4.对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈④log a NaN =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且知识点四:对数函数及其性质 1.对数函数定义一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2.对数函数性质:1.函数零点的判定(1)利用函数零点存在性的判定定理如果函数()y f x =在一个区间[]a b ,上的图象不间断,并且在它的两个端点处的函数值异号,即()()0f a f b <,则这个函数在这个区间上,至少有一个零点,即存在一点()0x a b ∈,,使()00f x =,这个0x 也就是方程()0f x =的根.要点诠释:①满足上述条件,我们只能判定区间内有零点,但不能确定有几个.若函数在区间内单调,则只有一个;若不单调,则个数不确定.②若函数()f x 在区间[],a b 上有()()0f a f b ⋅>,()f x 在(,)a b 内也可能有零点,例如2()f x x =在[]1,1-上,2()23f x x x =--在区间[]2,4-上就是这样的.故()f x 在(),a b 内有零点,不一定有()()0f a f b ⋅<.③若函数()f x 在区间[],a b 上的图象不是连续不断的曲线,()f x 在(),a b 内也可能是有零点,例如函数1()1f x x=+在[]2,2-上就是这样的. (2)利用方程求解法求函数的零点时,先考虑解方程()0f x =,方程()0f x =无实根则函数无零点,方程()0f x =有实根则函数有零点.(3)利用数形结合法函数()()()F x f x g x =-的零点就是方程()()f x g x =的实数根,也就是函数()y f x =的图象与()y g x =的图象交点的横坐标.2.用二分法求函数零点的一般步骤: 已知函数()y f x =定义在区间D 上,求它在D 上的一个零点x 0的近似值x ,使它满足给定的精确度. 第一步:在D 内取一个闭区间[]00,a b D ⊆,使()0f a 与()0f b 异号,即()()000f a f b ⋅<,零点位于区间[]00,a b 中.第二步:取区间[]00,a b 的中点,则此中点对应的坐标为()()0000001122x a b a a b =+-=+. 计算()0f x 和()0f a ,并判断:①如果()00f x =,则0x 就是()f x 的零点,计算终止;②如果()()000f a f x ⋅<,则零点位于区间[]00,a x 中,令1010,a a b x ==;③如果()()000f a f x ⋅>,则零点位于区间[]00,x b 中,令1010,a x b b == 第三步:取区间[]11,a b 的中点,则此中点对应的坐标为()()1111111122x a b a a b =+-=+. 计算()1f x 和()1f a ,并判断:①如果()10f x =,则1x 就是()f x 的零点,计算终止;②如果()()110f a f x ⋅<,则零点位于区间[]11,a x 中,令2121,a a b x ==;③如果()()110f a f x ⋅>,则零点位于区间[]11,x b 中,令2121,a x b b ==;……继续实施上述步骤,直到区间[],n n a b ,函数的零点总位于区间[],n n a b 上,当n a 和n b 按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数()y f x =的近似零点,计算终止.这时函数()y f x =的近似零点满足给定的精确度.要点诠释:(1)第一步中要使:①区间长度尽量小;②()f a 、()f b 的值比较容易计算且()() <0f a f b .(2)根据函数的零点与相应方程的根的关系,求函数的零点和求相应方程的根式等价的.对于求方程()()f x g x =的根,可以构造函数()()()F x f x g x =-,函数()F x 的零点即为方程()()f x g x =的根. 知识点六:函数的实际应用求解函数应用题时一般按以下几步进行: 第一步:审题弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求.第三步:求模运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.上述四步可概括为以下流程:实际问题(文字语言)⇒数学问题(数量关系与函数模型)⇒建模(数学语言)⇒求模(求解数学问题)⇒反馈(还原成实际问题的解答).类型一:指数、对数运算 例1.计算(1) 2221log log 12log 422-; (2)33lg 2lg 53lg 2lg5++; (3)222lg5lg8lg5lg 20lg 23+++;(4)lg0.7lg20172⎛⎫⋅ ⎪⎝⎭【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)12-;(2)1;(3)3;(4)14。

