化工原理第十章 液-液萃取和液-固浸取电子教案
化工原理下册课件液液萃取和液固浸取课件
萃取相
中
溶质分
数
kA
yA xA
分
配
系
数
kB
yB xB
萃余相 中 溶质分 数
二、以质量比表示的平衡方程
若 S与 B完全不互溶 萃取相中不含 B,S 的量不变 萃余相中不含 S ,B 的量不变
液液平衡方程 YA K A X A
用质量比 计算方便
萃取相中溶
分
质的质量比
配
系
数
萃余相中溶 质的质量比
三、分配曲线
释担而立 但微颔之
取置覆酌沥 谦虚
道理: 熟能生巧,即使有什么长处也不必骄傲自满。
课外延伸
1、联系生活、学习,说说熟能生巧 的事例。
2、你认为一个人应该如何看待自己 的长处?又如何看待他人的长处?
三人行,必有我师焉。 择其善者而从之,其不善者而改之。
人外有人,天外有天。 取人之长,补己之短。 自满人十事九空,虚心人万事可成。 谦受益,满招损。
2. 温度对溶解度曲线的影响
~ ~ 温度 T
溶解度
两相区
不利于萃 取操作
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.2 液-液相平衡关系 10.2.1 液-液平衡相图 10.2.2 液-液平衡方程与分配曲线
一、以质量分数表示的平衡方程
气液平衡方程 y A k A x A
液液平衡方程 y A k A x A
一、萃取剂的选择性与选择性系数
萃取剂的选择性是指萃取剂 S对原料液中两个 组分溶解能力的差异。 选择性系数
萃取相中A的质量分数 萃余相中A的质量分数
萃取相中B的质量分数 萃余相中B的质量分数
yA xA yA yB yB xB xA xB
化工原理第十章液-液萃取和液-固浸取
第十章 液-液萃取和液-固浸取1. 25℃时醋酸(A )–庚醇-3(B )–水(S )的平衡数据如本题附表所示。
习题1附表1 溶解度曲线数据(质量分数/%)试求:(1)在直角三角形相图上绘出溶解度曲线及辅助曲线,在直角坐标图上绘出分配曲线。
(2)确定由200 kg 醋酸、200 kg 庚醇-3和400 kg 水组成的混合液的物系点位置。
混合液经充分混合并静置分层后,确定两共轭相的组成和质量。
(3)上述两液层的分配系数A k 及选择性系数β。
(4)从上述混合液中蒸出多少千克水才能成为均相溶液解:(1)溶解度曲线如附图1中曲线SEPHRJ 所示。
辅助曲线如附图1曲线SNP 所示。
分配曲线如附图2 所示。
(2)和点醋酸的质量分率为25.0400200200200A =++=x水的质量分率为50.0400200200400S =++=x由此可确定和点M 的位置,如附图1所示。
由辅助曲线通过试差作图可确定M 点的差点R 和E 。
由杠杆规则可得kg 260kg 80040134013=⨯==M R()kg 540kg 260800=-=-=R M E由附图1可查得E 相的组成为A SB 0.28,0.71,0.01y y y ===R 相的组成为 A S B 0.20,0.06,0.74x x x ===(3)分配系数A A A 0.281.40.20yk x===B B B 0.010.01350.74y k x === 选择性系数 7.1030135.04.1B A ===k k β (4)随水分的蒸发,和点M 将沿直线SM 移动,当M 点到达H 点时,物系分层消失,即变为均相物系。
由杠杆规则可得kg 5.494kg 80055345534=⨯==M H 需蒸发的水分量为()kg 5.305kg 5.494800=-=-H M2. 在单级萃取装置中,以纯水为溶剂从含醋酸质量分数为30%的醋酸–庚醇-3混合液中提取醋酸。
化工原理下册课件液液萃取和液固浸取
第十章 液-液萃取和液-固浸取
10.4 萃取设备 10.4.1 萃取设备的基本要求与分类 10.4.2 萃取设备的主要类型 10.4.3 萃取设备的选择
萃取设备的选择
萃取设备选择考虑的因素
❖ 需要的理论级数 ❖ 生产能力 ❖ 物系的物性
密度差 界面张力 腐蚀性 ❖ 物系的稳定性和液体在设备内的停留时间 ❖ 其他
一、超临界萃取的基本原理
3.超临界萃取的原理
萃取剂
在超临界状 态下, 压力 微小变化引 起密度变化 很大, 使溶 解度增大。
压缩到超 临界状态
液体(或固 升温、降压 体)混合物
萃取 组分
溶剂与萃取 组分分离
二、超临界萃取的典型流程
超临界萃取过程分为萃取和分离两个阶段, 按 分离方法不同分为三种流程。
超临界萃取是具有特殊优势的分离技术。多年 来, 众多的研究者以炼油、食品、医药等工业中的 许多分离体系为对象开展了深入的应用研究。在石 油残渣中油品的回收、咖啡豆中脱除咖啡因、啤酒 花中有效成分的提取等工业生产领域, 超临界萃取 技术已获得成功地应用。
用超临界CO2从咖啡中提取咖啡因的流程
1-萃取塔;2-水洗塔;3-蒸馏塔;4-脱气罐
一、萃取设备的基本要求
萃取设备的基本要求
❖ 两相充分的接触并伴有较高程度的湍动 ❖ 有利于液体的分散与流动 ❖ 有利于两相液体的分层
二、萃取设备的分类
液体分散的动力 重力差
脉冲
外加能量
旋转搅拌
往复搅拌 离心力
逐级接触式 筛板塔
脉冲混合-澄清器 混合澄清器 夏贝尔塔
卢威离心萃取机
微分接触式 喷洒塔 填料塔
作业题: 7、8
本章小结
本章重点掌握内容
化工原理第四版谭天恩液液萃取
A
A
最小萃取剂用量Smin yAmax
最大萃取液浓度
y0 A,max
F M0
M M
F
P
B
SB
思考:最大萃取剂用量如何确定?
