西北工业大学矩阵论课件PPT第四章例题矩阵分解

合集下载

矩阵分析第四章

矩阵分析第四章
−1
Er m× r r×n ( ) 其中 : B = P ∈ C , C = E D ∈ C r r r 0
若A的前r个列线性相关, 则∃P∈Cmm×m, Q∈Cnn×n使
D −1 E r −1 ( ) ⇒ A = P E D Q = BC r 0 0 −1 E r m× r −1 r ×n ( ) 其中 : B = P ∈ C , C = E D Q ∈ C r r r 0
Er PAQ = 0
1 3 2 1 4 1 3 2 1 4 r ←r −r −r → 2 6 1 0 7 例 1: A = 2 6 1 0 7 3 9 3 1 11 0 0 0 0 0
3 3 2 1
1 3 2 1 4 1 3 2 1 4 r ←r − 2r ( −1 / 3) r − − → 0 0 − 3 − 2 − 1 − − → 0 0 1 2 / 3 1 / 3 0 0 0 0 0 0 0 0 0 0
令 k1AHx1 + k2AHx2 + L + kpAHxp = 0 上式两边左乘A, 得: λi(k1x1 + k2x2 + L + kpxp) = 0 ⇒ k1 = k2 = L = kp = 0 表明AHxj, j = 1, 2, L, p是线性无关的. 因此, AAH的p重特征值也是 AHA的p重特征值. 再由AAH 与AHA的大于零的特征值个数相同, 可知: λi = µi > 0, i = 1, 2, L, r. 定义:设 定义: 设A∈Crm×n, AAH的正特征值为λi, AHA的正特征值为 µi. 称
2 2 1 2

矩阵分析第4章ppt课件.ppt

矩阵分析第4章ppt课件.ppt

从而
A
P 1
Ir 0
D 0
Q
1
P 1
Ir 0
I
r
D Q 1
BC
其中
B
P 1
Ir
0
Crmr ,
C Ir
D
Q
1
C rn r
A BIr D Q1 B D Q1 AQ B D
所以B是A中r 个线性无关的列
例 :分别求下面三个矩阵的满秩分解
1 2 1 0 1 2
(1)
0 0
0 1 1 (2) A 2 0 0
解: (1)由于
1 2
AAH 0 0
0 0
1 2
0 0
0 0
5 AAH 0
0
0 0 0
0 0 0
显然 AAH 的特征值为5,0,0,所以 A 的
奇异值为 5
(2)由于
0 2
AAH
0 2
1 0
1 0
1 1
0 0
AAH
2 0
0 4
显然 AAH 的特征值为 2,4,所以 A 的
2
0
cnn
2
n Unnn ,
c11 c21
cn1
R
c22
cn
2
cnn
显然矩阵 R 是一个正线上三角矩阵。
A是列满秩也有
注:Ar 1 2
r
c11 c21
cr1
1 2
r
c22
cr
2
crr
UrR 矩阵 R 是一个正线上三角矩阵
下面考虑分解的唯一性。设有两种分解式
A UR UR
1
2
1 2
1
1 2

矩阵分析第4章课件

矩阵分析第4章课件

矩阵满秩分解不唯一;但同一矩阵的两个满
秩分解的因式矩阵之间存在密切的关系( 见P153,定理4.1.2).
ACrmn r=rank A min{m,n} A的秩等于它的行秩、列秩或行列式秩。A的行( 列)秩是它的最大线性无关组的行(列)数;A 的行列式秩是它的非0子式的最大阶数。 A=BC rank A rank B & rank A rank C
1
初等变换与初等矩阵性质
①3类初等矩阵都是可逆的(行列式不为0). ②将A依次作初等矩阵P1,…,Pr对应的行(列)初等变
换等价于左(右)乘A以可逆矩阵Pr,…,P1(P1,…,Pr).
③可适当选第一类初等矩阵的乘积P使PA(AP)的 行(列)是A的行(列)的任意排列.可适当选第三类 初等矩阵P(i,j(k))中的k使P(i,j(k))A的(i,j) 元变为0.可适当选第二类初等矩阵P(i(k))中的k 使P(i(k))A的非零(i,i)元变为1.综合起来推出: Er 0 存在初等矩阵的乘积P和Q,使 PAQ= 0 0 m n 其中r=rank A.一般地,ACr 都 Er 0 存在m,n阶可逆阵P和Q使 PAQ=
a11 a1n AB ann
b11 b1n a11b11 * bnn annbnn
a11 a1n 1/ a11 * 1 1 A , aii 0 det A 0 A det A a 1/ a nn nn
1 C11 1 2 C21 1 C22 2 n Cn1 1 Cn 2 2 ... Cnn n

大学数学高数微积分第四章矩阵第四节课件课堂讲解

大学数学高数微积分第四章矩阵第四节课件课堂讲解
(1) (A-1)-1 = A;
(2) (kA)1 1A1 ; k
(3) (AB)-1 = B-1A-1,
(A1A2…Am)-1 = Am-1…A2-1A1-1 ;
(4) (AT)-1 = (A-1)T ;
(5) |A1| 1 ; |A|
(6) (Am)-1 = (A-1)m , m 为正整数.
特 殊 情形 .
在第二节我们也看到,矩阵与复数相
仿,有加法、减法、乘法三种运算 .
我们知道,复
数的乘法运算有逆运算,那么矩阵的乘法运算是否
也有逆运算呢?
如果有的话,这种运算如何定义,
如何计算呢? 这就是本节所要讨论的问题.
引 引 例 例
2 2
坐 坐 标 标 旋 旋 转 转 变 变 换 换
时 就 任 (
级方阵 B,使得
AB = BA = E ,
(1)
这里 E 是 n 级单位矩阵.
定义 11 如果矩阵 B 适合 (1),那么就称为 A
的逆矩阵,记为 A-1 .
2. 逆矩阵的唯一性
若方阵 A 可逆,则其逆矩阵唯一 .
证明 设 B 和 C 都是 A 的逆矩阵,则由定义

AB = BA = E,AC = CA = E,
于是
B = BE = B( AC ) = ( BA )C
所以逆矩阵唯一.
= EC = C .
证毕
三、矩阵可逆的条件
现在的问题是:在什么条件下矩阵 A 是可逆
的? 如果 A 可逆,怎样求 A-1 ?
为此先引入伴随
矩阵的概念.
1. 伴随矩阵
定义 12 设 Aij 是矩阵
a11
A
a21
a12

高等代数课件PPT之第4章矩阵

高等代数课件PPT之第4章矩阵
策中甲的得分矩阵,规定胜者得1分,败者得-1分, 平手各得零分
0
1
–1
–1
0
1
1
–1
0
石头 剪子 布
乙方
石头 甲
剪子 方

0 1 1 答案 : 1 0 1 .
1 1 0
2.矩阵的线性运算(矩阵加法、 数乘) (1)矩阵相等
定义 设有两个m×n矩阵
a11
A
a21
am1
a12 a22
am2
总利润:862.5元
C矩其(1阵中)定AA义c与Baaij 12B设11的a矩i1乘baa阵 1积12j22是a一Ai 2b个2 jmaaa×i 12j ssnm矩sa阵,bbiBs12b11sCj bbbi12sj22ascinki b.j kjmbbn12nn,
a m1 i
a1m,22,, m; aj ms1,2,bs,1n
矩阵,也就是一个数.
4 1 0
例8


阵A
1 2
0 1
3 0
21与B
1
2
1
1 0 3
3的 1
乘 积AB.
4

4 1 0
C AB
1 2
0 1
3 0
1
2
1
2
1
1 0 3
3 1 4
14 01 32 11 11 01 30 13 10 0 3 31 14
24 11 0 2 21
30
32
34
利润矩阵
由已知得
B
15
17.5
20
1220.5
总3.问A利B题2333润80241W:10521的这2L18330销一C售天31560F8利内7B1106.润,O5 总最0322B2和A小5711是号1.22这275500..多55牛里 设9少仔为7A.?裤5A23915872778.05..65521432.5(

某211高校研究生课程《矩阵论》第4章l矩阵的因子分解剖析

某211高校研究生课程《矩阵论》第4章l矩阵的因子分解剖析

(4.6.1)
引理4.6.2 设A C mn ,则
(1) AH A与AAH的特征值均为非负实数 ; (2) AH A与AAH的非零特征值相同,并且非零特征
值的个数(重特征值按重数计算)等于rank ( A).
定义4.6.1 设ACmn ,如果存在非负实数和非零向量
u Cn, v Cm使得
Au v, AH v u
定理4.6.1 若A是正规矩阵,则 A的奇异值是A的特征 值的模。
定理4.6.2 设 A是 m n 矩阵,且rank(A) = r,则存在 m阶酉矩阵V 和 n 阶酉矩阵U使得
V
H
AU
0
0 0
(4.6.5)
其中 diag(1,, r ),且1 r 0.
(4.6.5)称为矩阵 A的奇异值分解.
d1 a11 ,
dk
k k 1
,
k 2,, n
分解式 A LDU称为矩阵A的LDU分解。
一般说来,即使A是n阶非奇异矩阵, A未必 能作LU分解和LDU分解。
定义4.3.1 设ei是n 阶单位矩阵的第i列(i=1,2,…n), 以e1, e2,, en为列作成的矩阵[ei1 , ei2 , , ein ] 称为 n 阶 排列矩阵,其中 i1, i2 ,, in 是1,2,…n的一个排列。
推论4.5.2 若 A是n 阶实对称矩阵,则 A正交相似于实 对角矩阵,即存在n 阶正交矩阵 Q 使得
QT AQ
(4.5.13)
其中 diag(1,, n ),i (i 1,, n)是A的实
特征值。
4.6 奇异值分解
引理4.6.1 设A C mn ,则
rank( AH A) rank( AAH ) rank( A)