离散数学 第四章 函数

离散数学 第四章 函数
41
证:证明 fc 是从B到A的函数 f是从A到B的关系,fc是从B到A的关系, ∵ f是双射 ∴ f是满射,单射 (1) 证存在性:
∵f是满射 ∴对任意b∈B,存在a∈A,使 <a,b>∈f, 即 <b,a>∈fc
42
(2) 证唯一性: 设有b∈B,存在a1,a2∈A, 使<b,a1>∈fc,<b,a2>∈fc, 即<a1,b>∈f,<a2,b>∈f ∵f是单射 ∴a1=a2
29
例:
a b c
x 1
2
y
d
z 3
f
g
gof = {<a,z>,<b,z>,<c,y>,<d,y>} dom(gof) = {a,b,c,d} = dom(f)
30
在定义4-2.2中,当W=Y时,则函数f:X→Y, g:Y→Z。gof={<x,z>|x∈X∧z∈Z∧(彐 y)(y∈Y∧y =f(x)∧z=g(y))}称为复合函数,或称 gof为g对f的左复合。
B中每一个元素都是象。
16
定义4-1.4: 设 f: A→B 是函数 , 若对任意 x1, x2A 且 x1x2 都有 f(x1) f(x2),则称 f: A→B 是单射(入射)函数。
A中不同的元素,它们在B 中的象也不同。
17
定义4-1.5: 设 f: A→B 是函数 , 若 f 既是 满射又是单射 , 则称 f 是双射 函数。
44
定理4-2.5:若函数 f : A→B 有逆函数 f -1 : B→A , 则 : f-1 o f = IA , f o f-1 = IB
证:f-1of :A→A , fof-1 :B→B ∵ f : A→B 是双射 a∈A, f-1of(a) = f-1(f(a)) = a b∈B, fof-1(b) = f(f-1(b)) = b ∴ f-1of = IA fof-1 = IB

新教材高中数学第四章指数函数与对数函数函数的零点与方程的解课件新人教A版必修第一册ppt

新教材高中数学第四章指数函数与对数函数函数的零点与方程的解课件新人教A版必修第一册ppt

.
探索点三 函数零点所在区间问题
【例 3】 (1)函数 g(x)=2x+5x 的零点 x0 所在的一个
区间是 (
)
A.(-2,-1)
B.(-1,0)
C.(0,1)
D.(1,2)
解析:因为函数 g(x)=2x+5x 在 R 上单调递增,
且 g(-1)=2-1-5<0,g(0)=1>0,
所以 g(-1)·g(0)<0,
-
解析:令 f(x)=
得 x-2=0 或 ln x=0,解得 x=2 或 x=1.
故函数 f(x)的零点为 1 和 2.
e,0和-2
-, > ,
(2)函数 f(x)=
的零点是
- -, ≤
≤ ,
-
=
,
解析:由 f(x)=0,得

- - = ,
≥ ,
< ,


= ,
| -| =
-
< ,
< ,
≥ ,
整理,得


- = - = - = ,
解得 x=1 或 x=4.故选 A.
答案:A
x
(2)方程 3 +log2x=0 在区间

,1

上的实数根的个数为 1 .
解析:方法 1 方程 3x+log2x=0 可化为 3x=-log2x=lo x.设
所以函数 g(x)在区间(-1,0)上存在唯一的零点,
故选 B.
答案:B
(2)若 x0 是方程( )x= 的解,则 x0 属于区间 (
A.( ,1)
B.( , )

高考数学一轮总复习第四章三角函数与解三角形 2同角三角函数的基本关系及诱导公式课件

高考数学一轮总复习第四章三角函数与解三角形 2同角三角函数的基本关系及诱导公式课件
3
A.
5
π
6
3
5
− = ,则sin −
故选C.
=(
)

4
B.
5
解:依题意,知sin −

3

3
= sin[
3
C.−
5
π
π
− − ]
6
2
4
D.−
5
= −cos(
π
− )
6
= −cos
π
6
− =
3
− .
5
【巩固强化】
1
3
1.已知cos = ,且 为第四象限角,则sin =(
4
5
cos 2 = .则sin 2 = 2sin cos = −4cos2 = − .故选A.
(2)已知sin + cos =
A.−
3 5
,则tan
5
+
1
tan
B.