《化工原理》电子教案/第十二章
S
21/51
一、单级萃取的流程及计算
(二)B、S完全不互溶时 ---解析法
原料液
萃取剂 S
S
物料衡算:
A+B
A
BX F SYS BX R SYE
0 A
0.25
x
0 A
0.2
yA xA yΒιβλιοθήκη 0 AxAA
yB xB
(1
y
0 A
)
xB
1
y
0 A
y
0 A
1 0.25
6
E
y
0 A
0.6
S
F
R
F,
R,xR
xF=0.3 6 xA/ xB=0.25
R,xR
S,yS=0 kA < 1 E,yE
E,yE B
《S化工原理》电子教案/第十二章
萃取相 E S+A
YE
B S
XR XF
YS ------------操作线 过点(萃 BX+余AF相,RYS),
解两个未知数 (XR,YE)
相平衡关系: YE f X R
Y
B,XF S,YS
B,XR (XR)
YE
S,YE
A,YE=1
S
0
浓度用质量 《化工原理比》电更子方教便案/第十二章
液液萃取
实验15 液—液萃取实验一.实验目的1.了解液-液萃取原理和实验方法。
2.熟悉转盘萃取塔的结构、操作条件和控制参数。
3.掌握评价传质性能(传质单元数、传质单元高度)的测定和计算方法。
二.实验原理液-液萃取是分离液体混合物和提纯物质的重要单元操作之一。
在欲分离的液态混合物(本实验暂定为:煤油和苯甲酸的混合溶液)中加入一种与其互不相溶的溶剂(本实验暂定为:水),利用混合液中各组分在两相中分配性质的差异,易溶组分较多地进入溶剂相从而实现混合液的分离。
萃取过程中所用的溶剂称为萃取剂(水),混合液中欲分离的组分称为溶质(苯甲酸),萃取剂提取混合液中的溶质称为萃取相,剩余的混合液称为萃余相。
图2-15-1是一种单级萃取过程示意图。
将萃取剂加到混合液中,搅拌混合均匀,因溶质在萃取相的平衡浓度高于在混合液中的浓度,溶质从混合液向萃取剂中扩散,从而使溶质与混合液中的其他组分分离。
图2-15-1单级萃取过程示意图由于在液-液系统中,两相间的密度差较小,界面张力也不大,所以从过程进行的流体力学条件看,在液-液的接触过程中,能用于强化过程的惯性力不大。
为了提高液-液相传质设备的效率,常常从外界向体系加能量,如搅拌、脉动、振动等。
本实验采用的转盘萃取塔属于搅拌一类。
与精馏和吸收过程类似,由于过程的复杂性,传质性能可用理论级和级效率表示,或者用传质单元数和传质单元高度表示,对于转盘萃取塔、振动萃取塔这类微分接触萃取塔的传质过程,一般采用传质单元数和传质单元高度来表征塔的传质特性。
萃取相传质单元数N OE 表示分离过程的难易程度。
对于稀溶液,近似用下式表示:**ln *2112x x x x x x dxN x x OE --=-=⎰(2-15-1) 式中:N OE ——萃取相传质单元数x ——萃取相的溶质浓度(摩尔分率,下同) x * ——溶质平衡浓度x l 、x 2 ——分别表示萃取相进塔和出塔的溶质浓度。
萃取相的传质单元高度用H OE 表示:OE OE H/N H = (2-15-2)式中:H 为塔的有效高度(m )。
萃取分离技术
如中药大黄中的大黄酸、大黄素和大黄酚的分离
OH O OH
OH O OH
OH O OH
COOH HO
CH3
O
O
大黄酸
大黄素
酸性最强
酸性其次
溶于NaHCO3
溶于Na2CO3
CH3 O
大黄酚
酸性最弱
溶于NaOH
2.萃取溶剂的选择原则 萃取溶剂与溶液的溶剂互溶性差,两 溶剂的密度差异明显 “相似相溶”,萃取剂对目标物的选 择性高 化学性质稳定(洗涤例外) 沸点较低,易回收 价格低,毒性小,不易着火。
液—液萃取和液—固萃取
常用溶剂
• 非极性~弱极性溶剂 • 石油醚: 低碳烷烃混合物,市售3种类型(按沸程