西北工业大学矩阵论PPT课件

西北工业大学矩阵论PPT课件

矩阵论讲稿讲稿编者:张凯院使用教材:《矩阵论》(第2版)西北工业大学出版社程云鹏等编辅助教材:《矩阵论导教导学导考》《矩阵论典型题解析及自测试题》西北工业大学出版社张凯院等编课时分配:第一章 17学时第四章8学时第二章5学时第五章8学时第三章8学时第六章8学时第一章 线性空间与线性变换§1.1 线性空间 一、集合与映射1.集合:能够作为整体看待的一堆东西. 列举法:},,,{321L a a a S =性质法:}{所具有的性质a a S = 相等(:指下面二式同时成立)21S S =2121,S S S a S a ⊆∈⇒∈∀即 1212,S S S b S b ⊆∈⇒∈∀即交:}{2121S a S a a S S ∈∈=且I 并:}{2121S a S a a S S ∈∈=或U 和:},{22112121S a S a a a a S S ∈∈+==+例1 R}0{2221111∈==j i a a a a A S R}0{2212112∈==j i a a a aA S ,21S S ≠ R},00{2211221121∈==a a a a A S S I R},0{21122221121121∈===j i a a a a a a a A S S U R}{2221121121∈==+j i a a a a a A S S 2.数域:关于四则运算封闭的数的集合.例如:实数域R ,复数域C ,有理数域,等等.Q 3.映射:设集合与,若对任意的1S 2S 1S a ∈,按照法则σ,对应唯一的.)(,2b a S b =∈σ记作 称σ为由到的映射;称为的象, 1S 2S b a a 2为b 的象源.变换:当1S S =时,称映射σ为上的变换. 1S 例2 )2(R})({≥∈==×n a a A S j i nn j i .映射1σ:A A det )(1=σ (R)→S 变换2σ:n I A A )det ()(2=σ ()S S → 二、线性空间及其性质1.线性空间:集合V 非空,给定数域K ,若在V 中(Ⅰ) 定义的加法运算封闭, 即V y x V y x ∈+∈∀)(,,元素对应唯一, 且满足(1) 结合律:)()()(V z z y x z y x ∈∀++=++(2) 交换律:x y y x +=+ (3) 有零元:)(,V x xx V ∈∀=+∈∃θθ使得(4) 有负元:θ=−+∈−∃∈∀)(,)(,x x V x V x 使得.(Ⅱ) 定义的数乘运算封闭, 即V kx K k V x ∈∈∀∈∀)(,,元素对应唯一, 且满足(5) 数对元素分配律:)()(V y ky kx y x k ∈∀+=+ (6) 元素对数分配律:)()(K l lx kx x l k ∈∀+=+(7) 数因子结合律:)()()(K l xkl lx k ∈∀=(8) 有单位数:单位数x x K =∈1,使得1. 则称V 为K 上的线性空间.例3 R =K 时,n R —向量空间; n m ×R —矩阵空间][t P n —多项式空间;—函数空间],[b a CC =K 时,—复向量空间; C —复矩阵空间n C n m ×例4 集合}{是正实数m m =+R ,数域}{R 是实数k k =.加法: mn n m n m =⊕∈+,R ,数乘: k m m k k m =⊗∈∈+R,,R 验证+R 是R 上的线性空间.证 加法封闭,且(1)~(2)成立. (3) 1=⇒=⇒=⊕θθθm m m m(4) m m m m m 1)(1)()(m =−⇒=−⇒=−⊕θ 数乘封闭,(5)~(8)成立.故+R 是R 上的线性空间.例5 集合R}),({212∈==i ξξξαR ,数域R .设R ),,(21∈=k ηηβ.运算方式1 加法: ),(2211ηξηξβα++=+数乘: ),(21ξξαk k k =运算方式2 加法: ),(112211ηξηξηξβα+++=⊕数乘: ))1(21,(2121ξξξα−+=k k k k k o 可以验证与都是)(R 2⋅+)(R 2o ⊕R 上的线性空间.[注] 在R 中, )(2o ⊕)0,0(=θ, . ),(2121ξξξα+−−=−Th1 线性空间V 中的零元素唯一,负元素也唯一.证 设与2θ都是V 的零元素, 则212211θθθθθθ=+=+=1θ设与都是的负元素, 则由1x 2x x θ=+1x x 及θ=+2x x 可得212111)()(x x x x x x x x ++=++=+=θ 22221)(x x x x x x =+=+=++=θθ例6 在线性空间V 中,下列结论成立.θ=x 0:θ=⇒=+=+x x x x x 01)01(01θθ=k :θθθθ=⇒=+=+k kx x k k )(kx)()1(x x −=−:()()(]1)1[()]([)1()1x x x x x x x x −=−++−=−++−=−2.减法运算:线性空间V 中,)(y x y x −+=−.3.线性组合:K c V x x i i ∈∈若存在,,, 使m m x c x c x ++=L 11, 则称x 是的线性组合,或者可由线性表示.m x x ,,1L x m x x ,,1L 4.线性相关:若有不全为零,使得m c c ,,1L θ=++m m x c x c L 11,则称m x x ,,1L 线性相关.5.线性无关:仅当全为零时,才有m c c ,,1L θ=++m m x c x c L 11,则称m x x ,,1L 线性无关.[注] 在R 中, )(2o ⊕)1,1(1=α, )2,2(2=α线性无关;)1,1(1=α, )3,2(2=α线性相关.(自证)三、基与坐标1.基与维数:线性空间V 中,若元素组满足 n x x ,,1L (1) 线性无关;n x x ,,1L (2) V x ∈∀都可由线性表示.n x x ,,1L 称为n x x ,,1L V 的一个基, 为n V 的维数, 记作n V =dim ,或者V . n 例7 矩阵空间n m ×R 中, 易见(1) ),,2,1;,,2,1(n j m i E j i L L ==线性无关;(2) .∑∑==×==mi nj j i j i n m j i E a a A 11)(故),,2,1;,,2,1(n j m i E j i L L ==是n m ×R 的一个基, .mn n m =×dimR2.坐标:给定线性空间V 的基,当时,有n n x x ,,1L n V x ∈n n x x x ξξ++=L 11.称n ξξ,,1L 为在给定基下的x n x ,,1L x 2坐标,记作列向量.Τ1),,(n ξξαL =例8 矩阵空间2R ×中,设22)(×=j i a A .(1) 取基 ,22211211,,,E E E E 2222212112121111E a E a E a E a A +++=坐标为Τ22211211),,,(a a a a =α(2) 取基 , , , =11111B =11102B =11003B=10004B 422432132122111)()()(B a B B a B B a B B a A +−+−+−= 421223122121112111)()()(B a a B a a B a a B a −+−+−+=坐标为Τ21221221111211),,,(a a a a a a a −−−=β[注] 一个元素在两个不同的基下的坐标可能相同,也可能不同. 例如:在上述两个基下的坐标都是;22n n E A =Τ)1,0,0,0(11E A =在上述两个基下的坐标不同.Th2 线性空间V 中,元素在给定基下的坐标唯一. 证 设V 的基为,对于,若 n x x ,,1L n V x ∈ n n x x x ξξ++=L 11n n x x ηη++=L 11则有 θηξηξ=−++−n n n x x )()(111L因为线性无关, 所以n x x ,,1L 0=−i i ηξ, 即),,2,1(n i i i L ==ηξ.故的坐标唯一.x n 例9 设线性空间V 的基为, 元素在该基下的坐标为n x x ,,1L j y ),,2,1(m j j L =α, 则元素组线性相关(线性无关)m y y ,,1L ⇔向量组m αα,,1L 线性相关(线性无关).证 对于数组, 因为m k k ,,1L θαα=++=++))(,,(11111m m n m m k k x x y k y k L L L 等价于θαα=++m m k L 11k , 所以结论成立. 四、基变换与坐标变换1.基变换:设线性空间V 的基(Ⅰ)为, 基(Ⅱ)为, 则n n x x ,,1L n y ,,1L y+++=+++=+++=n nn n n nn n nn x c x c x c y xc x c x c y x c x c x c y L L L L L L 22112222112212211111 C=nn n n n n c c c c c c c c c L M M M L L 212222111211写成矩阵乘法形式为 (C x x y y n n ),,(),,11L L =称上式为基变换公式,C 为由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵.[注] 过渡矩阵C 一定可逆. 否则C 的个列向量线性相关, 从而n n y ,,1L y 1−线性相关(例9).矛盾!由此可得111),,(),,(−=C y y x x n n L L称C 为由基(Ⅱ)改变为基(Ⅰ)的过渡矩阵.2.坐标变换:设在两个基下的坐标分别为n V x ∈α和β,则有 =++=n n x x x ξξL 11α),,(1n x x Ln n y y x ηη++=L 11β),,(1n y y L =βC x x n ),,(1L =由定理2可得βαC =,或者,称为坐标变换公式. αβ1−=C 例10 矩阵空间22R ×中,取基(Ⅰ) , , ,=10011A −=10012A =01103A−=01104A (Ⅱ) , , , =11111B =01112B =00113B=00014B(1) 求由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵; (2) 求由基(Ⅱ)改变为基(Ⅰ)的坐标变换公式. 解 采用中介法求过渡矩阵.基(0):, , ,=000111E =001012E =010021E=100022E (0)→(Ⅰ):1222112114321),,,(),,,(C E E E E A A A A = (0)→(Ⅱ):2222112114321),,,(),,,(C E E E E B B B B =,−−=00111100110000111C=00010011011111112C (Ⅰ)(Ⅱ):→=),,,4321B B B B (2114321),,,(C C A A A A −=−−==−0100012211101112210110011010011001212211C C C C+++++++==332143243214321432122221ηηηηηηηηηηηηηηηξξξξC五、线性子空间1.定义:线性空间V 中,若子集V 非空,且对1V 中的线性运算封闭,即 (1) 11,V y x V y x ∈+⇒∈∀ (2) 11,V kx K k V x ∈⇒∈∀∈∀称V 为1V 的线性子空间,简称为子空间.1[注] (1) 子空间V 也是线性空间, 而且V V dim dim 1≤.(2) }{θ是V 的线性子空间, 规定dim{0}=θ. (3) 子空间V 的零元素就是1V 的零元素. 