复合材料力学
复合材料的力学性能与结构设计
复合材料的力学性能与结构设计复合材料是由两种或两种以上的材料组合而成的材料,具有优异的力学性能和结构设计潜力。
在本文中,将探讨复合材料的力学性能以及如何进行结构设计。
一、复合材料的力学性能复合材料由于多种材料的组合,具有独特的力学性能。
以下将讨论复合材料在强度、刚度和韧性方面的性能。
1. 强度由于不同材料之间的协同作用,复合材料通常具有很高的强度。
这是由于各个组成材料的优点相互弥补,从而提高整体强度。
例如,纤维增强复合材料中的纤维可以提供很高的强度,而基体材料可以增加韧性。
2. 刚度复合材料具有很高的刚度,这是由于组成材料之间的相互作用。
纤维增强复合材料中的纤维可以提供很高的刚度,而基体材料可以提供弹性和柔韧性。
因此,复合材料在受力时可以保持其形状和结构的稳定性。
3. 韧性复合材料通常具有较高的韧性,这是由于材料的组合结构所致。
纤维增强复合材料中的纤维可以分散和吸收能量,从而提高材料的韧性。
相反,在单一材料中,这种能量分散效应很少出现。
二、复合材料的结构设计复合材料的结构设计是为了实现所需的力学性能和功能。
以下将介绍复合材料结构设计的关键因素。
1. 材料选择合理的材料选择是进行复合材料结构设计的关键因素。
不同材料具有不同的力学性能和化学特性,因此需要根据应用需求选择合适的材料组合。
例如,在需要高强度和刚度的应用中,可以选择纤维增强复合材料。
2. 界面控制复合材料中不同材料之间的界面是其力学性能的重要因素。
界面的控制可以通过界面处理和表面改性来实现。
例如,通过添加粘合剂或增加表面处理剂,可以增强纤维与基体之间的结合,提高界面的力学性能。
3. 结构设计结构设计是为了实现所需的功能和性能。
在复合材料结构设计中,需要考虑材料的排布方式、层压顺序和几何形状等因素。
通过合理设计复合材料的结构,可以充分发挥其力学性能,同时满足应用需求。
三、结论复合材料具有优异的力学性能和结构设计潜力。
通过合理选择材料、控制界面以及进行结构设计,可以充分发挥复合材料的力学性能。
复合材料力学课后答案
复合材料力学课后答案复合材料是由两种或两种以上的材料组合而成的材料,它们的组合可以发挥出各自材料的优点,同时弥补各自材料的缺点。
复合材料力学作为复合材料的一门重要学科,研究复合材料的力学性能和行为,对于工程设计和材料应用具有重要意义。
下面是一些关于复合材料力学的课后答案,希望能够帮助大家更好地理解和掌握这一学科。
1. 什么是复合材料的弹性模量?复合材料的弹性模量是指在弹性阶段内,应力与应变之间的比值。
对于各向同性的复合材料,其弹性模量可以通过Hooke定律来计算,即弹性模量E等于应力σ与应变ε的比值。
对于各向异性的复合材料,其弹性模量需要考虑不同方向上的应力和应变,可以通过各向异性弹性模量矩阵来计算。
2. 复合材料的弯曲强度受哪些因素影响?复合材料的弯曲强度受到很多因素的影响,主要包括纤维的类型和体积分数、基体的类型和性能、纤维和基体之间的界面结合情况、复合材料的制备工艺等。
其中,纤维的类型和体积分数对复合材料的弯曲强度影响较大,纤维的强度和刚度越高,体积分数越大,复合材料的弯曲强度也会相应增加。
3. 复合材料的疲劳行为有什么特点?复合材料的疲劳行为与金属材料有所不同,主要表现在以下几个方面,首先,复合材料的疲劳寿命较短,一般情况下比金属材料要短;其次,复合材料的疲劳裂纹扩展速度较快,裂纹扩展路径也较为复杂;最后,复合材料的疲劳性能受到温度、湿度等环境因素的影响较大,需要进行综合考虑。
4. 复合材料的层合板在受力时会出现哪些失效模式?复合材料的层合板在受力时可能会出现多种失效模式,主要包括纤维拉断、剪切破坏、压缩破坏、剪切压缩破坏等。
这些失效模式的出现与复合材料的层合板结构、受力方向、载荷类型等有关,需要根据具体情况进行分析和判断。
5. 复合材料的界面结合对其性能有何影响?复合材料的界面结合对其性能有着重要影响,良好的界面结合可以提高复合材料的强度、刚度和耐久性,同时也能有效防止裂纹扩展和层间剥离等失效现象的发生。
复合材料力学性能
复合材料力学性能复合材料力学性能是指复合材料在力学加载下的行为和性能。
复合材料是由两种或两种以上不同类型的材料组成的复合体,通常包括增强相和基体相。
增强相是由具有较高强度和刚度的材料制成,而基体相是由具有较高韧性和耐用性的材料制成。
复合材料的力学性能直接影响着其在各种应用领域的使用。
复合材料的力学性能包括强度、刚度、韧性和抗疲劳性等方面。
首先是强度。
强度是指材料在受到外界力作用下抵抗断裂或变形的能力。
复合材料通常具有较高的强度,特别是拉伸、压缩和弯曲强度。
这是因为增强相的存在使得复合材料能够承受更大的力。
同时,复合材料还具有较高的拉伸、剪切和压缩模量,这使得它们在应力下更加稳定。
其次是刚度。
刚度是指材料对应力产生相应应变的能力。
复合材料通常具有较高的刚度,这使得它们在应用中具有更好的稳定性和振动性能。
刚度取决于增强相的类型、层数和配比等因素。
然后是韧性。
韧性是指材料在受到外界力作用下承受变形和断裂的能力。
复合材料通常具有较高的韧性,这是由于其基体相的存在,基体相能够吸收能量并阻止裂纹的扩展。
韧性通常通过测量断裂韧性来评估。
最后是抗疲劳性。
抗疲劳性是指材料在经过长时间循环加载后仍然能保持其性能和强度的能力。
复合材料通常具有较好的抗疲劳性能,这是由于增强相的存在,增强相能够在应力加载下分散和吸收应力。
除了以上几个方面,复合材料的力学性能还受到其制备工艺、层数和组织结构等因素的影响。
制备工艺的不同会导致复合材料的性能有所差异。
层数的增加会提高复合材料的强度和刚度,但也会增加制备难度。
组织结构的优化能够提高复合材料的性能。
综上所述,复合材料具有强度、刚度、韧性和抗疲劳性等优良的力学性能。