30~60℃、60~90℃、90~120℃),无毒、易燃, 反复使用后性质略有变化。
• 乙醚: 弱极性,低沸点,易爆,一般不用作工业生 产。
• 苯: 非极性,致癌物质,谨慎使用。 • 正己烷: 与石油醚性质似,工业价格贵,不用作工
某些甙类
某些甙类(黄酮甙)
石油醚、己烷
乙醚、氯仿 氯仿:乙醇 (2:1)
乙酸乙酯
大 某些甙类(皂甙、蒽醌甙)
正丁醇
亲水性 强亲水性
极性很大的甙、糖类、氨基酸、某些生 物碱盐
蛋白质、粘液质、果胶、糖类、氨基酸、 无机盐类
丙酮、乙醇、 甲醇
水
萃取分离 目的: 将目标物选择性地溶集于某
一溶剂中,常用于粗分。
密度
1.00 0.79 0.79 0.79 0.71
0.68—0.72
0.78 0.88 0.87
溶剂名称
乙酸乙酯 二氧六环 二氯甲烷 二氯乙烷 三氯甲烷 四氯甲烷 硝基甲烷
萃取
(2)温度的影响
生物物质在高温下不稳定,一般在低温或室
温进行。
温度升高,有机溶剂与水之间的互溶性增大,
萃取效率降低。
二、乳化和破乳化
• 从前面的学习我们知道,萃取操作必须要经历充 分混合和两相完全分离的过程,但当混合液中含 有具有表面活性的物质时容易产生乳化现象。而 乳化现象容易使得或者萃取相中夹带原料液相, 或者原料液相中夹带萃取相,两者都不是我们想 要的情况,因此必须要解决萃取过程中乳化的问 题。
成的化合物。其中香豆素和木脂素为其典型化合物。 香豆素 其基本骨架可视为由邻羟基桂皮酸形成的内酯,在稀碱溶液 中内酯环可水解开环,生成能溶于水的顺邻羟桂皮酸的盐,加酸后可环合 成为原来的内酯。
5. 黄酮类化合物 泛指具有两个苯环通过中间三碳链相互联结而成的
一类化学成分。多具有酚羟基,显酸性。
6. 萜类和挥发油 凡由甲戊二羟酸衍生、且其基本母核的分子式符合
(三)影响
有机相中夹带水相,会使后续操作困难;
水相中夹带有机相,则意味着产物的损失。
(四)破乳化方法
1、物理法:
•
加热使蛋白质胶粒絮凝速度加快,降低
黏度,分子运动加剧,碰撞机会增多, 沉降速率加快,从而使乳化消除。
•
稀释使乳化剂浓度降低,从而削弱乳化 作用。
吸附过滤:将乳状液通过一层多孔性介质
触而初次发出闪光时的温度。
(2)常用的浸取溶剂 ① 水:水是一种最常用的极性浸取溶剂。 • 优点:价廉易得,对很多物质都有较大的 溶解性,比如生物碱盐、蛋白质类(酶类) 和含少量挥发油的药物等。 • 缺点:选择性差,不但能溶出需要提取的 物质,也能溶出固体中无用有害的物质。 增加后续工艺难度,影响产品质量。
4、浸取过程描述:
化工原理第十一章液液萃取和固液萃取
E R
kA yA
xA
y
0 A
x
0 A
y
0 A
x
0 A
B
kB
yB xB
y
0 B
x
0 B
1
y
0 A
1
x
0 A
M
S
要求:1,
kA 越大越好,kB 越小越好。
原料液
萃取剂 S
S
A+B
xF
yA
萃取相 E
y0
萃取液 E A
A(大量),B(少量)
S+A+B 萃余相 R
x B+A+S A
S
x0
萃余液 R A B (大量),A(少量)
R R
B
第十一章 液液萃取和固液萃取
S
R,xR E,yE
R,xR E,yE
S
E M
S0
S
16/19
2.解析法
总: F S R E
溶质 A:FxA,F SyA,S RxA,R EyA,E
萃取剂 S:0 SyS,S RxS,R EyS,E
相平衡:k A
y A, E x A,R
kB
yB,E xB,R
幻灯片1目录
§11.1 概述 §11.2 液液相平衡关系及相图
浙江大学本科生课程 化工原理
第十一章 液液萃取和固液萃取
1/12
第十一章 液液萃取和固液萃取
§11.1 概述
1.什么是液液萃取?