例11 线性空间V 中,子集V 是1V 的子空间⇔对11,,,,V ly kx K l k V y x ∈+∈∀∈∀.有证 充分性. :1==l k 11,V y x V y x ∈+⇒∈∀0=l :110 ,V y kx kx K k V x ∈+=⇒∈∀∈∀故V 是1V 的子空间.必要性. 11 ,V kx K k V x ∈⇒∈∀∈∀ (数乘封闭)11 ,V ly K l V y ∈⇒∈∀∈∀ (数乘封闭)故 (加法封闭)1V y l x k ∈+例12 在线性空间V 中,设),,2,1(m i V x i L =∈,则 }{111K k x k x k x i mm ∈++==L V是V 的子空间,称V 为由生成的子空间.1m x x ,,1L 证 m m x k x k x V x ++=⇒∈L 111∀m m x l x l y V y ++=⇒∈∀L 111:1111)()(V x l l kk x l l kk y l kx m m m ,K l k ∈∀ ∈++++=+L根据例11知,V 是1V 的子空间.[注] (1) 将V 记作span 或者.1},,{1m x x L ),,(1m x x L L (2) 元素组的最大无关组是的基; m x x ,,1L ),,(1m x x L L (3) 若线性空间V 的基为,则V . n n x x ,,1L ),,(1n n x x L L = 2.矩阵的值域(列空间):划分(),n m n n m j i a A ××∈==C ),,()(1ββL m j C ∈β称),,()(1n L A R ββL =为矩阵的值域(列空间). A 易见A A R rank )(=dim . 例13 矩阵A 的值域}C {)(n x AxA R ∈==β.证 ∈∀β左, 有 右∈= =++=Ax k k k k n n n n M L L 1111),,(βββββ∈∀β右, 有左∈++===n n n n k k k k Ax βββββL M L 1111),,( 3.矩阵的零空间:设,称n m A ×∈C }C ,0{)(n x Ax xA N ∈==为矩阵A 的零空间.易见A n A N rank )(−=dim .Th3 线性空间V 中, 设子空间V 的基为n 1)(,,1n m x x m <L , 则存在n n m V x x ∈+,,1L , 使得为V 的基.n m m x x x x ,,,,,11L L +n 证线性表示不能由m n m x x V x n m ,,11L ∈∃⇒<+ ,,,11线性无关+⇒m m x x x L若,则是V 的基;n n m =+111,,,+m m x x x L n 否则,mn <+1线性表示不能由112,,,++∈∃⇒m m n m x x x V x L ,,,,211线性无关++⇒m m m x x x x L若,则是V 的基;m =+2211,,,,++m m m x x x x L n 否则,m . L L ⇒<+n 2依此类推, 即得所证.六、子空间的交与和1.子空间的交:}{2121V x V x x V ∈∈=且I VTh4 设V 是线性空间21,V V 的子空间,则V 是21V I V 的子空间. 证 212121,V V V V V V I I ⇒∈⇒∈∈θθθ非空∈+⇒∈∈+⇒∈⇒∈∀221121,,,V y x V y x V y x V y x V V y x I 21V V y x I ∈+⇒∈⇒∈∈⇒∈⇒∈∀∈∀221121,V kx V x V kx V x V V x K k I 21V V kx I ∈⇒ 所以V 是21V I V 的子空间.2.子空间的和: },{22112121V x V x x x x V V ∈∈+==+ Th5 设V 是线性空间21,V V 的子空间,则V 21V +是V 的子空间. 证 212121,V V V V V V +⇒+∈+=⇒∈∈θθθθθ非空∈∈+=∈∈+=⇒+∈∀22112122112121,,,,,V y V y y y y V x V x x x x V V y x )()(2211y x y x y x +++=+⇒,222111,V y x V y x ∈+∈+ 21V V y x +∈+⇒22112121,,,V x V x x x x V V x K k ∈∈+=⇒+∈∀∈∀221121,,V kx V kx kx kx kx ∈∈+=⇒ 21V V kx +∈⇒所以V 是21V +V 的子空间. [注] 不一定是21V V U V 的子空间.例如:在2R 中,V )()(2211e L V e L ==与的并集为}R ,0),({212121∈=⋅==i V V ξξξξξαU易见21212121)1,1(,,V V e e V V e e U U ∉=+∈但, 故加法运算不封闭.2Th6 设V 是线性空间1,V V 的有限维子空间,则)(dim dim dim )(dim 212121V V V V V V I −+=+ 证 记 ,dim 11dim n V =22n V =,m V V =21I dim 欲证 m n n V V −+=+2121)(dim (1) :(1n m =121121)V V V V V V =⇒⊂I I22121221)(V V V V V V V V =+⇒⊂⇒⊂Im n n n V V V −+===+212221dim )(dim (2) :(2n m =221221)V V V V V V =⇒⊂I I12112121)(V V V V V V V V =+⇒⊂⇒⊂Im n n n V V V −+===+211121dim )(dim(3) :设V 的基为,那么212L 1,n m n m <<21V I m x x ,,1L 扩充为V 的基: (Ⅰ) m n m y y x x −1,,,,,11L L 扩充为V 的基: (Ⅱ) m n m z z x x −2,,,,,11L L 考虑元素组: (Ⅲ)m n m n m z z y y x x −−21,,,,,,,,111L L L 因为 (Ⅰ),V (Ⅱ) ,所以 V V =1L =2L V =+21(Ⅲ) (自证). 下面证明元素组(Ⅲ)线性无关:设数组k 使得m n m n m q q p p k −−21,,,,,,,,111L L L m n m n m m y p y p x k x k −−+++++111111L L θ=+++−−m n m n z q z q 2211L由 (*)∈++−∈+++++=−−−−21111111)(2211V z q z q V y p y p x k x k x m n m n m n m n m m L L L 得 m m x l x l x V V x ++=⇒∈L I 1121 结合(*)中第二式得θ=+++++−−m n m n m m z q z q x l x l 221111L L(Ⅱ)线性无关0,0211======−m n m q q l l L L ⇒结合(*)中第一式得θ=+++++−−m n m n m m y p y p x k x k 111111L L(Ⅰ)线性无关0,0111======−m n m p p k k L L ⇒故元素组(Ⅲ)线性无关,从而是V 21V +的一个基. 因此 m n n V V −+=+2121)(dim . 3.子空间的直和:},{22112121V x V x x x x V V ∈∈+==+唯一唯一记作:V2121V V V ⊕=+Th7 设V 是线性空间21,V V 的子空间,则V 21V +是直和⇔}{21θ=V I V . 证 充分性.已知}{21θ=V I V :对于21V V z +∈∀,若∈∈+=∈∈+=221121221121,,,,V y V y y y z V x V x x x z 则有 2221112211,,)()(V y x V y x y x y x ∈−∈−=−+−θ22112211212211,,)(y x y x y x y x V V y x y x ==⇒=−=−⇒∈−−=−⇒θθI 故的分解式唯一, 从而V 21V V z +∈2121V V V ⊕=+.必要性.若}{21θ≠V I V ,则有21V V x I ∈≠θ.对于21V V +∈θ,有2121)(,),(,,V x V x x x V V ∈−∈−+=∈∈+=θθθθθθ即21V V +∈θ有两种不同的分解式.这与V 21V +是直和矛盾. 故}{21θ=V I V .2推论1 V 是直和1V +2121dim dim )(dim V V V V +=+⇔推论2 设V 是直和,V 的基为,V 的基为,221V +1k x x ,,1L 2l y y ,,1L 则V 的基为.1V +l k y y x x ,,,,,11L L 证 因为 ,且 2),,,,,(11l k y y x x L L L =1V V + l k V V V V +=+=+2121dim dim )(dim所以线性无关, 故是V 的基. l k y y x x ,,,,,11L L l k y y x x ,,,,,11L L 21V +§1.2 线性变换及其矩阵 一、线性变换1.定义 线性空间V ,数域K ,T 是V 中的变换.若对V y x ∈∀,,∀,K l k ∈,都有 )()()(Ty l Tx k ly kx T +=+, 称T 是V 中的线性变换. 性质 (1) θθ=+=+=)(0)(0)00(Ty Tx y x T T(2) T )()(0))(1()0)1(()(Tx Ty Tx y x T x −=+−=+−=− (3) 线性相关⇒线性相关V x x m ∈,,1L m Tx Tx ,,1L (4) 线性无关时,不能推出Tx 线性无关.V x x m ∈,,1L m Tx ,,1L (5) 是线性变换T y T Tx y x T +=+⇔)(,)()(Tx k kx T =(V y x ∈∀,,K k ∈∀)例1 矩阵空间nn ×R ,给定矩阵,则变换TX = BX +XB (n n B ×n n X ×∈∀R )是n n ×R 的线性变换.2.线性变换的值域:},{)(V x Tx y y T R ∈==3.线性变换的核: },{)(V x Tx x T N ∈==θTh8 设T 是线性空间V 的线性变换,则R (T )和N (T )都是V 的子空间. 证 (1)V 非空⇒非空. )(T R 1111st ,)(Tx y V x T R y =∈∃⇒∈∀ 2222st ,)(Tx y V x T R y =∈∃⇒∈∀)()(212121T R x x T Tx Tx y y ∈+=+=+ )21V x x ∈+Q ( )()()(111T R x k T Tx k y k ∈== (),1V kx K k ∈∈∀Q 故R (T )是V 的子空间.(2) )(,T N T V ∈⇒=∈θθθθ,即非空.)(T Nθ=+=+⇒∈∀Ty Tx y x T T N y x )()(,,即)(T N y x ∈+. θ==⇒∈∀∈∀)()(),(Tx k kx T K k T N x ,即kx )(T N ∈.故N (T )是V 的子空间.