2
5
5
2
=(
C.−
)
4
5
5
4
D.
9
5
解:原式两边平方,得sin 2 + 2sin cos + cos 2 = .
A.−

1
2
1
2
B.
解:因为tan = −3,所以cos ≠
1
3
cos +sin
0.所以
cos −sin
)
C.−
1
3
1+ −3
1− −3
D.
=
1+tan

高考数学一轮总复习第四章三角函数与解三角形 4三角函数的图象与性质课件

高考数学一轮总复习第四章三角函数与解三角形 4三角函数的图象与性质课件
(1) = sin 在 0, π 上单调递增.
( ×)
(2)常数函数 = 是周期函数,它没有最小正周期.
( √ )
(3) = sin 是偶函数. ( √ )
(4)已知 = sin + 1, ∈ ,则的最大值为 + 1.
(5) = tan 的对称中心是 π, 0 ∈ .
所以函数的定义域为[−4, −π] ∪ [0, π].故选D.
)
D.[−4, −π] ∪ [0, π]

(2)【多选题】下列函数中,最大值满足 ≥ 1的是(
A. = 2sin 2 − 1

)
B. = 2sin − cos

C. = −sin2 + 4sin − 3
D. = cos tan
(3)若是函数 的一个周期,则( ∈ 且 ≠ 0)也是 的周期.
(4)周期函数的定义域是无限集.
2.关于奇偶性的常用结论
π
2
(1) = sin + ≠ 0 ,则 为偶函数⇔ = + π ∈ .
(2) = sin + ≠ 0 ,则 为奇函数⇔ = π ∈ .
该函数的最小正周期为 =

2
.
=π .
(3)由图象变换规则,知 = sin −
1
2
π
3
周期的一半,即 = × 2π = π .
π
3
的最小正周期是 = sin −
π
3
的最小正
【点拨】求三角函数周期的方法:①利用周期函数的定义.②利用公式
= sin + 和 = cos + 的最小正周期为

必修一第四章课件对数函数的图象和性质

必修一第四章课件对数函数的图象和性质

x
R
(1,0)
定点
单调性
1
(0,+∞)
值域
性质
O
x
增函数
若x>1, 则y>0
若0<x<1, 则y<0
减函数
若x>1, 则y<0
若0<x<1, 则y>0
4.4 对数函数
4.4.2 对数函数的图象和性质
复习回顾
对数函数:一般地,函数y=logax(a>0,且a≠1)叫做
对数函数,其中x是自变量,定义域是(0,+∞).
? 探究
回顾研究幂这个方法,进一步研究对数函数
先画函数 y=log2x 的图象
请完成下表,并用描点法画出函数图象
O
x
y log d x
B.0 b a 1 d c
C.0 d c 1 b a
作直线y=1与所给图象相交,交点的横坐标即为各个底
y log c x D.0 a b 1 d c
数,根据在第一象限内,自左向右,对数函数的底数逐
渐变大(底大图右)
所以y=-lgx在(0,+∞)上是减函数,
所以pH值随着溶液中氢离子浓度的增大而减小,
即溶液中氢离子的浓度越大,溶液的酸性就越强.
(2)当[H+]=10-7时,pH=-lg10-7=7,
所以,纯净水的pH是7.
课堂小结
y=logax(a>0,且a≠1)
a的范围
a>1
0<a<1
y
y
图象
O
1
定义域
函数值
=2
y
=2