这些性能的提高在很大程度上推动了复合材料在航空、汽车、建筑等领域的广泛应用。
随着材料科学和制备技术的进步,复合材料的力学性能还将不断得到改善和优化。
2024版复合材料力学讲课课件
31
课程总结回顾
复合材料力学基础知识
涵盖了复合材料的组成、结构、性能 及其力学行为等方面的基本概念和原
理。
复合材料的力学性能
深入探讨了复合材料的强度、刚度、 韧性等力学性能,以及不同加载条件
下的力学响应。
复合材料的失效与破坏
分析了复合材料的失效模式、破坏机 理和寿命预测方法,为学生提供了对
复合材料耐久性的全面理解。
应力-应变关系
分析复合材料在不同加载条件下 的应力-应变关系,可以揭示其弹 性性能的变化规律。
弹性力学模型
建立复合材料的弹性力学模型, 如层合板理论、等效连续介质模 型等,可以预测其宏观弹性性能。
2024/1/25
16
塑性力学方法
01
屈服准则
通过确定复合材料的屈服准则, 可以判断其在复杂应力状态下的 塑性变形行为。
复合材料力学研究内容
1 2
复合材料的力学性能 研究复合材料的强度、刚度、韧性等力学性能。
复合材料的破坏机理 研究复合材料在不同应力状态下的破坏形式和机 理。
3
复合材料的优化设计 通过改变复合材料的组分、结构等,优化其力学 性能。
2024/1/25
5
复合材料力学发展历程
2024/1/25
起步阶段
01
随着汽车工业向电动化、智能化、轻量化方 向发展,复合材料的应用前景广阔。
2024/1/25
29
其他领域应用拓展及创新点
体育器材
复合材料可用于制造高性能的体育器材,如自行车 车架、高尔夫球杆、滑雪板等,提高运动成绩和体 验。
医疗器械
复合材料可用于制造医疗器械和人体植入物,如手 术器械、人工关节等,提高医疗器械的性能和人体 相容性。
复合材料的力学性能影响因素
复合材料的力学性能影响因素复合材料是由两种或两种以上具有不同物理和化学性质的材料组合而成的多相材料。
由于其独特的性能优势,如高强度、高刚度、良好的耐腐蚀性等,在航空航天、汽车、船舶、建筑等众多领域得到了广泛的应用。
然而,复合材料的力学性能并非一成不变,而是受到多种因素的影响。
了解这些影响因素对于优化复合材料的设计和制造,提高其性能和可靠性具有重要意义。
首先,增强材料的类型和性能是影响复合材料力学性能的关键因素之一。
常见的增强材料包括纤维(如碳纤维、玻璃纤维、芳纶纤维等)和颗粒(如碳化硅、氧化铝等)。
不同类型的增强材料具有不同的强度、刚度、韧性和热稳定性等性能。
例如,碳纤维具有极高的强度和刚度,但成本较高;玻璃纤维则成本较低,但性能相对较弱。
增强材料的性能直接决定了复合材料能够承受的载荷和变形能力。
增强材料的几何形状和尺寸也会对复合材料的力学性能产生显著影响。
纤维增强复合材料中,纤维的长度、直径、长径比以及纤维的排列方式等都会影响其力学性能。
较长的纤维能够提供更好的载荷传递和增强效果,但在加工过程中可能会出现纤维断裂和分布不均匀的问题。
纤维的排列方式可以是单向、双向或多向编织,不同的排列方式会导致复合材料在不同方向上的力学性能差异。
例如,单向纤维增强复合材料在纤维方向上具有很高的强度和刚度,而在垂直于纤维方向上的性能则相对较弱。
基体材料的性能同样不容忽视。
基体材料的作用是将增强材料粘结在一起,并传递载荷。
常见的基体材料包括聚合物(如环氧树脂、聚酯树脂等)、金属(如铝、钛等)和陶瓷(如氧化铝、碳化硅等)。
基体材料的强度、韧性、耐热性和化学稳定性等性能会影响复合材料的整体性能。
例如,聚合物基体通常具有较好的韧性和耐腐蚀性,但耐热性相对较差;金属基体则具有较高的强度和导热性,但密度较大。
复合材料中增强材料与基体材料之间的界面结合强度也是影响力学性能的重要因素。
良好的界面结合能够有效地传递载荷,提高复合材料的强度和韧性。
复合材料的力学性能分析
复合材料的力学性能分析复合材料是由两种或以上的不同材料在力学上结合形成的材料,具有高强度、高模量、低密度、耐腐蚀等优良特性,被广泛应用于汽车、航空、航天、体育用品等领域。
然而,复合材料的力学性能与其组成材料、制备工艺、结构形式密切相关,需要经过细致的分析才能充分发挥其优势。
一、组成材料的力学性能分析复合材料由纤维和基体材料结合形成,其中纤维通常是碳纤维、玻璃纤维、芳纶纤维等,基体材料通常是树脂、金属等。
因此,复合材料的力学性能与其组成材料密切相关。
1.纤维材料的力学性能纤维材料具有很高的强度和刚度,可以充分发挥复合材料的优势。
常用的纤维材料有碳纤维、玻璃纤维、芳纶纤维等。
其中,碳纤维的强度和刚度最高,但价格也最昂贵,适用于高端领域;玻璃纤维强度和刚度较低,价格相对便宜,适用于一般领域;芳纶纤维具有较高的温度和化学稳定性,适用于高温环境。
2.基体材料的力学性能基体材料主要起粘结纤维材料的作用,因此需要具有较好的强度和可塑性。
常用的基体材料有环氧树脂、酚醛树脂、聚丙烯等。
环氧树脂具有较好的成型性和高强度,适用于高端领域;酚醛树脂价格相对便宜,但强度和成型性较差,适用于一般领域;聚丙烯具有良好的化学稳定性和低密度,适用于航空、航天等领域。
二、制备工艺对力学性能的影响分析复合材料制备工艺是影响其力学性能的重要因素之一。
常用的制备工艺有手工层叠法、自动层叠机法、注塑成型法等。
1.手工层叠法手工层叠法是复合材料制备的最早方法之一,其优点是成本低,适用于小批量生产;缺点是生产效率低,工艺难以控制,制品质量不稳定,易产生接触、空气泡等缺陷。
2.自动层叠机法自动层叠机法是指利用专用机器进行自动化生产的方法,其优点是生产效率高,无人工干预,制品质量稳定;缺点是设备成本高,不适用于小批量生产,工艺仍需改进和控制。
3.注塑成型法注塑成型法是将熔融状态的树脂注入到预制的模具中,并在高温高压下形成制品的方法,其优点是最大程度地消除了接触缺陷、空气泡等缺陷,制品密实,精度高,产品性能稳定;缺点是成本高,需要专用模具,适用于大批量生产。