利用液体混合物中各组分在外加溶剂中溶解度 的差异而分离该混合物的操作,称为~。外加 溶剂称为萃取剂。
浙江大学本科生课程 化工原理
FxF S 0 MxM
《萃取》教学设计
课例研究一、教材分析和设计思路萃取作为学生进入高一年级后新接触的混合物分离和提纯的方法,是必修1第一章第一节“化学实验基本方法”的一大难点。
教材将其编排在了过滤和蒸发之后从学生的已有知识和能力水平出发,引出了新的知识“蒸馏和萃取”;同时,萃取的基本原理和实验技能又为后面的学习奠定了基础。
例如,在专题2中学生将用萃取的实验方法研究氯、溴、碘间的置换反应。
本节课设计了三个环节。
第一个环节温故知新,通过重温分离混合固体的方法和原理,引入分液的操作和原理,既揭示研究课题,复习旧知,又为下一环节创设情景,留下伏笔;第二个环节,利用“中药泡酒”的实例,引入固-液萃取,由此引出液-液萃取的原理。
第三个环节将理论付诸实践,以提取碘水中的碘为任务驱动,教师提供仪器和药品,学生分组讨论交流,形成实验方案,通过小组协作完成实验。
最后,讨论总结出萃取剂选择的原则。
整个过程关注学生的主动参与,引导学生在实验过程中感悟和提升,培养合作精神和反思意识。
二、教学目标[知识与能力]初步学会使用分液和萃取的方法对混合物进行分离和提纯[过程与方法]理解并掌握分液和萃取的原理和操作方法。
[情感态度与价值观]从具体案例中感受分液和萃取的实际应用价值。
三、教学重点和教学难点重点:分液、萃取的原理和操作方法难点:分液和萃取的差别,萃取剂的选择原则四、教法与学法分析教法:以启发式教学法为主,辅以迁移教学法,挫折教学法,实验法。
学法:小组合作、探究学习,交流讨论《萃取》教学设计■潘佳绚 衷明华 (韩山师范学院化学与环境工程学院 广东省潮州市 521000)【中图分类号】 G643.2【文献标识码】 A【文章编号】 2095-3089(2017)13-0281-02五、教学过程教学内容教师活动学生活动设计意图温故知新【展示】泥沙和食盐的混合物【提问】要如何将这两种固体分离出来?【展示】四氯化碳和水的混合物【提问】老师在准备实验的时候,不小心把四氯化碳倒进了水里面。
柴诚敬《化工原理》笔记和课后习题(含考研真题)详解(10-12章)【圣才出品】
量分数。
b.对于萃取剂 S 与原溶剂 B 互不相溶的物系,溶质在两液相中的分配关系与吸收中的
类 似,即 Y KX
式中 Y——萃取相 E 中溶质 A 的质量比组成;X——萃余相 R 中溶质 A 的质量比组成;K—
e MR r ME
结合三角形相似定理可得
e xA zA MR m xA yA RE
3 / 96
圣才电子书
及
十万种考研考证电子书、题库视频学习平台
r zA yA ME m xA yA RE
式中 ——线段 的长度,m。
③若向 A、B 二元混合液 F 中加入纯溶剂 S,则三元混合液的总组成点 M 必位干 SF 的
④过 M 点分别作三个边的垂线 MN、ML 及 MJ,则垂直线段
及 分别代表 A、
B 及 S 的组成。由图可知,M 点的质量分数为:
和
(2)杠杆规则
如图 10-3 所示,将质量为 r,组成为 xA、xR、xS 的混合液 R 与质量为 e,组成为 yA、yB、
ys 的混合液 E 相混合,得到一个质量为 m,组成为 zA、zB、zS 的新混合液 M,其在三角形坐
连线上,具体位置由杠杆规则确定,即
MF S MS F
2.三角形相图 (1)根据萃取操作中各组分的互溶性,可将三元物系分为以下三种情况,即 ①溶质 A 完全溶于 B 及 s,B 与 S 不互溶; ②溶质 A 完全溶于 B 及 S,B 与 S 部分互溶; ③溶质 A 完全溶于 B,A 与 s 及 B 与 S 部分互溶。 (2)溶解度曲线及联结线 ①设溶质 A 可完全溶于 B 及 S,但 B 与 S 为部分互溶,一定温度下的平衡相图如图 l0-4 所示,图中曲线 R0R1R2RiRnKEnEiE2E1E 0 称为溶解度曲线。 ②溶解度曲线将三角形相图分为两个区域 曲线以内的区域为两相区,曲线以外的区域为均相区。位于两相区内的混合物分成两个 互相平衡的液相,称为共轭相,连接两共轭相组成坐标的直线称为联结线,显然萃取操作只 能在两相区内进行。 ③若组分 B 与组分 S 完全不互溶,则点 R。与 E。分别与三角形顶点 B 及顶点 S 相重合。
化工原理下41液液萃取ppt课件
溶解度曲线
分配曲线
22
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
P
y yx
P
x
分配曲线的作法
23