八年级数学上册《第四章3 一次函数的图象》讲解与例题

八年级数学上册《第四章3 一次函数的图象》讲解与例题

《第四章3 一次函数的图象》讲解与例题1.函数的图象关于一个函数,咱们把它的自变量x与对应的变量y的值别离作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形就叫做该函数的图象.谈重点函数图象与点的坐标的关系(1)函数图象上的任意点P(x,y)必知足该函数关系式.(2)知足函数关系式的任意一对x,y的值,所对应的点必然在该函数的图象上.(3)判定点P(x,y)是不是在函数图象上的方式是:将点P(x,y)的坐标代入函数表达式,若是知足函数表达式,那个点就在函数的图象上;若是不知足函数的表达式,那个点就不在函数的图象上.【例1】判定以下各点是不是在函数y=2x-1的图象上.A(2,3),B(-2,-3).分析:将x的值代入函数表达式,若是等于y的值,那个点就在函数的图象上;不然,那个点不在函数的图象上.解:∵当x=2时,y=2×2-1=3,∴A(2,3)在函数y=2x-1的图象上;∵当x=-2时,y=-2×2-1=-5≠-3,∴B(-2,-3)不在函数y=2x-1的图象上.2.函数图象的画法画函数图象的一样步骤:(1)列表:列表给出自变量与函数的一些对应值,通常把自变量x的值放在表的第一行,其对应函数值放在表的第二行,其中x的值从小到大.(2)描点:以表中每对对应值为坐标,在平面直角坐标系内描出相应的点.描点时一样把关键的点准确地描出,点取得越多,图象越准确.(3)连线:依照自变量从小到大的顺序,把所描的点用滑腻的曲线连接起来.释疑点滑腻曲线的特点所谓的“滑腻曲线”,现时期可明白得为符合图象的进展趋势、让人感觉过渡自然、比较“平”“滑”的线,事实上有时是直线.【例2】作出一次函数y=-2x-1的图象.分析:取几组对应值,列表,描点,连线即可.解:列表: x … -2 -1 0 1 … y … 3 1 -1 -3 …描点:以表中各组对应值作为点的坐标,在座标系中描出相应的点.连线:把这些点连起来.注:一次函数y =-2x -1的图象是直线,连线时,两头要露头.3.一次函数的图象和性质(1)一次函数的图象和性质①一次函数的图象:一次函数y =kx +b (k ≠0)的图象是一条直线.由于两点确信一条直线,因此画一次函数的图象,只要描出图象上的两个点⎝ ⎛⎭⎪⎫通常求出与x 轴的交点⎝ ⎛⎭⎪⎫-b k ,0和与y 轴的交点(0,b ),过这两点作一条直线就好了.咱们常常把这条直线叫做“直线y =kx +b ”.②一次函数中常量k ,b (k ≠0):直线y =kx +b (k ≠0)与y 轴的交点是(0,b ),当b >0时,直线与y 轴的正半轴相交;当b <0时,直线与y 轴的负半轴相交;当b =0时,直线通过原点,现在一次函数即为正比例函数.一次函数y =kx +b 中的k ,决定了直线的倾斜程度,k 的绝对值越大,那么直线越接近y 轴,反之,越靠近x 轴.③一次函数y =kx +b (k ≠0)的性质:当k >0时,直线y =kx +b 从左向右上升,函数y 的值随自变量x 的增大而增大;当k <0时,直线y =kx +b 从左向右下降,函数y 的值随自变量x 的增大而减小.(2)正比例函数的图象和性质①正比例函数的图象:一样地,正比例函数y =kx (k 是常数,k ≠0)的图象是一条通过原点的直线,咱们称它为直线y =kx .在画正比例函数y =kx 的图象时,一样是通过点(0,0)和(1,k )作一条直线.②正比例函数y =kx 的性质:当k >0时,直线y =kx 通过第一、三象限,从左往右上升,即y 随x 的增大而增大;当k <0时,直线y =kx 通过第二、四象限,从左往右下降,即y 随x 的增大而减小.【例3-1】 作出一次函数y =-3x +3的图象.分析:由于一次函数的图象是一条直线,因此只要过其图象的两点画出一条直线即可.解:列表:x 0 1y=-3x+330描点,连线.【例3-2】假设一次函数y=(2m-6)x+5中,y随x增大而减小,那么m的取值范围是________.解析:当咱们明白函数的增减性后,就明白了k的取值范围,因为y随x增大而减小,因此k就小于0,即2m-6<0,m<3.因此m的取值范围是m<3.答案:m<3析规律k与b的作用在一次函数解析式中,k确信函数的增减性,b确信函数图象与y轴的交点.【例3-3】以下图表示一次函数y=kx+b与正比例函数y=kx(k,b是常数,且k≠0)图象的是( ).解析:关于两个不同的函数图象共存于同一坐标系的问题,常假设某一图象正确,确信k,b的符号,然后再依照k或b的符号判定另一函数图象是不是与k,b的符号相符合.观看A中一次函数图象可知k>0,b<0,而正比例函数的图象通过第二、四象限,现在k<0,因此A不正确,用一样的方式可确信B,C不正确.应选D.