复合材料中的材料力学性能分析
复合材料中的材料力学性能分析复合材料是由两种或两种以上不同材料组合而成的新材料,其具有优异的力学性能,如高强度、高刚度、低密度等。
因此,对复合材料的力学性能进行分析,对于材料的设计、制备、应用等方面具有重要意义。
本文将从两个方面对复合材料中的材料力学性能进行分析:材料力学性能评价和材料力学性能分析方法。
一、材料力学性能评价材料力学性能评价是对复合材料力学性能进行定量评估和比较的过程。
常用的力学性能指标包括强度、弹性模量、断裂韧性、疲劳寿命等。
1. 强度:强度是材料抵抗外部载荷而产生破坏的能力。
在复合材料中,强度可以分为拉伸强度、压缩强度、剪切强度等。
通过力学试验,可以测定复合材料在不同载荷下的强度,并进行比较和评价。
2. 弹性模量:弹性模量反映了材料在受力时的变形能力。
对于复合材料来说,弹性模量通常通过静态拉伸试验中的应力-应变曲线来计算。
弹性模量高,表示材料具有较好的刚度特性。
3. 断裂韧性:断裂韧性是材料抵抗断裂的能力。
在复合材料中,断裂韧性的评价可以通过冲击试验或断裂韧性试验来进行。
断裂韧性高的材料具有抗冲击、抗断裂的能力。
4. 疲劳寿命:疲劳寿命是材料在交变载荷下能够承受的循环次数。
复合材料的疲劳寿命是指在特定应力水平下,材料能够进行多少次完全循环才会发生失效。
通过疲劳试验可以评估复合材料的疲劳性能。
二、材料力学性能分析方法要进行复合材料的力学性能分析,需要使用一些合适的试验方法和数值模拟技术,以下是常用的材料力学性能分析方法:1. 静态力学试验:静态力学试验是研究材料在静态加载下的力学性能的基本方法。
通过服从背景的应力-应变关系曲线可以获得弹性模量和屈服强度等性能参数。
2. 动态力学试验:动态力学试验是研究材料在动态加载下的力学性能的方法。
冲击试验和振动试验是常用的动态力学试验方法,可以评估复合材料在冲击或振动环境下的力学性能。
3. 数值模拟:数值模拟是通过计算方法来预测和分析材料力学性能的方法。
复合材料力学
复合材料力学
复合材料力学是一门在航空航天、船舶、核工业、建筑、机械及其它多种有关行业中
应用较广的力学分支学科,主要研究复合材料的性能、结构故障分析和强度评定。
简单地说,复合材料力学是一种应用力学,它主要应用于研究复合材料的性能、结构破坏分析和
强度评定。
复合材料指的是多种材料形式的组合,由两种或以上的互补有机物质的混合物组成,
例如碳纤维增强塑料、橡胶增强碳素纤维增强陶瓷、碳素纤维增强树脂等等,具有更优越
的机械性能、抗冲击性能、延伸性能和高温使用性能等优势,因此可以使机械结构得到大
量减轻,节约资源、降低成本。
复合材料力学主要研究内容包括:复合材料的弹性特性、复合材料时变力学特性、
复合材料结构强度分析、复合材料缺陷检测和失效分析、复合材料的加工工艺等。
通过对
复合材料的性能、结构破坏及强度、失效评价等方面进行研究,可以更好地发展复合材料,使其在航空航天、船舶等方面的应用更加普及。
复合材料力学是一门新兴的学科,目前在国内还处于起步阶段,全面发展需要全面照
顾复合材料的各方面特性并进行综合研究,才可以充分发挥复合材料在航空航天、船舶等
行业中的优势,更好地发展复合材料应用技术。
复合材料的力学性能研究
复合材料的力学性能研究复合材料是由两种或两种以上的材料组合而成,其中至少有一种材料是具有一定强度和刚度的纤维或颗粒。
复合材料的力学性能是研究复合材料行为和性能的重要方面。
本文将探讨复合材料力学性能研究的相关内容。
1. 复合材料的组成和分类复合材料由基体和增强材料组成。
基体是材料的主要组分,承担着传递载荷的作用,常见的有金属、塑料和陶瓷。
增强材料则是用来提高材料力学性能的成分,如纤维和颗粒,可以提供强度和刚度。
基于不同的增强材料,复合材料可以分为纤维增强复合材料和颗粒增强复合材料。
2. 复合材料的强度和刚度复合材料相比于传统材料具有更高的强度和刚度。
这是因为增强材料可以承受大部分载荷,基体则起到支撑和保护的作用。
纤维增强复合材料的强度主要取决于纤维的性质和取向,而颗粒增强复合材料则取决于颗粒的尺寸和分布。
通过调整增强材料的形状和含量,可以进一步改变复合材料的强度和刚度。
3. 复合材料的断裂行为复合材料的断裂行为是研究复合材料力学性能的重点之一。
断裂通常分为拉伸断裂和剪切断裂两种形式。
在拉伸断裂中,纤维会逐渐断裂,而在剪切断裂中,流动的基体和增强材料之间会发生剪切滑移。
复合材料的断裂行为受到多种因素的影响,如增强材料的分布、基体的粘附力和界面结构等。
研究这些因素对断裂行为的影响,可以提高复合材料的断裂韧性和抗冲击性能。
4. 复合材料的疲劳性能复合材料在长期使用和加载循环中可能出现疲劳损伤。
与金属材料不同,复合材料的疲劳行为更为复杂。
复合材料的疲劳损伤通常包括纤维断裂、基体裂纹扩展和界面失效。
研究复合材料的疲劳性能,可以提高材料的使用寿命和可靠性。
通过合理设计复合材料的结构和增强材料的分布,可以减缓疲劳损伤的发展。
5. 复合材料的热性能和耐腐蚀性能除了力学性能,复合材料的研究还包括热性能和耐腐蚀性能。
复合材料在高温环境中的性能表现和在一般温度下有所不同。
研究复合材料的热膨胀特性和热传导性能,有助于优化复合材料在高温环境下的应用。
复合材料力学
复合材料力学复合材料力学是研究复合材料在受力作用下的力学性能和行为的学科,它涉及材料力学、结构力学、材料科学等多个学科的知识。
复合材料是由两种或两种以上不同类型的材料组成的材料,通过它们的组合可以获得优异的性能,如高强度、高刚度、轻质等特点。
因此,复合材料在航空航天、汽车、船舶、建筑等领域得到了广泛的应用。
在复合材料力学中,我们需要了解复合材料的基本结构和性能。
复合材料通常由增强相和基体相组成,增强相通常是纤维、颗粒或片材,而基体相则是粘合剂或基体材料。