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
4.1 概述
一、萃取过程的原理
分离物系 液体混合物 形成两相体系的方法 引入一液相(萃取剂)
萃取原理
液体混合物 (A + B)
引入另一液相 (萃取剂S)
各组分在萃取剂 中溶解度不同
临界混 溶点 共轭相
均相区 溶解度曲线 两相区
联结线
溶解度曲线 (1)——已知联结线
11
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
第Ⅰ类物系 ② 完全不互溶物系, A、B,A、S 完全互溶, 而B、S完全不互溶。
溶解度曲线 联结线
溶解度曲线
两相区
En
0B
单相区
S
1.0
温度较低时第二类物系三角形相图
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
1.0 A
单相区
两相区
溶解度曲线
联结线 溶解度曲线
化工原理电子教案第八章固液萃取
化工原理电子教案第八章固液萃取第一篇:化工原理电子教案第八章固液萃取12萃取本章学习要求1.熟练掌握萃取过程的原理;部分互溶物系的液-液相平衡关系;萃取过程(包括单级萃取、多级错流萃取和多级逆流萃取)的计算;对于组分B、S部分互溶体系,要会熟练地利用杠杆规则在三角形相图上迅速准确的进行萃取过程计算;对于组分B、S不互溶体系,则可仿照吸收的计算方法。
2.理解溶剂选择的原则;影响萃取操作的因素;萃取剂和操作条件的合理选择;萃取过程的强化措施。
3.了解萃取操作的经济性;萃取操作的工业应用;液-液萃取设备及选用。
12.1 概述液-液萃取又称溶剂萃取,是向液体混合物中加入适当溶剂(萃取剂),利用原混合物中各组分在溶剂中溶解度的差异,使溶质组分A从原料液转换到溶剂S的过程,它是三十年代用于工业生产的新的液体混合物分离技术。
随着萃取应用领域的扩展,回流萃取,双溶剂萃取,反应萃取,超临界萃取以及液膜分离技术相继问世,使得萃取成为分离液体混合物很有生命力的单元操作之一。
蒸馏和萃取均属分离液体混合物的单元操作,对于一种具体的混合物,要会经济合理化的选择适宜的分离方法。
一般工业萃取过程分为如下三个基本阶段:1.混合过程将一定量的溶剂加入到原料液中,采取措施使之充分混合,以实现溶质由原料向溶剂的转移的过程;2.沉降分层分离出萃取相与萃余相。
3.脱出溶剂获得萃取液与萃余液,回收的萃取剂循环使用。
萃取过程可在逐级接触式或微分接触式设备中进行,可连续操作也可分批进行。
12.2 液液相平衡 12.2.1三角形相图根据组分间的互溶度,三元混合体系可分为两类:(1)Ⅰ类物系组分A、B及A、S分别完全互溶,组分B、S部分互溶或完全不互溶;(2)Ⅱ类物系组分A、S及组成B、S形成两对部分互溶体系本章重点讨论Ⅰ类物系连续操作的逐级接触萃取过程。
12.2.1 三元体系的相平衡关系萃取过程以相平衡为极限。
相平衡关系是进行萃取过程计算和分析过程影响因素的基本依据之一。
化工原理章液液萃取教育课件
xA=0.6 xA=0.6 xB=0.4 xA =0.3 xB =0.3
xS=0.4
S
1.0
注意:组成的归一性,即 xi 1
A
P
B
S
任意三角形坐标
A
P
B
S
直角三角形坐标
② 组成的单位 常用质量分率表示(原则上可用任意单位)。
(2)杠杆定律 三元混合物 mR(xA, xB, xs)和mE(yA, yB, ys )混合
① 萃取剂(溶剂)S:所用的溶剂; ② 原料液F:所处理的混合液; ③ 溶质A:原料液中易溶于溶剂的组分; ④ 原溶剂B:原料液中较难溶于溶剂的组分。
(2) 萃取过程的简单流程
萃取剂 Solvent
料液A+B Feed
混合澄清槽 Mixer-settler
萃取相 Extract
萃余相 Raffinate
① 混合传质过程: F(A+B)及S 充分接触,组分发生相转移; ② 沉降分相过程: 形成两相E、R,由于密度差而分层; ③ 脱除溶剂过程
两相
萃取相 E, y——溶剂相中出现 (S+A+B) 萃余相 R, x——原溶剂相中出现 (B+S+A)
萃取相脱除溶剂得萃取液 E’, y’ 脱溶剂后
萃余相脱除溶剂得萃余液 R’, x’ (3)实现萃取操作的基本要求
使组分A、B得到一定程度的分离。
(5) 应用 (6)① 液体混合物中各组分的相对挥发度接近 1,采用精馏的办
法不经济;
② 混合物蒸馏时形成恒沸物;
③ 欲回收的物质为热敏性物料;
④ 混合物中含有较多的轻组分,利用精馏的方法能耗较大;
⑤ 提取稀溶液中有价值的物质;
化工原理课件12萃取(LiquidExtraction)
05
萃取过程的优化与改进