答案:D点技术同一坐标系中多函数图象问题解答这种问题一样第一依照正比例函数和一次函数的图象别离先确信k的符号,对照k的符号,假设k符号一致,才说明可能正确,再结合题中的其他条件确信最终正确答案.4.k,b的符号与直线所过象限的关系学习了一次函数y=kx+b(k≠0),咱们明白一次函数图象通过哪些象限是由k,b的符号决定的.一样分为四种情形:(1)k>0,b>0时,图象过第一、二、三象限;(2)k>0,b<0时,图象过第一、三、四象限;(3)k<0,b>0时,图象过第一、二、四象限;(4)k<0,b<0时,图象过第二、三、四象限.析规律k,b的符号与直线的关系依照一次函数y=kx+b中k,b的符号能够确信图象所通过的象限;依照函数图象所通过的象限,能够确信k,b的符号.解决有关问题,应熟练把握k,b的符号与函数图象所通过象限的几个类型,并能灵活应用.【例4-1】一次函数y=kx+b的图象通过第二、三、四象限,那么正比例函数y=kbx的图象通过哪个象限?分析:要确信函数y =kbx 的图象通过哪些象限,那么需要确信kb 的符号,而kb 的符号由k 的符号和b 的符号决定,因此只要依照已知条件确信k ,b 的符号即可解决问题.解:因为y =kx +b 的图象通过第二、三、四象限,因此k <0,b <0,因此kb >0.因此函数y =kbx 的图象通过第一、三象限.【例4-2】 如图是一次函数y =kx +b 的图象的大致位置,试别离确信k ,b 的正负号,并判定一次函数y =(-k -1)x -b 的图象所通过的象限.分析:由函数y =kx +b 的图象可知,函数的图象通过第一、三、四象限,因此k >0,b <0,由此可得-k -1<0,-b >0,从而确信一次函数y =(-k -1)x -b 的图象通过第一、二、四象限.解:观看图象可得k >0,b <0,因此-k -1<0,-b >0,因此一次函数y =(-k -1)x -b 的图象通过第一、二、四象限.5.一次函数图象与坐标轴的交点一次函数的图象是直线,这条直线与x 轴交于点⎝ ⎛⎭⎪⎫-b k ,0,与y 轴交于点(0,b ).考查直线与两坐标轴的交点的问题常见的有三类:(1)判定直线所过的象限,一样给出函数关系式,判定直线通过哪几个象限或确信不通过哪个象限.(2)求直线的解析式,一样先设出函数关系式为y =kx +b (k ≠0),把已知的两点的坐标别离代入,求出k ,b 的值即可.(3)求两交点与坐标轴围成的三角形的面积,由于那个三角形是直角三角形,利用面积公式即可.【例5】 如图,已知直线y =kx -3通过点M (-2,1),求此直线与x 轴,y 轴的交点坐标,并求出与坐标轴所围的三角形的面积.分析:先将点M (-2,1)代入y =kx -3,确信一次函数解析式,再别离令x =0和y =0,即可求出此直线与x 轴,y 轴的交点坐标.解:将点M (-2,1)代入y =kx -3,得1=-2k -3,解得k =-2,因此y =-2x -3.又当x =0时,y =-3,当y =0时,x =-32,因此此直线与x 轴,y 轴的交点坐标别离为⎝ ⎛⎭⎪⎫-32,0,(0,-3). 因此所围三角形的面积为12×32×3=94. 点评:在平面直角坐标系中求图形的面积时,通常把轴上的边作为底,再利用点的坐标求得底上的高,然后利用面积公式求解.6.关于一次函数的最值问题关于一样的一次函数,由于自变量的取值范围能够是全部实数,因此不存在最大、最小值(简称“最值”),但在实际问题中,因题目中的自变量受到实际问题的限制,因此就有可能显现最大值或最小值.求解这种问题,先分析问题中两个变量之间的关系是不是适合一次函数模型,再在自变量许诺的取值范围内成立一次函数模型.运用一次函数解决实际问题的关键是依照一次函数的性质来解答.除正确确信函数表达式外,利用自变量取值范围去分析最值是解题的关键.“在生活中学数学,到生活顶用数学”,是新课标所提倡的一个主旨之一,在考题中,有许多利用数学知识求解生活中的实际问题的试题,考查同窗们利用所学知识求解实际问题的能力.【例6】某报刊销售亭从报社订购晚报的价钱是0.7元,销售价是每份1元,卖不掉的报纸能够以每份0.2元的价钱退回报社,假设每一个月按30天计算,有20天天天可卖出100份报纸,其余10天天天只能卖出60份,但天天报亭从报社订购的份数必需相同,报亭天天从报社订购多少份报纸,才能使每一个月所取得的利润最大?分析:假设报亭天天从报社订购x份报纸,每一个月取得的利润为y,那么y是x的一次函数,且自变量的取值范围是60≤x≤100,并依照函数的性质来确信订多少份报纸.解:依照题意,得y=(1-0.7)×(20x+10×60)-(0.7-0.2)(x-60)×10,即y=x+480(60≤x≤100).∵此函数是一次函数,且一次项的系数大于0,函数y随x的增大而增大,∴当x=100时,y有最大值,其最大值为100+480=580(元).订购方案:天天从报社订100份报纸,如此取得利润最大,最大利润为580元.。