增强相的作用是提供材料的强度和刚度,而基体相则起到固定增强相的作用。
在复合材料力学中,我们需要研究增强相和基体相之间的相互作用,以及它们在受力时的行为。
另外,复合材料的制备工艺也对其力学性能有着重要的影响。
不同的制备工艺会影响到复合材料中增强相的分布、排列方式以及与基体相的结合情况,从而影响到复合材料的力学性能。
因此,研究复合材料力学需要考虑到材料的制备工艺对其性能的影响。
复合材料的力学性能包括拉伸性能、弯曲性能、压缩性能等多个方面。
在受拉伸力作用下,我们需要研究复合材料的强度、断裂韧性、屈服行为等性能;在受弯曲力作用下,我们需要研究复合材料的弯曲刚度、弯曲强度、弯曲疲劳性能等;在受压缩力作用下,我们需要研究复合材料的稳定性、压缩强度、压缩疲劳性能等。
通过研究这些性能,我们可以全面了解复合材料在受力作用下的行为,为其在工程领域的应用提供依据。
除了静态力学性能外,复合材料的动态力学性能也是复合材料力学研究的重要内容之一。
复合材料在动态加载下会出现疲劳、冲击等现象,这些现象对材料的损伤和破坏有着重要影响。
因此,研究复合材料在动态加载下的力学性能,对于预测材料的寿命和安全性具有重要意义。
总之,复合材料力学是一个综合性强、应用广泛的学科,它涉及到材料科学、结构力学、工程力学等多个学科的知识。
通过研究复合材料的力学性能,我们可以更好地理解和应用这类材料,在航空航天、汽车、船舶、建筑等领域发挥其优异的性能。
复合材料力学课后答案
复合材料力学课后答案1. 引言。
复合材料是由两种或两种以上的不同材料组合而成的材料,具有优良的综合性能,被广泛应用于航空航天、汽车、建筑等领域。
复合材料力学是研究复合材料在受力作用下的力学性能和行为的学科,对于了解复合材料的性能和设计工程结构具有重要意义。
本文将针对复合材料力学课后习题进行解答,帮助学生加深对复合材料力学的理解。
2. 课后答案。
2.1. 什么是复合材料?复合材料是由两种或两种以上的不同材料组合而成的材料,通过各种方式相互作用形成一种新的材料。
复合材料通常由增强相和基体相组成,增强相起到增强和刚度作用,基体相起到传递载荷和保护增强相的作用。
2.2. 复合材料的分类有哪些?根据增强相的形式,复合材料可以分为颗粒增强复合材料、纤维增强复合材料和层合板复合材料;根据基体相的形式,复合材料可以分为金属基复合材料、塑料基复合材料和陶瓷基复合材料。
2.3. 复合材料的力学性能有哪些?复合材料的力学性能包括强度、刚度、韧性、疲劳性能等。
其中,强度是指材料抵抗外部力量破坏的能力;刚度是指材料抵抗形变的能力;韧性是指材料抵抗断裂的能力;疲劳性能是指材料在循环载荷下的耐久性能。
2.4. 复合材料的力学行为受哪些因素影响?复合材料的力学行为受到多种因素的影响,包括增强相的类型、含量和排布方式,基体相的类型和性能,界面的结合情况,制备工艺等因素都会对复合材料的力学行为产生影响。
2.5. 复合材料的应用领域有哪些?复合材料由于其优良的性能,在航空航天、汽车、建筑、体育器材等领域得到了广泛的应用。
例如,航空航天领域的飞机机身、汽车领域的碳纤维车身、建筑领域的钢-混凝土复合梁等都是复合材料的典型应用。
3. 结论。
通过对复合材料力学课后习题的解答,可以加深学生对复合材料力学的理解,帮助他们更好地掌握复合材料的基本概念、分类、力学性能、影响因素和应用领域。
同时,也可以引导学生将理论知识应用到实际工程中,为未来的工程实践打下坚实的基础。
复合材料力学性能
复合材料力学性能复合材料是由两种或两种以上的不同材料按照一定规律组合而成的材料。
与传统材料相比,复合材料具有独特的力学性能,以下将分别从强度、刚度、韧性、疲劳性能以及抗冲击性能等方面详细介绍复合材料的力学性能。
首先是复合材料的强度。
由于复合材料采用了不同种类的材料组合,在强度上具有明显的优势。
根据不同材料的组合方式和比例,复合材料可以获得高于单一材料的强度水平。
此外,由于复合材料具有随机分布的纤维增强体,使得复合材料具有较好的抗层状剪切破坏能力,提高了材料的整体强度。
其次是复合材料的刚度。
复合材料在刚性方面比传统材料更优越。
这是因为纤维增强体具有高弹性模量和高刚度特性,并且材料中纤维的方向性可以调整,所以在应力作用下,纤维能够承受更多的外力而不易产生位移。
因此,在力学应用中,复合材料能够提供更高的刚度和更小的变形。
再次是复合材料的韧性。
韧性是指材料在受到外力作用下产生破坏之前能够吸收的能量。
与传统材料相比,复合材料具有更好的韧性。
这是因为在复合材料中纤维的分布可以有效地防止裂纹扩展,同时由于纤维的存在可以将应力分散到整个材料中,从而提高韧性。
此外,复合材料也可以通过调整纤维增强体的类型和量来改善韧性。
复合材料的疲劳性能也是其重要的力学性能之一、在疲劳应力作用下,材料会出现裂纹的扩展,从而导致材料失效。
复合材料由于具有纤维增强体和基体的分离结构,在疲劳载荷下,纤维增强体能够吸收部分载荷,减缓增长速率,提高疲劳寿命。
此外,纤维增强体还能够增加复合材料的纵向和横向强度,降低应力集中,从而提高疲劳性能。
此外,复合材料的抗冲击性能也值得关注。
复合材料由于纤维增强体的存在,使得其在受冲击或振动载荷下具有更好的表现。
纤维增强体能够吸收冲击能量,减缓冲击载荷的传递,从而降低材料的损伤程度和失效概率。
综上所述,复合材料具有一系列优异的力学性能,如强度、刚度、韧性、疲劳性能和抗冲击性能等。
这得益于其具有多种材料的组合优势以及纤维增强体的特殊结构。
复合材料力学性能
复合材料力学性能
复合材料是指由两种或两种以上的材料组成的材料,经过一定的加工和制造工艺得到的具有新的组织和性能的材料。
复合材料的力学性能主要包括强度、刚度和韧性。
首先,复合材料具有很高的强度。
由于多种材料的组合,复合材料能够充分发挥各种材料的优点,从而提高材料的强度。