[注] 定义:T 的秩 =dim R (T ),T 的亏 = dim N (T ) 例2 设线性空间V 的基为, T 是V 的线性变换,则 n n x x ,,1L n ,),,()(1n Tx Tx L T R L =n T N T R =+)(dim )(dim证 (1) 先证:∀),,()(1n Tx Tx L T R L ⊂Tx y V x T R y n =∈∃⇒∈st ,)(∈++=⇒++=)()(1111n n n n Tx c Tx c y x c x c x L L L ),,(1n Tx Tx L 再证R :),,()(1n Tx Tx L T L ⊃ )()(st ,,,),,( 1111n n n n Tx c Tx c y c c Tx Tx L y ++=∃⇒∈∀L L L n )()()()(11T R Tx c Tx c y T R Tx n n i i V x ∈∈++=⇒∈⇒L(2) 设dim , 且的基为, 扩充为V 的基:m T N =)()(T N m y y ,,1L n n m m y y y y ,,,,,11L L +则 ),,(),,,,,()(111n m n m m Ty Ty L Ty Ty Ty Ty L T R L L L ++==设数组k 使得n m k ,,1L +θ=++++)()(11n n m m Ty k Ty k L , 则 θ=++++)(11n n m m y k y k T L因为T 是线性变换, 所以)(11T N y k y k n n m m ∈++++L , 故m m n n m m y l y l y k y k ++=++++L L 1111即 θ=+++−++−++n n m m m m y k y k y l y l L L 1111)()( 因为线性无关, 所以n m m y y y y ,,,,,11L L +0,,01==+n m k k L .因此 线性无关, 从而n m Ty Ty ,,1L +m n T R −=)(dim , 即dim . n m T R =+)( 例3 向量空间4R 中,),,,(4321ξξξξ=x ,线性变换T 为)0,0,433,3(43214321ξξξξξξξξ+−−−−+=Tx 求和的基与维数. )4(T R )(T N 解 (1) 取R 的简单基, 计算4321,,,e e e e Te ,)0,0,3,1(1=)0011(2,,,−=Te ,)0,0,3,3(3−−=Te ,Te )0,0,4,1(4−= 该基象组的一个最大线性无关组为. 21,Te Te 故dim R (T ) = 2,且R (T )的一个基为Te .21,Te (2) 记, 则 −−−−=43131311A }0{}{)(41====ξξθM A x Tx x T N 的基础解系为,.041=ξξM A 0233−4073 故dim N (T ) = 2,且N (T )的一个基为(3, 3, 2, 0),(-3, 7, 0, 4). 4.单位变换:线性空间V 中,定义变换T 为Tx )(V x x ∈∀=, 则T 是线性变换,记作T . e 5.零变换:线性空间V 中,定义变换T 为 )(V x Tx ∈∀=θ,则T 是线性变换,记作T .0 6.线性变换的运算:线性空间V ,数域K ,线性变换T 与T . 12 (1) 相等:若T )(21V x x T x ∈∀=,称T =T . 12 (2) 加法:定义变换T 为 )(21V x x T x T Tx ∈∀+=,则T 是线性变换,记作T 21T T +=.负变换:定义变换T 为 )()(1V x x T Tx ∈∀−=, 则T 是线性变换, 记作T 1T −=.(3) 数乘:给定,定义变换T 为 K k ∈)()(1V x x T k Tx ∈∀=,则T 是线性变换, 记作T 1kT =.[注] 集合Hom(V ,V )}{def的线性变换上的线性空间是数域V K T T =按照线性运算(2)和(3)构成数域K 上的线性空间,称为V 的同态.(4) 乘法:定义变换T 为 )()(21V x x T T Tx ∈∀=,则T 是线性变换, 记作T 21T T =.7.逆变换:设T 是线性空间V 的线性变换,若V 的线性变换满足 S T n)()()(V x x x TS x ST ∈∀== 则称T 为可逆变换,且S 为T 的逆变换,记作 . S =−1 8.幂变换:设T 是线性空间V 的线性变换, 则也是V 的线性变换.),3,2(1defL ==−m T T Tm m9.多项式变换:设T 是线性空间V 的线性变换,多项式)()(10K a t a t a a t f i mm ∈+++=L 则也是V 的线性变换. m m e T a T a T a T f +++=L 10)(二、线性变换的矩阵表示1.线性变换在给定基下的矩阵设线性空间V 的基为,T 是V 的线性变换,则Tx ,且有n x x ,,1L n n i V ∈+++=+++=+++=n nn n n nnn nn x a x a x a Tx xa x a x a Tx x a x a x a Tx L L L L L 22112222112212211111=nn n n n n a a a a a a a a a A L M M M L L 212222111211 写成矩阵乘法形式 TA x x Tx Tx x x n n n ),,(),,(),,(11def1L L L ==称A 为线性变换T 在基下的矩阵.n x x ,,1Ln n [注] (1) 给定V 的基和线性变换T 时,矩阵A 唯一. n x x ,,1L (2) 给定V 的基和矩阵A 时,基象组Tx 确定.n x x ,,1L n Tx ,,1L n V x ∈∀n n x c x c x ++=⇒L 11,定义变换()()n n Tx c Tx c Tx ++=L 11则T 是线性变换.因此线性变换T 与方阵A 是一一对应关系.例4 线性空间的线性变换为 ][t P n ()()()()][t P t f t f t f T n ∈∀′= .基(I):!,,!2,,12210n t f t f t f f nn ====L基(II):n n t g t g t g g ====,,,,12210L 记T 在基(I)下的矩阵为,T 在基(II)下的矩阵为.因为 1A 2A 112010,,,,0−====n n f Tf f Tf f Tf Tf L 112010,,2,,0−====n n ng Tg g Tg g Tg Tg L 所以 ,=010********M O O L L A=0002000102n A M O O L L 易见.21A A ≠)2(≥n 例5 线性空间V 中,设线性变换T 在基下的矩阵为A ,则n n x x ,,1L dim R (T ) = rank A ,dim N (T ) = n - rank A .证 rank A = m ⇔A 的列向量组n ββ,,1L 中最大无关组含m 个向量元素组Tx 中最大无关组含m 个向量 ⇔n Tx ,,1L dim R (T ) = dim ⇔m Tx Tx L n =),,(1L由例2知另一结论成立.2.线性运算的矩阵表示(将线性变换运算转化为矩阵运算)T Th9 设线性空间V 的基为,线性变换T 与的矩阵n n x x ,,1L 12A 与,则 B (1) T 1+T 2在该基下的矩阵为B A +. (2) kT 1在该基下的矩阵为. kA (3) T 1T 2在该基下的矩阵为AB . (4) T 在该基下的矩阵为11−1−A .证 ()()()()B x x x x T A x x x x n n n n ,,,,,,,,,112111L L L L T == (1) 略.(2) 略.(3) 先证:()()[]()[]C x x T C x x T c C n n m n ij ,,,,,11L L ==×∀左=[]()()[]∑∑∑∑=iimii i im i i Tx c Tx c x c x c,,,,11L L T=()=C Tx Tx n ,,1L 右由此可得 ()()()[]()[]B x x T x x T T x x T T n n n ,,,,,,11121121L L L ==()[]()AB x x B x x T n n ,,,,111L L ==(4) 记T,则 211T =−()131221−=⇒==⇒==A B I BA AB T T T T T e .3.象与原象坐标间的关系Th10 线性空间V 的基为线性变换T 在该基下的矩阵为A ,n ,,,1n x x L 的坐标为 ,T x 的坐标为,则 .nV x ∈n ξξM 1n ηηM 1 =n n A ξξηηM M 11 证 n n x x x ξξ++=L 11()()()() ==++=n n n n n n A x x Tx Tx Tx Tx Tx ξξξξξξM L M L L 111111,,,,由定理2知 .= n n A ξξηηM M 11 4.线性变换在不同基下矩阵之间的关系n Th11 线性空间V 的基(I):,基(II):n x x ,,1L n y y ,,1L 线性变换T :()()A x x x x n n ,,,,11L L T =()()B y y y y T n n ,,,,11L L = 由基(I)到基(II)的过渡矩阵为C ,则.AC C B 1−= 证 因为 ()()()()AC C y y AC x x C x x T y y T n n n n 11111,,,,,,−===L L L L ()()B y y y y T n n ,,,,11L L = 所以 . AC C B 1−=三、线性变换的特征值与特征向量1.定义 线性空间V ,线性变换T ,若K ∈0λ及V x ∈≠θ满足Tx x 0λ=, 称0λ为T 的特征值,x 为T 的对应于0λ的特征向量(元素). 2.算法 设线性空间V 的基为,线性变换T 的矩阵为. n n x x ,,1L n n ×A T 的特征值为0λ,对应的特征向量为x .x 的坐标为,T x 的坐标为=n ξξαM 1αA ,x 0λ的坐标为α.λ0 因为 αλαλ00=⇔=A x Tx ,所以T 的特征值与A 的特征值相同; 的对应于T 0λ的特征向量的坐标就是A 的对应于0λ的特征向量.例6 设,线性空间=1011B (){}R ,0221122∈=+==×ij ij x x x x X V , 线性变换为()V X B X X B ∈−=T T TX ,求T 的特征值与特征向量.解+ + −= −=⇒∈000000002112111111211211x x x x x x x xX V X+ + −=010000101001211211x x x 可得V 的简单基为= = −=0100,0010,1001321X X X 由公式求得 TX−= −= −=0110,0110,0110321TX TX 故T 在简单基下的矩阵为−−−=111111000A A 的特征值与线性无关的特征向量为;====110,011,02121ααλλ −==110,233αλ T 的特征值与线性无关的特征向量为()−====1011,,,01321121αλλX X X Y Y ()==0110,,23212αX X X ()−===0110,,,2332133αλX X X Y 例7 线性空间V ,线性变换T ,{}V x x Tx x ∈==,00λλV 是V 的子空间. 证 ∈⇒=∈θθλθθ0,T V 0λV , 即V 非空.0λ 0(),λV y x ∈∀()y x y x Ty Tx y x T +=+=+=+⇒000λλλ0λV y x ∈+⇒()()()()kx x k Tx k kx T V x K k 000,λλλ===⇒∈∀∈∀⇒0λV kx ∈0λ0 故V 是V 的子空间.[注] 若λ是线性变换的特征值,则称V 为T 的特征子空间.0λ 3.矩阵的迹:.