数学分析第四章:函数的连续型

数学分析第四章:函数的连续型
数学分析
连续函数的局部性质
所谓连续函数局部性质就是指: 若函数 f 在点 x0 连续(左连续或右连续), 则可推知 f 在点 x0 的某 个局部邻域(左邻域或右邻域)内具有有界性、保 号性、四则运算等性质.
数学分析
定理4.1.2(局部有界性)
若函数 f 在点 x0 连续,则f 在某邻域U (x0 )上有界.
定义1
设函数 f ( x)在 x0 的某邻域内有定义, 且
lim
x x0
f (x)
f ( x0 ),
(1)
则称 f ( x)在点 x0 连续.
由定义1知,我们是通过函数的极限来定义连续
性的,换句话说连续就是指 f ( x) 在点 x0的极限不 仅存在,而且其值恰为 f ( x)在点 x0的函数值 f (x0) .
a
O
x
数学分析
函数 f ( x) sgn x 在点 x 0 处不连续, 这是因为
极限 lim sgn x 不存在. x0
lim f (x) f (x ),
x x0
0
由极限的定义,定义1可以叙述为: 对于任意正数 ,
存在d > 0, 当 0 | x x0 | d 时, 有
第四单元 函数的连续性 4.1.1 函数在一点的连续性
数学分析
连续函数的概念
回顾函数极限 lim f ( x) A 的定义, x x0
只假设函数 f (x) 在点 x0 的某空心邻域内有定义.
即使
f
(x)
在点
x0
有定义,lim x x0
f ( x)也未必等于f
(x0 ),
例如
函数 f y
(x)
f (x)

第四章 指数函数与对数函数(教学课件)——高中数学人教A版(2019)必修一

第四章 指数函数与对数函数(教学课件)——高中数学人教A版(2019)必修一
利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单 调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在 定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它 是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分 类讨论、转化与化归思想的应用.
作业:
1、整理今天的题目 2、周末完成一套综合题目,下周进行讲评
题型二 指数函数的图象与性质
命题点3 解简单的指数不等式 例 3 (1)若 2x2+1≤14x-2,则函数 y=2x 的值域是
A.18,2
√B.18,2
C.-∞,18
D.[2,+∞)
解析 14x-2=(2-2)x-2=2-2x+4, ∴ 2x2+1 ≤2-2x+4,
即x2+1≤-2x+4,即x2+2x-3≤0, ∴-3≤x≤1,此时y=2x的值域为[2-3,21], 即为18,2.
∴t=ax2-4x+3在(-∞,-3)上单调递增,
a<0, 则2a≥-3,
解得 a≤-23.
思维升华
求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉及 值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分 析判断.
题型五 复合函数的应用
例9 已知函数f(x)=loga(8-ax)(a>0,且a≠1),若f(x)>1在区间[1,2]上
第四章 指数函数与对数 函数复习课
课前准备:
1、提前对好答案并改正
2、准备好笔记本做好记录
知识梳理 1.指数函数及其性质 (1)概念:函数y=ax(a>0,且a≠1)叫做指数函数,其中指数x是自变量, 函数的定义域是R,a是底数. (2)指数函数的图象与性质
a>1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章函数与过程程序中往往需要把主要任务分成若干个子任务,每个子任务只负责一个专门的基本工作。

每个子任务就是一个独立的子程序。

Turbo Pascal可以把函数和过程作为子程序调用。

第一节函数Pascal允许用户在程序中自己说明定义所需要的函数并在程序中调用这些函数。

[例4.1]编程找出由键盘任意输入五个整数中的最大整数。

解:设输入的五个整数为n1、n2、n3、n4、n5,为了便于处理,引入一个中间变量t1,按如下步骤处理:①令t1=n1;②将t1与n2比较,将两者中较大的数放入t1;③将t1与n3比较,将两者中较大的数放入t1;=4\*GB3④将t1与n4比较,将两者中较大的数放入t1;=5\*GB3⑤将t1与n5比较,将两者中较大的数放入t1;=6\*GB3⑥经过以上5步处理后,t1即为5个数中最大者。