比如碳纤维复合材料,由于纤维之间有着良好的结合和排列,其强度比传统的金属材料高出数倍甚至数十倍。
这使得复合材料在航空航天、汽车、建筑等领域的应用非常广泛。
其次,复合材料还具有很高的刚度。
刚度是指材料抵抗形变和变形的能力,复合材料由于结构的合理性和纤维的高强度,使得其刚度远远高于传统的金属材料。
这使得复合材料能够在高温或高速等极端环境下能够保持其形状和性能,从而保证了材料的使用寿命和安全性。
另外,复合材料还具有很高的韧性。
韧性是指材料抵抗破裂和断裂的能力,复合材料通过纤维之间的相互支撑和吸收能量的机制,使得其具有很高的韧性。
相比于传统的金属材料,复合材料在受到冲击或挤压等外力作用时,能够有很好地承载和分散应力,从而减少裂纹的扩展和破坏的发生。
总之,复合材料具有很高的力学性能,包括强度、刚度和韧性。
这些性能使得复合材料成为目前工程领域中的重要材料,广泛应用于各个领域。
随着科技的不断进步和材料的不断发展,相
信复合材料的力学性能还会不断提高,为人们的生活和工作带来更多的便利和创新。
复合材料的力学分析
复合材料的力学分析引言复合材料是由两种或更多种材料组成的材料,通过将它们组合在一起来获得新的材料特性。
它们在航空航天、汽车工业、建筑和体育器材等领域得到广泛应用。
由于复合材料具有高强度、高刚度和低重量等优点,因此分析和了解复合材料的力学性能至关重要。
复合材料的组成及结构复合材料通常由两个主要成分组成:增强体和基体。
增强体可以是纤维、微粒或纤维布,而基体可以是金属、陶瓷或聚合物。
这两种成分通过一种称为矩阵的粘合剂结合在一起。
根据增强体的类型和排列方式的不同,复合材料可以分为各种类型,如纤维增强复合材料、颗粒增强复合材料和层合板复合材料等。
复合材料的力学行为复合材料的力学行为主要受到其组成材料及其排列方式的影响。
相对于单一材料,复合材料的力学性能具有以下特点:强度复合材料通常具有比单一材料更高的强度,这是由于增强体的存在。
纤维增强复合材料的强度通常取决于纤维的类型和排列方式。
微粒增强复合材料的强度与微粒的形状、大小和分布有关。
刚度由于增强体的高强度和高刚度,复合材料通常具有比单一材料更高的刚度。
复合材料的刚度取决于增强体的类型、体积分数以及增强体和基体之间的界面特性。
疲劳寿命复合材料的疲劳寿命与其增强体类型、触变行为以及界面特性有关。
在复合材料中,增强体和基体之间的应力转移不同于金属材料,可能导致剪切和剥离等破坏模式。
断裂韧性复合材料通常具有较低的断裂韧性,这是由于增强体和基体之间的界面层的弱点。
增强体与基体之间的界面层容易出现剥离和裂纹扩展。
复合材料的力学分析方法复合材料的力学分析方法可以分为实验方法和数值模拟方法。
实验方法实验方法是研究复合材料力学行为的重要手段之一。
常用的实验方法包括拉伸试验、压缩试验、弯曲试验和剪切试验等。
这些实验可以用于测量材料的强度、刚度、疲劳寿命和断裂韧性等力学特性。
数值模拟方法数值模拟方法通过建立复合材料的数学模型来预测其力学性能。
常用的数值模拟方法包括有限元分析和分子动力学模拟等。
复合材料力学
01
有限差分法是一种直接求解偏微分方程的数值方法。
02
该方法通过将微分转化为差分来离散化偏微分方程,然后在 离散化的网格上直接求解该方程。
03
在复合材料力学中,有限差分法常用于分析复合材料的热传 导、波传播等问题。
其他数谱分析、 摄动法、离散元素法等。
02
这些方法在复合材料力学中也有 一定的应用,特别是在某些特殊 问题的求解中。
02
复合材料的力学性能
复合材料的弹性模量
弹性模量
复合材料的弹性模量取决于其组 成材料的弹性模量和纤维方向。 通常情况下,复合材料的弹性模 量高于其组成材料的弹性模量。
纤维方向效应
复合材料的弹性模量在不同纤维方 向上存在差异,表现出各向异性。
增强效果
通过合理选择增强材料和优化复合 材料的结构,可以提高复合材料的 弹性模量。
有限元分析方法
有限元分析(FEA)是一种数值分析方法,用于解决复杂的工程问题,特别是关于 结构强度、刚度、稳定性等问题。
FEA将复杂的结构分解为若干个简单的子结构,称为“有限元”,然后对每个有限 元进行分析,最后将各个有限元的解组合起来得到整个结构的解。
有限元分析方法在复合材料力学中广泛应用于预测和评估复合材料的力学性能,包 括应力、应变、位移等。
05
复合材料力学的实验研究
复合材料力学性能的实验测试
拉伸测试
压缩测试
通过拉伸实验测定复合材料的弹性模量、 泊松比和抗拉强度等参数,以评估其在轴 向拉伸载荷下的性能表现。
压缩实验用于测定复合材料的抗压强度、 弹性模量和泊松比等参数,以评估其在轴 向压缩载荷下的性能表现。
弯曲测试
剪切测试
弯曲实验用于测定复合材料的抗弯强度、 弹性模量和挠曲模量等参数,以评估其在 弯曲载荷下的性能表现。
复合材料力学
复合材料的定义:是由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新材料,它既能保留原组分材料的主要特色,又通过复合效应获得原组分所不具备的性能;可以通过设计使各组分的性能互相补充并彼此关联,从而获得新的性能。
复合材料的特点:1复合材料具有可设计性2材料与结构具有同一性3复合材料结构设计包括材料设计4材料性能对复合工艺的依赖性5复合材料具有各向异性和非均质性的力学性能特点.复合材料的优点:1比强度高、比模量大2抗疲劳性好3减振性能好4破损安全性好5耐腐蚀性能好6电性能好7热性能好‘复合材料的缺点:1玻璃纤维复合材料的弹性模量低2层间强度低3属脆性材料4树脂基复合材料的耐热性较低5材料性能的分散性大。
复合材料细观力学:研究复合材料单层的宏观性能与组分材料性能及细观结构之间的定量关系。
复合材料细观力学假设:1复合材料单层是宏观非均匀、线弹性的、并且无初应力2纤维是均质、线弹性的,各项同性或横观各项同性的,形状和分布是规则的3基体是均质、线弹性、各项同性的4各相间粘结完好,界面无间隙。