()∑=×==ni ii nn ija A a A 1tr ,∆Th12 ()()BA AB B A m n n m tr tr ,=⇒××.证 ()()m n ij n m ij b B a A ××==,,()m m ij u AB ×=∆,()n n ij v BA ×=∆:,v()∑===nk ki ik ni i in i ii b a b b a a u 111,,M L ()∑== =m i ik ki mk k km k kk a b a a b b 111,,M L()()BA v a b b a u AB nk kk n k m i ik ki mi n k ki ik mi ii tr tr 111111=== ==∑∑∑∑∑∑====== Th13 若A 相似于B ,则tr B A tr = .证 由AP P B 1−=可得 ()()A P AP AP PB tr )(tr tr tr 11===−− [注] 因为相似矩阵有相同的特征值(Th14 -- 线性代数课程结论)所以线性变换的特征值与线性空间中基的选取无关4.三角相似Th17 相似于上三角矩阵.n n A × 证 归纳法.n =1时,()11a A =是上三角矩阵⇒A 相似于上三角矩阵. 假设n = k -1时定理成立,下证n = k 时定理也成立.的特征值为k k A ×k λλλ,,,21L ,对应1λ的特征向量为1x 111x Ax λ=⇒. 扩充为C 的基:(列向量)1x k k x x x ,,,21L ()k x x x P ,,,211L =可逆,()k Ax Ax Ax AP ,,,211L = ()k j x b x b x b Ax Ax kkj j j j k j ,,2C 2211L L =+++=⇒∈()=kk k k k k b b b b b b x x x AP L M MM L L L 222211212110,,,λ=−011121111A b b AP P k M L λ 的特征值为1A k λλ,,2L ,由假设知,存在1−k 阶可逆矩阵Q 使得,=−k Q A Q λλM O L *211=000012Q P M L ∆==⇒=−k AP P P P P λλλ∆***21121O M O LL 由归纳法原理,对任意n ,定理成立. 5.Hamilton-Cayley 定理Th18 设,则()()n n n n n n a a a A I A ++++=−=−−×λλλλλϕ∆111det ,L ()n n n n n n O I a A a A a A A ×−−=++++=111L ∆ϕ证 A 的特征值为()()()()n n λλλλλλλϕλλλ−−−=⇒L L 2121,,,.由Th17知,存在可逆矩阵,使得. n n P ×=−n AP P λλM O L *11 ()()()()I AP P I AP P I AP P AP P n λλλϕ−−−=−−−−121111LL O M OLO M OL−−−−=221112*0*****0λλλλλλλλn n−−−0***11n n n λλλλM O O LL OM O L LO M M M O L L−−−=33231*0******00**00**00**00λλλλλλn O n n n =−−−0***11λλλλM O O L 即 ()()O A O P A P =⇒=−ϕϕ1. [注] (1) ()I a A a A a A a A a A n n n n nn 1221111,00−−−−−++++−=≠⇒≠L (2) {}I A A A n n ,,,span 1L −∈例8 ,计算−−=210111111A 501002A A +. 解 ()()()21det )(,2)(250100−−=−=+=λλλλϕλλλA I fϕ除f : ()2210)()()(λλλλϕλb b b g f +++=()λλλϕλ212])()([)(b b g f ++′=′ 由 可得5110022)2(,200)1(,3)1(+==′=f f f−+=+−−=−+=⇒ +=++=+=++2032260622400222242 2002 35110025210115110005110021021210b b b b b b b b b b b()()2210A b A b I b A f O A ++=⇒=ϕ 6.最小多项式:以为根,且次数最低的首1多项式,记作n n A ×()λm . ()()()11≥∂⇒≠=⇒=λλm O I A f f()()()()n m O A A I ≤∂⇒=⇒−=λϕλλϕ18Th ,det例9 ()()()42,0312512332−−=−−−−=λλλϕA ()()()()1:R 11>∂⇒≠+=∈∀+=λλλm O kI A A f k k f()()()()()()()()λλλλλ22242:42f m O I A I A A f f =⇒=−−=−−= Th19 (1) 多项式()λf 满足()()()λλf m O A f ⇒=;(2) ()λm 唯一.证 (1) 反证法.()()()()()()λλλλλλr g m f f m +=⇒/| ()0≡/λr 且()()λλm r ∂<∂ ()()()()A r A g A m A f +=⇒ ()()()λλm r O A r O A m O A f ∂<∂=⇒==,)(,)(()λm ⇒不是A 的最小多项式,矛盾!(2) 设()λm 与()λm~都是A 的最小多项式,则 ()()()()()()()()λλλλλλm m m m O A m m m O A m ~|~~|~1=⇒⇒=⇒=首 Th20 ()λm 与()λϕ的零点相同(不计重数).) 证 Th19(λm ⇒的零点是()λϕ的零点.再设0λ是()λϕ的零点,则有()()()x m x A m x x Ax 000λλ=⇒≠=()()()0000=⇒=⇒=λλm x m O A m , 故也是0λ()λm 的零点.[注] ()()的全部单因式一定含λϕλm ⇒20Th . 但()λm 不一定是()λϕ的全部单因式的乘积. 例如:. ()()()()1,1,10112−≠−= =λλλλϕm A 7.最小多项式求法Th21 对,设n n A ×A I −λ的第i 行第j 列元素的余子式为()λij M ,则 ())(det )(λλλd A I −=m ([])(max )(,λλij j i M d =)例10 设,求−−−−=031251233A )(λm . 解 ,−−−−=−λλλλ31251233A I ()()()42det )(2−−=−=λλλλϕA I , 65211+−=λλM ()2321−=λM , ()2231−=λM212−=λM , , 23222+−=λλM ()2232−=λM()213−−=λM , ()2323−−=λM , 128233+−=λλM ()()8642)()()(,2)(2+−=−−==−=λλλλλλϕλλλd m d 例11 相似于n n A ×()()λλB A n n m m B =⇒×.证11−−=⇒=PBP A AP P B 取)()(λλA m f =, 则()O A m A f A ==)(, 从而有 ()()O P A f P AP P f B f ===−−11)(①()()() |),(|19Th λλλλA B B m m f m 即⇒ 取)()(λλB m g =, 则O B m B g B ==)()(, 从而有 ()()O P B g P PBP g A g ===−−11)(② ()()() |),(|19Th λλλλB A A m m g m 即⇒ ①+②得:()()λλB A m =m .四、对角矩阵Th24 在线性空间V 中,线性变换T 在某基下的矩阵为对角矩阵 n T 有n 个线性无关的特征向量(元素).⇔证 必要性.设V 的基为,且n n x x ,,1L ()()Λn n x x x x ,,,,11L L T =,),,diag(1n λλΛL =,则有()()(n n n n n x x x x Tx Tx λλλλ,,,,,,11111L O L L ==) ),,2,1(n j x Tx j j j L ==⇒λ是T 的n 个线性无关的特征向量 n x x ,,1L ⇒ 充分性.设T 有n 个线性无关的特征向量,即 n y y ,,1L T n j y y j j j ,,2,1,L ==λ取y 为V 的基,则有n y ,,1L n ()()()n n n n y y Ty Ty y y T λλ,,,,,,1111L L L === ()n n y y λλO L 11,, Th25 相似于对角矩阵n n A ×⇔A 有n 个线性无关的特征向量(列向量). 证 A 相似于),,diag(1n λλΛL =()n x x P ,,1L =⇔存在可逆矩阵,使得Λ=−AP P 1 ()()Λn n x x x x A ,,,,11L L =⇔n j x Ax j j j ,,2,1,L ==⇔λ A 有n 个线性无关的特征向量 ⇔n x x ,,1L Th26 有n 个互异的特征值A 相似于对角矩阵.n n A ×⇒ 算法:线性空间V 的基,线性变换T 在该基下的矩阵A 相似于n n x x ,,1L),,diag(1n λλΛL =,确定V 的新基,使得T 在新基下的 n n y y ,,1L 矩阵为Λ.求P 使Λ=−AP P 1,令()()P x x y y n n ,,,,11L L =,则有 ()()()AP x x P x x T y y T n n n ,,,,,,111L L L ==()()Λn n y y AP P y y ,,,,111L L ==−例12 在22R ×中, 给定, 线性变换为=0410B XB TX = , )2R 22×∈∀X (求2R ×的一个基, 使线性变换T 在该基下的矩阵为对角矩阵.解 取22R ×的简单基, 求得T 在该基下的矩阵为22211211,,,E E E E=0100400000010040A 求P 使得Λ=−AP P 1:,−−=2222Λ−−=1010202001010202P 由可得P E E E E B B B B ),,,(),,,(222112114321= −= −= = =1200,0012,1200,00124321B B B B 故在基下的矩阵为T 4321,,,B B B B Λ. 五、不变子空间线性空间V ,子空间V ,线性变换T .1 若对∀,有Tx ,称V 是T 的不变子空间. 11V x ∈1V ∈1[注] V 是T 的不变子空间时,可将T 看作V 中的线性变换.1例 ① 子空间{V x x Tx x ∈==,00λλ}V 是T 的不变子空间.000λλλV x Tx V x ∈=⇒∈∀Q ② 子空间R (T )是T 的不变子空间. ()()T R Tx V T R x ∈⇒⊂∈∀Q ③ 子空间N (T )是T 的不变子空间. ()()T N Tx T N x ∈=⇒∈∀θQ④ 与V 1V 2是T 的不变子空间2121,V V V V +⇒I 亦是T 的不变子空间.1°21221121,,V V Tx V Tx V x V Tx V x V V x I I ∈⇒∈∈∈∈⇒∈∀ 2°22112121,,V x V x x x x V V x ∈∈+=⇒+∈∀ 221121,,V Tx V Tx Tx Tx Tx ∈∈+=⇒ 21V V Tx +∈⇒Th27 线性空间V ,线性变换T ,V 与V 是T 的不变子空间,且n 1221V V V n ⊕=.T 在V 1的基下的矩阵为A 1,,1n x x L 1,T 在V 2的 基下的矩阵为A 2,,1n y y L 2.