从上面规划的步骤看来,从步骤②到步骤=5\*GB3⑤需处理的目标是相同的,因此我们可以设计一段子程序Max(x1,x2),以找出x1和x2中最大的值并返回。

Pascal程序:Program Exam41_a;Var n1,n2,n3,n4,n5,t1:integer;Function max(x1,x2:integer):integer;BeginIf x1>x2then Max:=x1Else Max:=x2;End;BeginWrite(‘Input5numbers:‘);Readln(n1,n2,n3,n4,n5);T1:=n1;T1:=Max(t1,n2);T1:=Max(t1,n3);T1:=Max(t1,n4);T1:=Max(t1,n5);Writeln(‘Max number:‘,t1);End.从上例看出,引入函数实际上是将一个复杂的问题划分成若干个易于处理的子问题,将编程化简的一种有效办法,而化简的方法是多种多样的,如前面已经做过求三个数中的最大数,所以可定义一个专门求三个数中最大数的函数(Max)。

第一次用这个函数求出n1,n2,n3三个数中的最大数t1;第二次调用这个函数求出t1与n4,n5三个数中的最大数,也就是前三个数的最大数(已在t1中)和后面二个数再求一次,就得到五个数的最大数。

因此,需要两次使用“求三个数中的最大数”,步骤如下:①调用函数Max(n1,n2,n3),求出n1,n2,n3中的最大者t1;②调用函数Max(t1,n4,n5),求出t1,n4,n5中的最大者t2;③输出最大数t2。

Program Exam41_b;Var n1,n2,n3,n4,n5,t1:integer;function Max(x1,x2,x3:integer):integer;{自定义函数Max}Var XX:integer;{函数内部变量说明}begin{函数体}if X1>X2then XX:=X1else XX:=X2;if X3>XX then XX:=X3;Max:=XXend;Begin{主程序}Write('Input5numb:');Readln(n1,n2,n3,n4,n5);{输入五个数}t1:=Max(n1,n2,n3);{用函数求n1,n2,n3的最大数}t1:=Max(n4,n5,t1);{用函数求n4,n5,t1的最大数}Writeln('Max Number:',t1);ReadlnEnd.主程序中两次调用自定义函数。

自定义函数的一般格式为:function函数名(形式参数表):类型;{函数首部}局部变量说明部分;begin语句系列;{函数体}end;函数中的形式参数接受调用函数时所传入的值,用来参与函数中的运算。

[例4.2]求任意输入的五个自然数的最大公约数。

解:⑴自定义一个专门求两自然数的最大公约数的函数GCD;⑵调用自定义函数,第一次求前两个数的最大公约数;从第二次开始,用每次求得的最大公约数与下一个数再求两个数最大公约数,直到最后。

本题共四次“求两个数的最大公约数”,设输入的五个自然数分别是a1,a2,a3,a4,a5,采用如下步骤:①求a1,a2两个数的最大公约数→存入a1;②求a1,a3两个数的最大公约数→存入a1;③求a1,a4两个数的最大公约数→存入a1;④求a1,a5两个数的最大公约数→存入a1;⑤输出a1,此时的a1已是五个数的最大公约数。

Pascal程序:Program Exam42;Var a1,a2,a3,a4,a5:integder;function GCD(x,y:integer):integer;{自定义函数}Var n:integer;beginWhile x mod y<>0dobeginn:=x;x:=y;y:=n mod yend;GCD:=yend;Begin{主程序}Write('input5Numper:');readln(a1,a2,a3,a4,a5);{输入五个数}Write('(',a1,',',a2,',',a3,',',a4,',',a5,')=');a1:=GCD(a1,a2);{调用函数GCD}a1:=GCD(a1,a3);a1:=GCD(a1,a4);a1:=GCD(a1,a5);Writeln(a1);readlnEnd.函数的结果是一个具体的值,在函数体中必须将所得到的运算结果赋给函数名;主程序通过调用函数得到函数的运算结果。