在分析方法上,细观力学可采用材料力学法、弹性力学法和半经验法。
一次超静定问题和静定问题(串联模型的纵、横向弹性模量)C是接触系数,它表示纤维横向接触的程度,且介于0和1之间。
哈尔平-蔡提出了一种近似地表达比较复杂的细观力学结果的内插法。
临界纤维体积含量的定义:纤维微屈曲和剪切破坏是复合材料纵向压缩破坏的两个主要原因。
织物:指以相互垂直的经纱和纬纱构成的正交织物,如玻璃纤维布。
以织物为增强材料制成的复合材料单层板称为织物复合材料单层板,又称双向单层板。
应力传递理论:当复合材料受作用时,载荷直接作用到基体上,然后基体将载荷通过纤维与基体间界面上的剪应力传递到纤维上。
主要有理想刚塑性基体、弹性基体和弹塑性基体三大类。
短纤维全部随机分布于相互平行的平面内而制得的复合材料称为平面随机取向短纤维复合材料。
假设层合板为连续、均匀、正交各向异性的单层构成的一种连续性材料,并假设各单层之间是完全紧密粘接,且限于线弹性、小变形情况下研究层合板的刚度与强度,这种层合理论称为经典层合理论。
复合材料结构力学认识
复合材料结构力学认识复合材料是由两种或多种不同性质的材料按一定比例组合而成的材料,具有优异的力学性能和广泛的应用前景。
复合材料结构力学认识主要包括复合材料的力学性质、力学模型和应力分析。
一、复合材料的力学性质复合材料的力学性质是指材料在力的作用下所表现出的性能。
常见的力学性质有强度、刚度、韧性、压缩性能等。
复合材料的力学性质主要受到纤维强度、纤维体积含量、纤维分布、树脂性能等因素的影响。
1.强度:复合材料的强度是指材料在外界作用力下的抵抗能力。
复合材料的强度取决于纤维的强度和纤维的体积含量,一般情况下,纤维强度越高、纤维体积含量越大,复合材料的强度越高。
2.刚度:复合材料的刚度是指材料在受力时的变形能力。
刚度取决于纤维的模量和纤维的体积含量,一般情况下,纤维的模量越高、纤维体积含量越大,复合材料的刚度越高。
3.韧性:复合材料的韧性是指材料在断裂前的变形能力。
韧性取决于纤维的断裂伸长率和断裂能量,一般情况下,纤维的断裂伸长率越高、断裂能量越大,复合材料的韧性越高。
4.压缩性能:复合材料的压缩性能是指材料在受到压缩力作用时的性能。
压缩性能与纤维的强度、纤维的分布和纤维的体积含量相关。
二、复合材料的力学模型为了更好地理解复合材料的力学性质,可以采用不同的力学模型来描述复合材料的行为。
1.刚度模型:刚度模型是指通过计算复合材料的刚度来分析其受力情况。
常用的刚度模型有矩阵刚度模型、重叠刚度模型等。
2.强度模型:强度模型是指通过计算复合材料的强度来分析其断裂行为。
常用的强度模型有矩阵强度模型、纤维折断模型、纤维剪切破坏等。
3.韧性模型:韧性模型是指通过计算复合材料的断裂伸长率和断裂能量来分析其韧性。
常用的韧性模型有矩阵韧性模型、纤维断裂韧性模型等。
三、复合材料的应力分析复合材料的力学分析需要对复合材料中纤维和基体的应力进行分析。
1.纤维应力分析:纤维应力是指纤维内部受到的力在纤维横截面上的分布情况。
纤维应力的计算需要考虑到纤维的拉伸和剪切行为。
复合材料力学ppt
yx
y
yz
zx zy z
变形分析
物质坐标和空间坐标 应变张量的定义 微小应变张量的几何解释 主应变和应变主轴 应变协调方程
几何方程
x
u , x
yz
y
v , y
zx
z
w z
,
xy
w y
v z
;
u z
w ; x
v x
u y
.
x
yx
zx
xy y zy
x z
– 美国国防部委托国家科学研究院发表的面向21世纪国 防需求的材料研究报告指出
• 复合材料包括三要素:
• 基体材料 • 增强相 • 复合方式界面结合形式
• 复合材料的分类
– 按增强剂形状不同;可分为颗粒 连续纤维 短纤维 弥散晶须 层状 骨架或网状 编织体增强复合材料 等
– 按照基体材料的不同;复合材料包括聚合物基复合 材料 金属基复合材料 陶瓷基复合材料 碳/碳复合 材料等
y z
z
变形协调方程
2 x y 2
2 y x 2
2 xy xy
2 y z 2
2 z y 2
2 yz yz
2 z x 2
2 x z 2
2 xz zx
x
xz y
xy z
yz x
2 2x yz
y
xy z
yz x
zx y
2 2y zx
z
yz x
zx y
xy z
2 2z xy
物理方程— 本构关系 Hooke 定理
on S :
s
u u*
v v*
w w*
• 第三类基本问题
– 在弹性体的一部分表面上都给定了外力;在 其余的表面上给定了位移;要求确定弹性体 内部及表面任意一点的应力和位移
复合材料力学的基本原理与应用研究
复合材料力学的基本原理与应用研究引言:复合材料由两种或多种不同的组分组成,以获得合成物性能优于其各组分的材料。
复合材料具有轻质高强度、高刚度、耐腐蚀性好等特点,因此在航天航空、汽车、建筑等领域得到广泛应用。
本文将介绍复合材料力学的基本原理以及其应用,包括复合材料的定律、实验准备和过程,并从专业性角度对其应用进行探讨。
一、复合材料的力学定律:1. 长期功效定律:长期功效定律(Time Dependent Behavior)描述了复合材料在受力作用下随时间发生的各种变化。
这是由于复合材料中不同组分的材料具有不同的力学性质,如纤维和基质的材料寿命不同,会导致力学性能的衰退。
2. 弹性力学定律:弹性力学定律(Elastic Behavior)描述了复合材料在小应变条件下的力学行为。
根据胡克定律,应力和应变之间存在线性关系,且力学性能由杨氏模量和泊松比等弹性参数确定。
3. 破坏力学定律:破坏力学定律(Failure Behavior)描述了复合材料在受力过程中的破坏行为。
复合材料的破坏通常包括纤维断裂、界面失效和基质破裂等多种模式,破坏过程受到力学性能和材料结构的综合影响。