则T 在V 的基n 21,,,,,11n n y y x x L L 下的矩阵为 .=21A OO AA 证 因为 ()()11111,,,,A x x Tx Tx n n L L =,()()21122,,,,A y y Ty Ty n n L L =所以 ()21,,,,,11n n y y x x T L L ()()[]21,,,,,11n n Ty Ty Tx Tx L L = ()()[]211121,,,,,A y y A x x n n L L =()()[]=211121,,,,,A O O A y y x x n n L L ()A y y x x n n 21,,,,,11L L =[注] 若T 在V 的基下的矩阵,则 n 21,,,,,11n n y y x x L L=21A OO AA ()1,,11n x x L V L ∆=与()2,,12n y y L L ∆=V 都是T 的不变子空间,且V . 2−1V V n ⊕=六、Jordan 标准形1.λ矩阵:()()()()λλλij n n ij a a A ,×=是λ的多项式. (A 的秩:()λA 中不恒等于零的子式的最高阶数.)λ−λ矩阵的初等变换: 行变换 列变换(1) 对调: r j i r ↔ c j i c ↔ (2) 数乘()0≠k : kc i kr i (3) 倍加(多项式是 )(λp ): ()j i r p r λ+ ()j i c p c λ+ 2.行列式因子:()=λk D 最大公因式(){}阶子式的所有k A λ 不变因子: ()()()()()n k D D D d k k k ,,2,1,101L ===−λλλλ初等因子: ()λk d 的不可约因式[注] 考虑−λ矩阵A I −λ可得A 的最小多项式()()()λλλλ1)(−==n n n D D d m例13 ,求−−=201034011A A I −λ的全体初等因子. 解()1,2010340111=−−−−+=−λλλλλD A I 因为(24210430134−=−−−=−−λλλλ与) 互质,所以 ()()()()()23212det ,1−−=−==λλλλλA I D D .不变因子为 ()()()()()21,1,12321−−===λλλλλd d d .全体初等因子为 .()2,12−−λλ 3.初等变换法求初等因子()()多项式是首1)()()(1λλλλk n f f f A→O)(λk f 的不可约因式为()λA 的初等因子例如:在例13中−−−+−→−−−−+=−↔21004301120103401121λλλλλλλc c A I−−−→−−−+−→−+−−+2100)1(00012100)1(00112)1()1(2)3(11212λλλλλλλc c c r r ()()()()−−−−→−−−→−+↔21002100101021000121222332λλλλλλr r r r−−→−−−)2()1(000100012)1()2(223λλλc c c 于是 ()()()()()21,1,12321−−===λλλλλf f f .故A I −λ的全体初等因子为()2,12−−λλ.[注] 设()n n ij a A ×=,称A I −λ的行列式因子(不变因子,初等因子) 为A 的行列式因子(不变因子,初等因子).4.Jordan 标准形设()n n ij a A ×=的全体初等因子为()()()s i ms mi mλλλλλλ−−−,,,,11L L则有 ()()L ===−=−)()()(det 1λλλλλϕn n n d D D A I()()()s i ms mi mn d d D λλλλλλλλλ−−−==L L L 1110)()()(而且 m n m m s i =++++L L 1对于第i 个初等因子构造阶Jordan 块矩阵,以及准对角(i mi λλ−)J J J i m i 矩阵如下:ii m m i ii i J ×=λλλ11O O ,=s J J J J O21称为矩阵A 的Jordan 标准形.Th29 设矩阵A 的Jordan 标准形为J ,则存在可逆矩阵P ,使得 .J AP P =−1例如:在例13中,A 的Jordan 标准形为=2111J . [注] 若A 的全体互异特征值为l λλ,,1L ,表示A 的Jordan 标准形中i m 含i λ的Jordan 块的最高阶数,则()()l ml mm λλλλλ−−=L 11)(.5.特征向量分析法求初等因子设()()A I −=λλϕdet 的一个不可约因式为()r0λλ−,则是A 的k 个初等因子的乘积(r0λλ−) ()00=−⇔x A I λ的基础解系含k 个解向量(证明略去) ⇔ 对应特征值0λ有k 个线性无关的特征向量 ⇔ ()A I n k −−=0rank λ例14 求的Jordan 标准形.=1132231121A) 解2()1()det()(3−−=−=λλλλϕA I 由rank 知,(是A 的2)1(=−A I 3)1−λ224=−个初等因子的乘积,即2)1(−λ和()1−λ的乘积, 故A 的全体初等因子为. 2,1,)12−−−λλλ(A 的Jordan 标准形为.=21111J [注] 在例14中,将,233=a 143=a 改作133=a ,043=a 时,此法失效.6.相似变换矩阵的求法仅适用于初等因子组中()j i j i ≠≠λλ的情形.()()()()i m i i s iX X P P P P ,,,,,11L L == s i J P AP PJ AP i i i ,,2,1,L ==⇔=()()()()()()()()()()i m i i m i i i i i i m i i ii i X X X X X AX AX AX λλλ++=−121121,,,,,,L L ()()()()()()()()()()()()()()()()−=−−=−−=−−=−=−=−−−0 011121211的一个解是的一个解是的非零解是i m i i m i m i m i i i i i i i i i i i i i i i X X A I X X X A I X X A I X X X A I X A I X X A I λλλλλλL L L L L L可以证明:()()()i m i i iX X X ,,,21L 线性无关. 在例13中,2,111==m λ,求()()1211,X X :()−=−−−−=−121,101024012111X A I λ()[]()−=−−−−−−=−−110,110120241012,12111X X A I λ 1,222==m λ, 求()21X :()=−−−=−100,001014013212X A I λ.故.−−=111012001P 例15 解线性微分方程组 ()()()+=′+−=′+−=′3132122112 34ξξξξξξξξξt t t . 解 ()()()()()()()()()()t Ax t x A t t t t x t t t t x =′ −−=′′′=′=:201034011,,321321ξξξξξξ已求得,使得−−=111012001P J AP P =−1 2111=,则有 ()()()[]()[]t x P J t x P t x APP P t x P 11111−−−−−=′⇒=′()()()()()==−t t t t x P t y 3211ηηη∆()()t y J t y =′⇒()()()=′=′+=′33222112 ηηηηηηηt t t ()()()() =+=⇒+=′=⇒t t t t t ec t e t c e c t e c t e c t 23321121122ηηηηη ()()+−−+==3212112ηηηηηηt y P t x ()()()()() ++−−=++=+=⇒tt tt t t e c t c e c t e t c e c t e t c e c t 232132122111122ξξξ (c 为任意常数) 321,,c c [注]})({)(0211∫−+=ttd e c e t ττηητ求线性变换在给定基下的矩阵——方法总结:n 给定线性空间V 的基,设线性变换在该基下的矩阵为n x x ,,1L T A . 一、直接法(1) 计算基象组T ,并求出T 在基下的坐标 )(,),(1n x T x L )(j x n x x ,,1L (列向量)),,2,1(n j j L =β;(2) 写出T 在给定基下的矩阵n x x ,,1L ),,(1n A ββL =. 二、中介法(1) 选取V 的简单基,记作n n εε,,1L ;(要求V 中元素在该基下的坐标能够直接写出)n (2) 写出由简单基改变为给定基的过渡矩阵C (采用直接法); (3) 计算基象组T )(,),(1n T εεL ,并写出T )(j ε在简单基n εε,,1L 下的坐标 (列向量)),,2,1(n j j L =β,以及T 在简单基下的矩阵),,(1n B ββL =;(4) 计算T 在给定基下的矩阵. n x x ,,1L BC C A 1−=三、混合法(1) 选取V 的简单基,记作n n εε,,1L ;(2) 写出由简单基改变为给定基的过渡矩阵C (采用直接法),则有 =),,(1n x x L C n ),,(1εεL(3) 计算基象组T ,并写出T 在在简单基)(,),(1n x T x L )(j x n εε,,1L 下的坐标(列向量)),,2,1(n j j L =β,以及矩阵),,(1n B ββL =,则有))(,),((),,(11n n x T x T x x T L L =B n ),,(1εεL =BC x x n 11),,(−L =(4) 计算T 在给定基下的矩阵.n x x ,,1L B C A 1−=§1.3 欧氏空间与酉空间 一、欧氏空间1.内积:线性空间V ,数域R ,对V y x ∈∀,,定义实数()y x ,,且满足⑴ 交换律 ()()x y y x ,,=⑵ 分配律 ()()()V z z x y x z y x ∈∀+=+,,,, ⑶ 齐次性 ()()R ,,,∈∀=k y x k y kx ⑷ 非负性 ()()θ=⇔=≥x x x x x 0,,0, 称实数(为x 与y 的内积.)y x , 例 ① 线性空间n R 中:()()n n y x ηηξξ,,,,,11L L ==内积1:()n n y x ηξηξ∆++=L 11, 内积2:() ()0,,11>++=h h y x n n h ηξηξ∆L ② 线性空间n m ×R 中:()()n m ij n m ij b B a A ××==, 内积:()()∑∑====mi nj ij ij AB b a B A 1T 1tr ,∆ ③ 线性空间C 中:[b a ,]()()t g t f ,是区间[]b a ,上的连续函数 内积:(()())()()∫=badt t g t f t g t f ∆,2.欧氏空间:定义了内积运算的实线性空间. 设欧氏空间V 的基为有n n n V y x x x ∈∀,,,,1对L()()∑==⇒++=++=n j i j i j i n n n n x x y x x x y x x x 1,1111,,ηξηηξξL L 令 ()j i ij x x ,=a (i )n j ,,2,1,L =则称为基的度量矩阵(Gram Matrix ),此时有n n ij a A ×=)(n x x ,,1L。