提高萃取效率的途径
选择合适的萃取剂
根据待分离物质的特点和分离要 求,选择具有高选择性、高溶解
度、低能耗的萃取剂。
优化萃取工艺参数
通过调整温度、压力、浓度等工 艺参数,提高萃取效率和分离效
果。
强化传质过程
采用多级萃取、逆流萃取等工艺, 增加萃取剂与待分离物质接触机
会,提高传质效率。
3
萃取技术的优化
根据不同天然产物的性质和目标成分,选择合适 的萃取剂和工艺条件,提高萃取效率和纯度。
THANKS
感谢观看
它由多个塔板组成,液体在塔 内逐板下降,同时与上升的气 体或液体逆流接触,实现传质 与分离。
塔式萃取器的优点是处理能力 大、分离效果好,但结构复杂、 造价高、操作维护困难。
离心萃取器
离心萃取器利用离心力的作用使两液 相实现分离。
离心萃取器的优点是处理能力大、分 离效果好、结构简单、操作方便,但 制造成本较高。
04
萃取过程的设备
混合-澄清槽
混合-澄清槽是一种简单的萃取 设备,适用于两相接触后能迅速
分离的情况。
它由一个混合室和一个澄清室组 成,混合室用于使不相溶的两液 相混合,澄清室则用于分离两液
相。
混合-澄清槽结构简单,操作方 便,但处理能力较小,且分离效
果不够理想。
塔式萃取器
塔式萃取器是一种常见的萃取 设备,适用于处理大量物料。
双水相萃取技术
利用两种水相间物质分配的差异,实现高效分离和纯化。
06
萃取过程的实例分析
工业废水处理中的萃取应用
工业废水中的有害物质
01
工业废水可能含有重金属、有机污染物等有害物质,对环境和
化工原理第十一章液液萃取和固液萃取
•或
•点M得位置由杠杆规则确定:
PPT文档演模板
化工原理第十一章液液萃取和固液萃 取
•11.1.3选择性系数及萃取剂得选择 •在原料液中加入萃取剂后形成平衡得两个液相,溶质A在其中得非配 关系用分配系数kA表示
•同样,对稀释剂B有
•萃取剂的选择性,用选择性系数 表示
•要注意以下几方面: • 1、 选择性 2、 萃取相与萃余相的分离 3、 萃取剂得回收 • 除此之外,萃取剂还应满足一般得工业要求。
•上式即为各级的操作线,其斜率 为第一常数。
PPT文档演模板
化工原理第十一章液液萃取和固液萃 取
•11.1.6多级逆流萃取
•图11-12 多级逆流萃取流程
• 一、利用三角形相图得图解计算 •1、由xF、x‘N得值分别定出点F、R’N,连点S(设萃取剂为纯S)和 RN’,交溶解度曲线左侧于点RN,此点代表最终萃余项组成。 • 2、对全级作总物料衡算有 •连接点F和S,根据杠杆规则得代表混合液量及组成得点M;连接点 RN和M并延长交溶解度曲线于E1,则E1和RN得量也可按杠杆规则确 定。
•3、点M利用辅助曲线作联结线。有
•4、连点S、E和点S、R并分别延长交AB于点E‘和R’,则点E’和R’分 别
• 表示萃取液和萃余液得组成
PPT文档演模板
化工原理第十一章液液萃取和固液萃 取
•二、S和B完全不互溶时得图解计算
• 当S和B完全不互溶时,则 萃取相含全部溶剂,萃余相含 全部稀释饥,萃取前厚的物料 衡算式为(萃取剂为纯溶剂) :
•(2)恒沸物或沸点相近组分的分离,此时普通整流方法不适用, 如催化重整油中芳烃与烷烃的分离因沸点相近 而需要塔板数太多, 工业上常用环丁砜为萃取剂融解苯、甲苯、二甲苯以及其他芳烃衍 生物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理第十章液-液萃取和液-固浸取第十章液-液萃取和液-固浸取1. 25℃时醋酸(A)–庚醇-3(B)–水(S)的平衡数据如本题附表所示。
习题1附表1 溶解度曲线数据(质量分数/%)习题1附表2 联结线数据(醋酸的质量分数%)试求:(1)在直角三角形相图上绘出溶解度曲线及辅助曲线,在直角坐标图上绘出分配曲线。
(2)确定由200 kg醋酸、200 kg庚醇-3和400 kg水组成的混合液的物系点位置。
混合液经充分混合并静置分层后,确定两共轭相的组成和k及选择性系数 。
(4)从上述混合液中蒸质量。
(3)上述两液层的分配系数A出多少千克水才能成为均相溶液?解:(1)溶解度曲线如附图1中曲线SEPHRJ所示。
辅助曲线如附图1曲线SNP所示。
分配曲线如附图2 所示。
(2)和点醋酸的质量分率为25.0400200200200A=++=x水的质量分率为50.0400200200400S=++=x由此可确定和点M的位置,如附图1所示。
由辅助曲线通过试差作图可确定M 点的差点R和E。