4. 断裂力学定律:断裂力学定律(Fracture Mechanics)用于描述复合材料中存在的缺陷对结构强度和可靠性的影响。
基于应力强度因子的概念,可以定量评估复合材料中的缺陷对结构寿命的影响。
二、实验准备与过程:1. 实验准备:在进行复合材料力学实验之前,首先需要准备样品。
样品的制备过程涉及到选择合适的纤维和基质材料、确定纤维的取向和体积分数等参数。
同时,需要施加适当的压力和温度来制备出具有一定力学性能的复合材料。
2. 实验过程:复合材料力学实验通常包括拉伸、压缩、剪切等不同的加载方式。
通过施加一定的应变或应力,在不同的加载条件下测试复合材料的力学性能。
常见的实验方法包括拉伸试验、三点弯曲试验和剪切试验等。
实验过程中需要记录不同加载条件下的应力-应变曲线,以及观察和记录复合材料的破坏行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录复合材料细观力学 (1)简支层合板的自由振动 (9)不同条件下对称层合板的弯曲分析 (14)复合材料细观力学——混凝土细观力学一、研究背景复合材料细观力学复合材料细观力学是20世纪力学领域重要的科学研究成果之一,是连续介质力学和材料科学相互衍生形成的新兴学科。
近20年来,我国科技工作者应用材料细观力学的理论和方法,成功研究了许多复合材料的增强,断裂和破坏问题,给出了一些特色和有价值的研究成果。
混凝土细观力学混凝土作为一种重要的建筑材料已有百余年的历史,它广泛应用于房屋、桥梁、道路、矿井、及军工等诸多方面。
在水工建筑方面,混凝土也被大量使用,特别是大体积混凝土,它是重力坝和拱坝的主要组成部分,对混凝土各项力学性能的准确把握及应用,在一定程度上决定了水工建筑物的质量和安全性能。
二、研究目的长期以来,在混凝土应用的各个领域里,人们对混凝土的力学特性进行了大量的研究。
如何充分的利用混凝土的力学性能,建造出更经济、更安全和更合理的建筑物或工程结构,一直都是结构工程设计领域研究的重要课题。
三、研究现状混凝土是由粗骨料和水泥砂浆组成的非均质材料,它的力学性能受到材料的品质、组分、施工工艺和使用条件等因素的影响。
过去,人们对混凝土力学性能的研究很大程度上是依靠实验来确定的。
随着实验技术的发展,混凝土各种力学性能被揭示出来。
但由于实验需要花费大量的人力、物力和财力,而且所得到的实验成果往往由于实验条件的限制也是很有限的。
现代科学的一个重要的思维方式与研究方法就是层次方法,在对客观世界的研究中,当停留在某一层次,许多问题无法解决时,深入到下一个层次,问题就会迎刃而解。
对混凝土断裂问题的研究归纳为如下四个研究层次:1)宏观层次:混凝土这种非均质材料存在着一个特征体积,经验的特征体积相应于3~4倍的最大骨料体积。
当混凝土体积大于这种特征体积时,材料被假定为均质的,当小于这种特征体积时,材料的非均质性将会十分明显。
有限元计算结果反映了一定体积内的平均效应,这个特征体积的平均应力和平均应变称之谓宏观应力和宏观应变。
2)细观层次:在这个层次中,混凝土被认为是一种由骨料、砂浆和它们之间的粘结带组成的三相非均质复合材料,细观内部裂隙的发展将直接影响混凝土的宏观力学性。
细观层次的模型一般是毫米或厘米量级。
3)微观层次:在这个层次上,认为砂浆的非均质性是由浆体中的孔隙所产生的。
由于砂浆中孔隙很小而且量多,随机分布,水泥砂浆可近似看作细观均质损伤体。
同配合比、同条件的砂浆试件,通常其力学性能也比较稳定,可由试验直接测定。
4)纳观层次:混凝土的纳观层次认为水泥浆体本身也是一种随机的复合材料,其组分是未水化的熟料颗粒、水化硅酸钙、氢氧化钙晶体、毛细孔和其他的化学成分,该层次毛细孔的尺寸是微米或亚微米量级。
在过去长期的研究中,人们为了研究上的方便,往往忽略混凝土复杂的内部结构,在对材料宏观本构关系的描述中,这种材料是“黑匣子”,采用唯象学的观点,把它们平均化和均匀化为宏观均匀连续体,并以实验结果为基础发展了弹性、弹塑性以及黏弹塑性的混凝土本构模型。
这种方法能够使人们对工程结构的均匀化状态有一个总体上的认识,可以作为工程设计的依据和参考。
但是,这些模型无法深入了解混凝土在外力作用下内部微裂纹萌生、扩展及其贯通,直至宏观裂纹形成,促使试样失稳破裂的整个过程,更无法反映混凝土断裂过程中表现出来的变形局部化和应力重分布等基本特征。
四、研究方法事实上,材料的宏观断裂过程必然与其细观的非均匀结构是密切相关的,因而,进行材料微、细观结构的模拟对于了解混凝土宏观断裂机理是非常有意义的。
进行混凝土材料的断裂过程以及破坏机理的研究,必须从混凝土的细观结构入手,利用细观力学的研究方法,抓住混凝土材料及其力学性质的非均匀性,借助统计学和数值计算方法,以实验结果为基础建立数值模型,进行混凝土断裂过程的数值模拟。
从混凝土试样的抛光断面上(如下图1),很容易鉴别的两个相是不同尺寸、形状的骨料颗粒以及分布紊乱的硬化水泥浆体物质所组成的胶凝性介质,因此从宏观水平而论,混凝土可视为由骨料颗粒分散在水泥砂浆基质中所组成的材料。
图1 混凝土试样的抛光断面上从细观水平而言,结构的两个相既不是彼此均匀分布,其本身也不是均匀的,显示出一定的非均质复杂性。
事实上,在混凝土实验中观察到的很多现象以及混凝土在应力作用下行为的许多方面只能将水泥砂浆与粗骨料的界面视为混凝土结构的第三相才能作出解释。
因此在细观层次上,混凝土被认为是由粗骨料、砂浆及二者间的粘结带组成的三相非均质复合材料,其中粘结带为围绕大骨料周围存在的一层薄壳。
在细观层次上,把混凝土看作是由粗骨料、砂浆及二者问的粘结带组成的三相非均质复合材料,研究混凝土内裂缝形成、扩展,追溯混凝土细观单元从损伤至断裂的全过程,预测材料的破坏抗力等力学指标,建立混凝土的细观结构与宏观性能之间的关系。