第4章 矩阵分解-1

第4章  矩阵分解-1

3 1 2
H2H1A
0
1
1
R
0
0
0
矩阵分析简明教程
Q
H
H 1
21
1 3
1
2 2
2 1 2
2
2 1
所求的QR分解为
A QR
8
0 1 1
矩阵分析简明教程
1 5
x1 2x2 x3 5x2 3x3
0 1
12 5
x3
4 5
(
5 12
)
3 5
x1
2x2 x2
1 3 0
x3
1 3
(2)
x1 x2
1 3 0
x3 1 3
(II )
矩阵分析简明教程
用矩阵形式表示,系数矩阵
1 2 1 r12 (3) 1 2 1
角方阵 R ,使得
A QR
当 m = n 时 ,Q 就 是 酉 矩 阵 或 正 交 矩 阵 。
矩阵分析简明教程
例 1 将下列矩阵进行QR分解:
1 2 2
A
1 0
0 1
2 1
4
矩阵分析简明教程
解: 1 (1,1,0, )T, 1 1 (1,1,0)T
1
||
1 1
||
1 (1,1, 0)T 2
定理4.2.3 设 e1 1, 0,, 0T C n ,
x1 , x2 ,, xn T C n , 0

x1
x1 ,
,
x1
0 ,u
e1
x1 0
e1
H E 2uuH是n 阶Householder矩阵,且
H -e1
矩阵分析简明教程
定理4.2.4(QR分解)设 A为 任 一 n 阶 矩 阵 则必存在 n 阶酉矩阵 Q 和 n 阶上三角方

西北工业大学矩阵论复习ppt课件

西北工业大学矩阵论复习ppt课件
c上的线性空间v上的t一定存在v的一个基使得t在该基下的矩阵是jordan矩阵上的t存在v的一个基使得t在该基下的矩阵为对角阵t有n个线性无关的特征向量
矩阵论复习 一. 线性空间 1. 线性空间的概念 2. 线性空间的基,维数与坐标(基变换与与坐标变换) 3. 线性子空间的概念与运算
(1)定义 (2) 运算(交与和,直和)
(1)证明:
是Vn中的向量范数。
(2)设xVn在基 (II) y1,y2,,yn下的坐标为 =(b1,b2,bn)T,且由基 (I) 到基 (II) 的过渡矩阵为C,
x 2
;.
21
x 证明:
C为正交矩阵.
6. 给定矩阵A,BCnn,且2 B可逆,定义
验证 7. 设
x 是Cn中的向量范数。 ,证明
R(x)
xT Ax xT x
,
x0
四. 矩阵的直积 (AB )
;.
(i
,
j
)
1 0
i
1i3
j j
3. 设1,2;1, 2是欧式空间V2两个基, 又 1=1-22, 2=1-2,
(1,1)=1, (1,2)=-1 ,(2,1)=2,(2,2)=0 分别求基1,2与1,2的度量矩阵. 4. 设实线性空间Vn的基1,2,,n,设,Vn 在该基下的坐标分别为(1,,n)T,(1,,n)T; 定义 (,)=11++nn 证明 :(1)(,)是Vn的内积;
1 2 2 A 2 1 2
2 2 1
证明:W=L(2-1, 3-1)是T 的不变子空间.
;.
9
7. 求下列矩阵的Jordan标准形
1 A3
2
1 3 2
1 3 , 2

西北工业大学《线性代数》课件-第4章

西北工业大学《线性代数》课件-第4章

1
1
1
1
试判断 4是否可由 1, 2 , 3 线性表示?如果可以的
话,求出一个线性表示式.
解 4 可由 1, 2 , 3 线性表示 存在一组数 k1, k2 , k3
使得
4 k11 k22 k33
5 1 1 3
3 k1 0 k2 1 k3 1
1 1 1 1
2
➢ 非零向量单位化
设 0 ,单位化向量
0
则有 0 1且 0与 同向.
九、小结
1. n维向量的定义; 2. n维向量的运算规律;
§4.2 向量组的线性相关性
一、线性相关与线性无关
1. 线性组合 定义4.6 设 ,1,2,,m均为n维向量,若有一组 数 k1, k2 ,, km ,使得
当 α 0 且 β 0 时,即 α 0 且 β 0 时,0 α, β 1
αβ
可令 cos α, β ,0 α, β α β cos
αβ
可看作两个向量 α 与 β 之“夹角”
⒋ 正交
若[, ] 0,则称向量 与 正交,记做
[, ] 0
⒌ 是单位向量 1
b
b2
bm
三、两向量相等
设向量
α (a1, a2 ,, ak )
β (b1, b2 ,, bl )

α β k l 且 ai bi
(i 1,2,, k)
四、零向量
分量都是0的向量称为零向量,记做 0,即
0 (0,0,,0).
五、向量的线性运算
⒈ 加法 设
α (a1, a2 ,, an )
2 2 2 ( )2
几何解释:三角形两边 之和大于第三边
α
β