调用函数的一般格式为:函数名(实在参数表)调用函数时,函数名后面圆括号内的参数必须有确定的值,称为实在参数。

调用时即把这些实际值传送给函数形参表中的相应形参变量。

函数不是单独的语句,只能作为运算赋值或出现在表达式中。

习题4.11.数学上把从1开始的连续自然数相乘叫做阶乘。

例如把1*2*3*4*5称作5的阶乘,记为5!。

编写一个求n!的函数,调用此函数求:D=2.求从键盘输入的五个自然数的最小公倍数。

3.哥德巴赫猜想的命题之一是:大于6的偶数等于两个素数之和。

编程将6~100所有偶数表示成两个素数之和。

4.如果一个自然数是素数,且它的数字位置经过对换后仍为素数,则称为绝对素数,例如13。

试求出所有二位绝对素数。

第二节自定义过程自定义函数通常被设计成求一个函数值,一个函数只能得到一个运算结果。

若要设计成能得到若干个运算结果,或完成一系列处理,就需要自定义“过程”来实现。

[例4.3]把前面[例2.2](输入三个不同的整数,按由小到大排序)改为下面用自定义过程编写的Pascal程序: Program exam43;Var a,b,c:integer;Procedure Swap(var x,y:integer);{自定义交换两个变量值的过程}Var t:integer;Begin{过程体}t:=x;x:=y;y:=t{交换两个变量的值end;Begin{主程序}Write('input a,b,c=');Readln(a,b,c);if a>b then swap(a,b);{调用自定义过程}if a>c then swap(a,c);if b>c fhen swap(b,c);Writeln(a:6,b:6,c:6);ReadlnEnd.程序中Procedure Swap是定义过程名,从作用来看,过程与函数是相似的,都能将复杂的问题划分成一些目标明确的小问题来求解,只不过函数有值返回而过程则没有。

自定义过程的一般格式如下: Procedure过程名(形式参数表);{过程首部}局部变量说明部分;begin语句部分;{过程体部分}end;[例4.4]如果一个自然数除了1和本身,还有别的数能够整除它,这样的自然数就是合数。

例如15,除了1和15,还有3和5能够整除,所以15是合数。

14,15,16是三个连续的合数,试求连续十个最小的合数。

解:从14,15,16三个连续合数中可看出,它们正好是两个相邻素数13和17之间的连续自然数,所以求连续合数问题可以转化为求有一定跨度的相邻两个素数的问题。

因此,求连续十个最小的合数可用如下方法:①从最小的素数开始,先确定第一个素数A;②再确定与A相邻的后面那个素数B;(作为第二个素数);③检查A,B的跨度是度否在10以上,如果跨度小于10,就把B作为新的第一个素数A,重复作步骤②;④如果A、B跨度大于或等于10,就打印A、B之间的连续10个自然数,即输出A+1,A+2,A+3…,A+10。

Pascal程序:Program exam44;var a,b,s,n:integer;yes:boolean;procedure sub(x:integer;var yy:boolean);{过程:求x是否为素数}var k,m:integer;{用yy逻辑值转出}begink:=trunc(sqrt(x));for m:=3to k doif odd(m)thenif x mod m=0then yy:=false;end;begin{主程序}b:=3;repeata:=b;{a为第一个素数}repeatyes:=true;inc(b,2);{b是a后面待求的素数}sub(b,yes);{调用SUB过程来确认b是否为素数}if yes then s:=b-a;{如果b是素数,则求出跨度s}until yes;until s>=10;for n:=a+1to a+10dowrite(n:6);writeln;readlnend.程序中的过程SUB,用来确定b是否为素数。

过程名后面圆括号内的变量是形式参数,简称为形参。

过程SUB(x:integer;Var yy:boolean)中的x是值形参,而前面冠有Var的yy是变量形参。

值形参只能从外界向过程传入信息,但不能传出信息;变量形参既能传入又能传出信息。

本程序过程SUB中的x是由调用过程的实在参数b传入值,进行处理后,不需传出;而yy是把过程处理结果用逻辑值传出,供调用程序使用。

试把[例4.3]程序中的过程SWAP(Val x,y:integer),将x,y前面的Var去掉,就变成了纯粹的值形参,就不能将过程所处理的结果传出去,也就无法得到处理后的结果,通过运行程序比较,可以非常明显地看到值形参和变量形参的区别。

调用过程的格式为:过程名(实在参数表);调用过程名后面圆括号内的实在参数与定义过程的形参表必须相对应,调用过程相当于一个独立语句,可单独使用。

[例4.5]将合数483的各位数字相加(4+8+3)=15,如果将483分解成质因数相乘:483=3*7*23,把这些质因数各位数字相加(3+7+2+3),其和也为15。

相关文档
最新文档