其工作主要分为以下几个部分:1)分析混凝土细观结构组成,采用蒙特卡罗随机取样原理,编程产生一个在形状、尺寸及粗骨料的空间分布上都非常类似于真实混凝土的混凝土随机骨料结构。
2)结合Visual Fortran、AutoCAD及ANSYS等计算机软件工具,对产生的随机骨料结构划分有限元网格,生成可控制粘结带厚度的随机骨料结构有限元网格。
3)用无量纲化指标建立细观层次均质水泥砂浆损伤体的单轴拉压损伤本构关系,将损伤耦合到混凝土受拉和受压的本构方程中,把损伤力学和断裂力学结合起来进行分析和计算。
4)考虑到细观层次分析的特殊性,提出结合抗拉强度和断裂韧性的综合破坏准则,便于采用连续介质有限元分析细观层次的断裂问题,并提出了适用于细观混凝土力学分析的单元开裂控制法和损伤收敛准则。
5)开发软件的后处理功能,可动态地模拟试件破坏的全过程,输出任一时刻的变形、裂缝图像,使得细观断裂分析全过程可以借助图像显示直观的表现出来。
6)应用随机骨料结构,采用非线性有限单元法进行混凝土单轴受拉和单轴受压实验全过程的数值模拟,得到混凝土数值试件的单轴抗拉和抗压强度。
7)对细观混凝土数值试件进行双向受力分析,得到混凝土在双轴载荷作用下的强度包络线,并分析混凝土在双向受力情况下的破坏模式及应力场。
8)对细观混凝土骨料结构随机性进行分析,证明骨料结构的随机性与混凝土材料本身的离散性具有一致性,进一步说明了随机骨料结构用于模拟混凝土实验的合理性。
五、结论与展望建立细观力学模型,通过小量的实验研究就可以较好地预测混凝土的各种宏观力学性能,进而取代大部分的混凝土材料实验,特别是实验中无法得到的大骨料混凝土的力学性能,从而大大地减少实验研究的工作量,具有潜在的显著的经济和社会效益。
混凝土结构的研究从宏观到细观,虽然在科学探索的道路上迈出可贵的步伐,但混凝土细观结构的一些复杂现象,如水灰比对界面性质的影响、水泥砂浆中气泡的形成和水泥结石的形成原理等一些现象,在细观层次上还解释不清楚,要揭示更深层次的机理,也只有迸入到下一层次的研究中去,人类对混凝土物质结构及其规律的深入了解,必将对改变混凝土上一层次的性能,特别是工程宏观性能,向着按预定性能设计新材料,起到深远的影响和巨大的作用。
参考文献[1]邱志章,混凝土细观力学分析与实验模拟[2] 张研,张子明,材料细观力学[3]王宗敏,不均质材料(混凝土)裂隙扩展及宏观计算强度与变形[4] 于骁中,居襄.混凝土的强度和破坏简支层合板的自由振动这部分主要研究了四边简支条件下层合板的自由振动。
求出了其理论解和ANSYS 数值解,并做了误差分析。
一、问题四边简支的正交铺设对称矩形层合板,铺设角度为90/0/90/0/90/0/90单层厚度为0.2e-3m ,a=0.6m ,b=0.3m 。
材料参数GPa E 2081=,GPa E 9.182=,GPa G 7.512=,23.012=V ,密度为2700kg/m 3,考虑层合板在惯性力作用下的自由振动。
二、MATLAB 求理论解对中间铺设角度为0时的层合板的解进行验证: 因为0ij B =,162616260A A D D ====,振动频率和振型由下列振动方程描述:(1)边界条件为:11,12,12,22,0,:0,00,:0,0x xx yy y xx yy x a w M D w D w y b w M D w D w δδδδδδδδ===--====--= 选取:δωωωδω(x,y,t)=(Acos t+Bsin t)(x,y)将此问题分为时间和空间两部分。
为使式(3)满足方程(1)和边界条件(2),进一步选取(2)(3)sinsin m x n xa bππδω(x,y)=即sinsin m x n xa bππδωωω(x,y,t)=(Acos t+Bsin t)将上式带入方程(1)得442224111266222(2)()()()m m n n D D D D a a b b πωρ⎡⎤⎛⎫=+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦式中,各频率对应于不同振型 MATLAB 编程求解:三、ANSYS 求数值解1、选取单元2、材料属性3、定义模型坐标4、铺层设置5、划分网格并选择分析类型6、选取10阶固有频率7、列出10阶固有频率8、第8阶振型结果四、误差分析对于中间层是0度角的铺层计算结果对比%10%9.8%1000≤=⨯-=ωωωη说明anasy 计算结果是比较准确的。
不同条件下对称层合板的弯曲分析主要通过ANSYS 软件分析了不同边界条件下正交铺设层合板以及四边固支条件下任意角铺设层合板的弯曲分析,并对不同条件下的挠度数值解进行了origin 作图对比。
一、五种不同边界条件下的正交铺设对称层合板这部分对8层0/90/0/90/90/0/90/0正交铺设层合板不同边界条件下的弯曲进行了分析。
单层厚度为0.2e-3m,长0.4m,宽0.2m 。
受均布载荷P=200N,材料参数Pa E 1111081.1⨯=,Pa E 1021003.1⨯=,28.012=V ,Pa G 9121017.7⨯=。
问题:求解不同边界条件下的挠度。
1、四边固定首先,选层合板层数为8。
输入铺设方式以及每层板的厚度。
输入材料各个参数。
创建模型,输入其长度和宽度坐标。
对模型进行网格划分。
施加边界条件,四边固定边界条件。
施加载荷,设置为200N的均布载荷。
计算求解,并得出结果云图。
2、短边固定,长边简支这里我们直接使用上一步操作里保存的划分好网格的模型,对其施加边界条件,短边固定,长边简支。
施加载荷并求解得出结果图。
3、短边简支,长边自由同样对模型施加边界条件,短边简支,长边自由。
施加载荷求解。
4、长边简支,短边自由5、四边简支origin生成图像对比二、三种特殊正交铺设对称层合板这个部分研究了四边固定情况下不同角度层和板在均布载荷P=200N的情况下挠度的ANSYS数值结果。