矩阵论简明教程7

矩阵论简明教程7


A 1 In
B


A 1 O
(D

O CA1B) 1



Im CA 1
O I n
=
A 1
A1B(D CA1B)1CA1 (D CA1B)1CA1

A1B(D CA1B)1 (D CA1B)1


故得

A C
B D

=

Im CA 1
O In

OA
D

B CA
1 B

=

A C
D

O CA1B


Im O
A 1 In
B

=

Im CA 1
O In

OA
这是分块矩阵的分块三角分解。 利用这组公式可以得到
li1

ai1 u11
(i
2,, n)

k 1
ukj akj lkr urj ( j k)

r 1

lik

1 u kk
(aik

k 1
litutk )
t 1
(i k 1)
( k 2,3,, n )
97
这就是 Doolittle 分解的紧凑计算格式。
g n1
g 22
gn2

gnn
g 22

gn2
g nn


(只比较下三角部分)
a11 akk

g121 ,
g
2 k1

ai1 gi1 g11 (i

矩阵分解ppt课件

矩阵分解ppt课件
2 1 6 5 1 2 2 8
1 0 0 01 0 0 01 0 2 1

1 2
1 1
0 1
0 0 0 0
2 0
0 1
0 0 0 0
1 0
1 1
2 L~DU~ 1
1
2 1
2
1
0
0
0
5 0
0
0
1
Department of Mathematics
Department of Mathematics
7
思 路
通过比较法直接导出 L ~和 U 的计算公式。
a11 a12 a1n 1
u11 u12 u1n
Aa21
a22
a2nl21
1


u22 u2n
an1 an2 ann ln1 1
L 为一般下三角阵而 U~为单位上三角阵的分解称
为L ~C为rou单t 位分下解三。角阵而 U为一般上三角阵的分解
称为Doolittle分解
证明: AL~U 设: AL ~U
L ~ (li) jn n ,(lij 0 ,ij)
U (u i) jn n ,(u ij 0 ,ij)
1 2 4 5l21 l22 0 00 1 u23 u24
2 1 6 5 1 2 2 8
ll43
1 1
l32 l42
l33 l43
00 l440
0 0
1 0
u134
Department of Mathematics
10
由此: l11 1, l21 1, l31 2, l41 1
2 1 6 5 2 1 1 00 0 1 1 1 2 2 8 1 2 2 50 0 0 1

矩阵论四 矩阵的分解

矩阵论四  矩阵的分解

1
mk1,k
mmk
1
1
Lk Lk
A (k ) b (k)
A(k 1) b (k1)

1
Lk A(k )
Hale Waihona Puke 1 mk1,kmmk
a (1) 11
1
1
a(k) kk
a(k) k 1k
a(k) mk
a(k)
kk 1
a(k) k 1k 1
a(k) mk 1
a (1) 1n
使得
PA
Ir 0
D
0
于是有
A
P1
Ir 0
Ir
其中
D BC
B
P1
Ir
0
Crmr ,C
Ir
D Crrn
r 如果 A 的前 列线性相关,那么只需对 A r 作初等列变换使得前 个列是线性无关的。然
后重复上面的过程即可。这样存在
P Cmmm , Q Cnnn
且满足
PAQ
Ir 0
由此可知 Rank( A) 2 ,且该矩阵第一列,
第三列是线性无关的。选取
1
B 1 2 4
1
2 3
C 42 2
6
C
1 0
2 0
0 1
1 1
1 2
1 1
C 26 2
同样,我们也可以选取
1
B 1 2 4
0
1 1
C 42 2
2
1 C 0
2 0
1 1
0 1
1 2
2 1
C 26 2
(2)对此矩阵只实施初等行变换可以得到
非奇异矩阵a。k(kk)当 0,(k 2,3,,时n),直接进行消元计算,当
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u1
a3 e~1 a3 e~1 2
1 2
1 0 1
于是
0 0 1
H~1
I
2u1u1T
0
1
0
1 0 0

H1
1 0
0T H~1
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 1 0 0

H1AH1
1 0
1 3
3 1
4 2
0 4 2 1
对 a2 (3,4)T,取 2 a2 2 5,则
1
0
0 0 0 2

试求矩阵
A
0 0
3 4
1 2
的QR分解。
2 1 2

将列向量
a1
0
0
,a2
3 4 ,a3
1 2
正交化得
2
1
2
p1
a1
0
0

p2
2
a2
2 4
p1
3 4
,p3
0
a3
4 4
p1
5 25
p2
8 5
6 5
0
单位化得
0
q1
1 2
p1
0 , 1
证 因为
I O A B I O A B B I I B A I I O A B 取行列式即得。
例 设A, B, C, D为同阶方阵,A可逆, 且AC = CA。
证明 证 因为
det A C
B det(AD CB) D
I CA1
O A I C
B A D O
(2 )4
4!
A4
(2 )6
6!
A6
I (1
(2 )2
2!
(2 )4
4!
(2 )6
6!
)
I cos(2 ) I
sin(
2A)
2A
(2 )3
3!
A3
(2 )5
5!
A5
(2 )7
7!
A7
A(2
(2 )3
3!
(2 )5
5!
(2 )7
7!
)
Asin(2 ) O
例 设 H m和Hn分别是m阶和n阶Householder矩阵, 问 Hm O 是否 m n阶Householder矩阵?为什么?
B In
Im O Im A Im
A
B In B In O In BA
Im A Im A Im AB O O In B In B In 所以
det(
I
n
BA)
det
I
m
B
A In
det(Im
AB)
例 设 ACmn,B Cnm,且 0。证明
det(Im AB) mn det(In BA)
(即AB和BA的非零特征值相同)。
证 构造矩阵 Im A ,因为
B In
Im O Im A Im
A
B In B In O In BA
Im O
1
A
In
Im B
A
In
Im
1
B
AB
O
In
所以
det(In
BA)
det
Im B

c
3 5
,
s
54,则
1 T23 0
0
3 5
0
4 5

T23 AT2T3
1 5
4 5
1
3 5
2
0
4 5
3 5
0
2
1
2 0 0 1

化矩阵
A
0 0
1 2
2 1
4 3
正交相似于三对角阵。
1 4 3 1
解 法1. 用Householder变换
对 a3 (0,0,1)T,取1 a3 2 1,则
4
H2 1
H~
2
1 0 0
0
4 5 3 5
0
3 5

4 5
2
H
2
(
H1A)
0 0
1 5 0
2 1 2

0
A
( H1H 2
)R
0
1
3 5 4 5
0
4 5
3
5
2 0
0 0
1 5 0
2 1 2

试求矩阵
A
0 0
3 4
1 2
的QR分解。
2 1 2
解 取 c1 0, s1 1,则
的QR分解。
0 1 0 1
A
1 0
0 1
1 0
0 1
1 0 1 0

取 c1
0 02 12
0,
s1
1,则
0 1 0 0
1 0 1 0
T12
1 0
0 0
0 1
0 0

T12
A
0 0
1 1
0 0
1 1
0 2
1 2
,
s2
12,则
1 2
0
T14
0
1 2
0 0 0
0 0 1
使得
H1A
0 0 0
4 3 0
2 1 0
3 4 5
又取 b2 (4,3,0)T,则 2 b2 2 5,且
u2
b2 5e~1 b2 5e~1 2
1 10
1 3 0
于是
H~ 2
I3
2u2u2T
4 5
3 5
3
5
4 5
0 0
0
0
1

H2
1 0
0T H~ 2
0 T13 0
0 1
1 0
2
使
T13
A
0
1 4
2 2
1 0 0
0 3 1
又取
c2
4 5
,
s2
53,则
1
T23 0
0
0
4 5 3 5
0
3 5
4
5
2
使
T23T13
A
0
0
1 5 0
2 1
R
2

A T1T3T2T3R
0 0
3 5
4 5
4 5
3
5
2 0
1 5
2 1
第四章 矩阵分解
§1 三角分解介绍

求矩阵
A
5 2
2 1
4 2
的Doolittle分解和
4 2 5
LDU分解。
解 5 2 4
2 5
1 5
2 5
4 5
2
1
故 1
A
2 5
4 5
0 1 2
0 5 0 0 1 0
2
1 5
0
4
2 5
1
1
2
5
4 5
0 1 2
0 5 0 1
1 5
0
0
i 5
0
0
0 1 0
0 0 1
使
T12 x
0 0 2
又取 c2 35,s2 32,则
5 3
0
0
0 1 0
T14
0
01
2 3
0
0
2 3
0 0
使
T14T12 x
3e1
5 3

化矩阵
A
1 3
0 1
1 2
正交相似于Hessenberg阵。
4 2 1
解 法1. 利用Householder变换
1 0 1 0
2 5
1
0
4 5
2
1

求正定矩阵
A
5 2
2 3
0 1
的Cholesky分解。
0 1 1

5
2 5
11 5
0
5 11
6 11
所以
5
A
2 5
0
11 5
5 11
5
2
5
0
6 11
11 5
5 11
6
11
例 设 A, B 为同阶方阵,证明
det A B det(A B)det(A B) B A
0 3 1 4
A
0 2
4 1
2 2
3 4
0 0 0 5
解 取 a1 (0,0,2,0)T,则 1 a1 2 2,且
2
1
u1
a1 2e1 a1 2e1 2
1 2 2
0 2 0
1 0 2 1
0
0 0 1 0
2 1 2 4
于是
H1
I4
2u1u1T
0 1
0
1 0 0
00 10 01 00
1 2
2 0
0
0
1 2

T14
(T12
A)
0 0 0
1 1 0
2 0
0 1
0 0
1 0
再取 c3
1 2
, s3
1 ,则
2
1
T23
0 0
0
0
1 2
1 2
0
0
1
2
1 2
0
0
2
0 0 1
且 T23(T14T12
相关文档
最新文档