由杠杆规则可得kg260kg80040134013=⨯==MR()kg540kg260800=-=-=RME由附图1可查得E相的组成为A S B0.28,0.71,0.01y y y===R相的组成为A S B0.20,0.06,0.74x x x===(3)分配系数AAA0.281.40.20ykx===BBB0.010.01350.74ykx===习题1 附图1 习题1 附图2选择性系数 7.1030135.04.1BA ===k k β(4)随水分的蒸发,和点M 将沿直线SM 移动,当M 点到达H 点时,物系分层消失,即变为均相物系。
由杠杆规则可得 kg 5.494kg 80055345534=⨯==M H 需蒸发的水分量为()kg 5.305kg 5.494800=-=-H M2. 在单级萃取装置中,以纯水为溶剂从含醋酸质量分数为30%的醋酸–庚醇-3混合液中提取醋酸。
已知原料液的处理量为1 000 kg/h ,要求萃余相中醋酸的质量分数不大于10%。
试(1)水的用量;(2)萃余相的量及醋酸的萃取率。
操作条件下的平衡数据见习题1。
解:(1)物系的溶解度曲线及辅助曲线如附图所示。
由原料组成x F =0.3可确定原料的相点F ,由萃余相的组成x A =0.1可确定萃余相的相点R 。
借助辅助曲线,由R 可确定萃取相的相点E 。
联结RE 、FS ,则其交点M 即为萃取操作的物系点。
由杠杆规则可得 3726F S ⨯=⨯ kg 1423kg 100026372637=⨯=⨯=F S(2)由杠杆规则可确定萃余相的量。
4916R M ⨯=⨯ ()kg 791kg 1423100049164916=+==M R 由附图可读得萃取相的组成为 A 0.14y = 萃取率=()0.14242379176.2%10000.3⨯-=⨯3. 在三级错流萃取装置中,以纯异丙醚为溶剂从含醋酸质量分数为30%的醋酸水溶液中提取醋酸。
已知原料液的处理量为2000 kg ,每级的异丙醚用量为800 kg ,操作温度为20 ℃,试求(1) 各级排出的萃取相和萃余相的量和组成;(2)若用一级萃取达到同样的残液组成,则需若干千克萃取剂。
20 ℃时醋酸(A )–水(B )–异丙醚(S )的平衡数据如下:习题3附表 20 ℃时醋酸(A )–水(B )–异丙醚(S )的平衡数据(质量分数)水 相 有 机 相 醋酸(A ) 水(B ) 异丙醚(S ) 醋酸(A ) 水(B ) 异丙醚(S ) 0.6998.11.20.180.599.3习题2 附图1.41 97.1 1.5 0.37 0.7 98.92.89 95.5 1.6 0.79 0.8 98.4 6.42 91.7 1.9 1.9 1.0 97.1 13.34 84.4 2.3 4.8 1.9 93.3 25.50 71.7 3.4 11.4 3.9 84.7 36.7 58.9 4.4 21.6 6.9 71.5 44.3 45.1 10.6 31.1 10.8 58.1 46.40 37.1 16.5 36.2 15.1 48.7解:由平衡数据在直角三角形坐标图上绘出溶解度曲线及辅助曲线,如附图所示。
由原料组成x F =0.3,在图中确定原料相点F 。
由物料衡算确定一级萃取物系的组成A 20000.30.2142000800x ⨯==+S 8000.2862000800x ==+由此可确定一级萃取物系点M 1的位置。
借助辅助曲线,通过试差作图可由M 1确定一级萃取的萃取相点E 1和萃余相点R 1。
由杠杆规则可得 115034.5R M ⨯=⨯ kg 19322800kg 505.34505.341=⨯==M R习题3 附图()kg 868kg 19322800111=-=-=R M E 由附图可读得一级萃取相和萃余相的组成为 110.1100.255y x ==由R 1的量及组成,以及所加萃取剂的量,通过物料衡算可求得二级萃取的物系点M 2。
与一级萃取计算方法相同可得 2930E =kg 21800R =kg 220.100.23y x ==与二级萃取计算相同,可得三级萃取计算结果 3920E =kg 31890R =kg330.080.21y x ==(2)若采用一级萃取达到同样的萃取效果,则萃取物系点为附图中的N 点。
由杠杆规则可得 37.526.5F S ⨯=⨯ kg 2830kg 20005.265.375.265.37=⨯==F S4. 在多级错流萃取装置中,以水为溶剂从含乙醛质量分数为6%的乙醛—甲苯混合液中提取乙醛。
已知原料液的处理量为1 200kg/h ,要求最终萃余相中乙醛的质量分数不大于0.5%。
每级中水的用量均为250 kg/h 。
操作条件下,水和甲苯可视为完全不互溶,以乙醛质量比表示的平衡关系为Y =2.2X 。
试求所需的理论级数。
