通用可变增益放大器

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通用可变增益放大器(B题)

摘要

本着简单、准确、可靠、通用的原则,采用了分级设计匹配互连的思想。本放大器系统分为前级放大部分、增益放大与控制电路部分、档位控制部分、后级稳压输出部分四部分。全系统采用单一的模拟电路方式,通过前级放大部分获得所需输入电压、输入阻抗等重要参数;通过拨码开关连接的反馈电阻进行精密全局控制,获得20dB至40dB之间分辨力不低于0.1%的可变增益围;通过档位控制部分电路实现四个档位增益值转换,在衰减电路的作用下得到三个档位的增益值,即—20dB至0、0至20dB、20dB至40dB;最后通过后级稳压输出部分获得输出幅度不低于±8V的输出电压,此部分电路包括抑制零点漂移的调零电路。通过验证,本系统可以对输出电压数值的漂移,零点漂移等不良影响进行有效地抑制和降低。通过全面的调试和测量,使得本系统基本满足题目的基本部分和发挥部分的要求并融入了自己的创新思想,设计出了一个可控围大、输出幅度高、稳定性好、抗干扰能力强、幅频特性好的通用可变增益放大器。

目录

摘要 (2)

目录 (3)

一、方案论证与比较 (4)

1、前级放大部分 (4)

2、增益放大与衰减控制电路 (4)

3、后级电压输出 (5)

二、系统设计 (5)

1、总体设计思路 (5)

2、主要电路原理分析与计算 (6)

2.1、前级放大电路 (6)

2.2、增益放大与控制电路 (6)

2.3、档位控制电路 (7)

2.4、电压输出电路 (7)

三、系统测试方法与测试数据 (8)

1、测试仪器 (8)

2、测试方法与测试数据 (8)

2.1、测前级放大电路 (8)

2.2、测增益放大与控制电路 (8)

2.3、各级电路调节好后,进行测量和详细记录 (8)

3、测试结果分析 (9)

3.1、测试结果分析 (9)

3.2、误差分析 (9)

3.3、测试心得 (10)

四、总结 (10)

一、方案论证与比较

1、前级放大部分

方案一:采用分立元件实现。此方案成本低,元器件易于得到,但是设计、调试难度过

大,硬件电路连接与制作困难,在大赛规定的时间很难保证作品的可靠性和指标,因此不予采用。

方案二:采用集成运放设计。此方案用可编程放大器芯片级联而成,电路简单,调试容易,指标和可靠性容易保证,因为OP37的幅频特性差,当放大倍数大于3时波形失真严重,THS3001的输入阻抗过低,经过多方面特性和通用性的比较与实际检测,选用高速宽带集成芯片OPA637可以满足此次放大器的设计要求,因此采用此方案。

2、增益放大与衰减控制电路

方案一:采用可编程放大器实现。此方案用单片机控制继电器,继电器控制相应的反馈电阻,四个档位,分辨力不低于0.1%,这对于单片机编程控制要求很高,而目前的编程能力有限,因此不予采用。

方案二:采用可编程控制放大器和衰减电路实现。此方案用单片机控制最后一档即100—1000,得到0.1%的分辨力,用单片机的P口的高低电平控制继电器,因为各个档位之间是十倍的对应关系,所以将可编程放大器芯片输出的信号接衰减电路,用拨码开关接通相应的衰减电阻,得到四个档位的增益变化,同时接有调零电路,很好的抑制了零点漂移,硬件电路连接方便,软件编程容易实现,电路图如图—1所示,但是经过调试发现单片机的接入对整个放大器电路的干扰特别大,为保证稳定性和可靠性,决定放弃此套方案,不予采用。

因为各个档位之间是十倍的对应关系,所以将放大器芯片输出的信号接衰减电路,用拨码开关接通相应的衰减电阻,得到四个档位的增益变化,同时接有调零电路,很好的抑制了零点漂移,硬件电路连接与制作简单,而且不会造成很大干扰,指标和可靠性容易保证,经过慎重考虑决定采用此方案。

3、后级电压输出

方案一:采用分离元件实现。为保证高频端放大器的稳定性和带幅度的平坦度,电压放大输出模块采用分立元器件构成的互补推挽和深度电压串联负反馈电路形式,得到较高的输出电压围和相应的输出阻抗,分离元件的物理特性容易满足,性能比较稳定,连接电路图如图—2所示,但是经过试验调试,此方案与前级放大器级联会使波形产生严重的失真,因此不予采用。

二、系统设计

1、总体设计思路

图—3 系统总体框图

根据题目的要求,结合考虑过的各种方案,充分发挥其优势,采用拨码开关预置和控制放大器增益的方法,大大提高了系统的精度和可控性;系统前端增益放大部分需设一级OPA637程控增益放大器,实现输入阻抗变换和增益放大,同时接入了过压保护电路;根据增益步进的要求,需要采用拨码开关按照二进制方式控制增益值,再通过衰减电路获得三个档位增益,根据输出电压幅度和输出阻抗的要求,后级电压输出采用AD817连成电压跟随器

的方式,于是系统总体设计方案如图—3所示。

输入信号通过转换开关获得大于10MΩ或50Ω的输入阻抗,并连接过压保护功能电路,前级放大电路运用OPA637芯片获得高性能的放大信号,此时的放大倍数为10倍,中间级芯片的反馈是由拨码开关控制的电阻构成,控制电路的放大倍数为1—10,通过二进制的方式获得0.1%的步进增益值,以满足题目要求,输出的信号再经过由拨码开关控制的衰减电路,获得三个不同档位增益,最后再由放大器芯片组成的稳压输出电路获得高输出幅值和所需输出阻抗,其中含有抑制零点漂移的调零电路,再运用衰减控制电路得到其它档位增益

2.2、增益放大与控制电路

本部分电路由OPA637放大器构成的集成运放电路。此处的运放得到的增益围是1—10,集成运放的反馈部分由拨码开关接有十个电阻,采用二进制计数的方式进行组合得到0.1%的步进增益值,因此只需计算出第一个电阻值就可以知道其它阻值了,如需要接通Rn (n = 0~9),则将对应的开关断开即将对应电阻接入电路反馈端,如要得到1.009的增益,由A =1+R1/R0,R0 =1KΩ,计算得到R1=9Ω,由二进制的特点可以算出R2=2R1=18Ω,……,

相关文档
最新文档