解:(a )直角坐标图解法 在X –Y 直角坐标图上绘出平衡曲线Y =2.2X ,如附图所示。
F F F 0.060.064110.06x X x ===-- 原料中稀释剂的量为()()h kg 1128h kg 06.0112001F =-⨯=-=x F B习题4 附图操作线的斜率为 1128 4.512250B S -=-=- 过X F 作斜率为–4.512的直线,与平衡线交于Y 1,则X F Y 1为一级萃取的操作线。
过Y 1作Y 轴的平行线,与X 轴交于X 1。
过X 1作X F Y 1的平行线,与平衡曲线交于Y 2,X 1Y 2即为二级萃取的操作线。
同理可作以后各级萃取的操作线,其中X i 为第i 级萃余相的组成,直至X n 小于或等于所规定的组成0.005为止。
操作线的条数即为理论级数,即 n =7(b )解析法 由于B 与S 不互溶,故可采用式(10–35)计算理论级数。
F n S 2.20.0640.0050K X X Y ==≈=m 2.22500.48761128KS A B ⨯=== ()F S n S m 0.064ln ln 0.005 6.4ln 1ln 10.4876X Y K X Y K n A ⎡⎤-⎢⎥-⎣⎦===++ 取n =7也可采用迭代计算求理论级数。
平衡关系为 i i 2.2Y X = 操作关系为()i i i-14.512Y X X =-- 由此可得迭代关系为 i i-10.6722X X =迭代计算结果为0F 12345670.0640.04300.02890.01940.01310.008790.005910.003970.005X X X X X X X X X =========<即所需理论级数为7级。
5. 在多级逆流萃取装置中,以水为溶剂从含丙酮质量分数为40%的丙酮–醋酸乙酯混合液中提取丙酮。
已知原料液的处理量为2 000kg/h ,操作溶剂比(F S )为0.9,要求最终萃余相中丙酮质量分数不大于6%,试求(1)所需的理论级数;(2)萃取液的组成和流量。
操作条件下的平衡数据列于本题附表。
习题5附表 丙酮(A )–醋酸乙酯(B )–水(S )的平衡数据(质量分数)解:(1)由平衡数据在直角三角形坐标图上绘出溶解度曲线及辅助曲线,如附图所示。
由原料组成x F=0.40,在图中确定原料相点F 。
F =1000kg/h 、S /F =0.9,再根据杠杆规则可确定F 、S 的和点M 。
由最终萃取要求x n =0.06确定R n 。
联结R n 、M ,其延长线与溶解度曲线交于E 1,FE 1、R n S 两线的交点Δ即为操作点。
借助辅助曲线作图可得E 1的共轭相点R 1(第一级萃取萃余相点),联结R 1Δ与溶解度曲线交于E 2。
同理可找到R 2、R 3 ……,直至萃余相的组成小于0.06为止,操作线的条数即为理论级数。
由作图可得 n =6(2)联结S 、E 1,并延长交AB 与E ′,E ′即为萃取液的相点,读图可得A0.65y '= h kg 1800h kg 20009.0=⨯=⎪⎭⎫⎝⎛=F F S S ()h kg 3800h kg 18002000=+=+=S F M 由杠杆规则可得 135.527E M ⨯=⨯ h kg 2890h kg 38005.35275.35271=⨯==M E 172.529E E '⨯=⨯习题5 附图h kg 1156h kg 5.722928905.72291=⨯=⨯='E E6. 在多级逆流萃取装置中,以纯氯苯为溶剂从含吡啶质量分数为35%的吡啶水溶液中提取吡啶。
操作溶剂比(F S )为0.8,要求最终萃余相中吡啶质量分数不大于5%。
操作条件下,水和氯苯可视为完全不互溶。
试在X –Y 直角坐标图上求解所需的理论级数,并求操作溶剂用量为最小用量的倍数。
操作条件下的平衡数据列于本题附表。
习题6附表 吡啶(A )–水(B )–氯苯(S )的平衡数据(质量分数)解:将以质量分数表示的平衡数据转化为质量比表示,其结果列于附表2中。
习题6 附表2由表中数据在X –Y 直角坐标系中绘出平衡曲线,如附图中曲线Y 1Y 2BQ 所示。
由S /F =0.8及x F =0.35可得操作线的斜率 0.80.812535165S SSBFA BSB ===⇒=+⎛⎫+ ⎪⎝⎭由最终萃取要求可确定点X n ,nnn0.050.053110.05xXx===--过点X n作斜率为0.8125的直线与直线FFF0.350.538110.35xX Xx====--交于J,则X n J即为操作线。
在平衡曲线与操作线之间作阶梯至X<0.053,所作的级梯数即为理论级数。