生物统计学第3章几种常见的概率分布律
生物统计学第三章 概率和概率分布(2)
![生物统计学第三章 概率和概率分布(2)](https://img.taocdn.com/s3/m/c50fd0d05022aaea998f0fce.png)
的第x 1项,所以有“二项分布”这个名称。
0 0 1 1 x x n n [ (1 )]n Cn (1 )n Cn (1 )n1 Cn (1 )nx Cn (1 )0
x x (2) P(x) Cn (1 )nx [ (1 )]n 1n 1 x 0 x 0
2. 二项分布的常用符号
n :贝努利试验的次数(或 样本含量)
x : 在n次试验中事件A出现的次数,即二项分布变量X 的取值
: 事件A发生的概率 (每次试验都是恒定的 )
1 - : 事件A发生的概率
p(x) : X的概率函数即P(X x)
F( x) P(X x) p(xi )
2014-4-21
二项分布的程序计算方法
二项分布函数Binomdist(k,n,p,false/true) 某数阶乘的计算函数Fact 从给定元素数目m的集合中抽取若干n元素的排 列组合数C n m 计算函数Combin(m,n)
2014-4-21
二、 泊松分布 (Poisson Distribution)
2014-4-21
二项分布
(实例)
【例】已知 100 件产品中有 5 件次品,现从中任取一件,有 放回地抽取3次。求在所抽取的3件产品中恰好有2件次品的 概率 解:设 X 为所抽取的3件产品中的次品数,则根据二项分 布公式有
P X 2 C32 (0.05)2 (0.95)32 0.007125
二项分布变量的一些例子:
(1)连续抛硬币100次,统计总共出现正面的次数。次数X服从二项分布。 (2)调查250名新生婴儿的性别,记男婴的总数为X,则X服从二项分布。 (3)调查n枚种蛋的出雏数,出雏数X服从二项分布。 (4)n头病畜治疗后的治愈数X,X服从二项分布。
几种常见的概率分布律
![几种常见的概率分布律](https://img.taocdn.com/s3/m/161ee55a3c1ec5da50e27024.png)
的概率,其值为 ϕ4
=
⎛ ⎜⎝
1 2
⎞4 ⎟⎠
=1 16
。
ϕ 3 (1 − ϕ ) 表示有三个显性基因和一个隐性基因组合出现的概率。其中
显形基因有三个,隐性基因一个,该项的系数表示这样的组合共有四种。
它们是RRYy,RRyY,RrYY和rRYY。这四种组合的概率均为
•
ϕ
3
(1
−
ϕ
)
=
⎛ ⎜⎝
1 2
⎞3 ⎟⎠
上式正是二项式展开式的第x+1项,因此产生理论分布中“二项分布”这一名 称。故该式称为二项分布的概率函数。
• 二项展开式,
⎡⎣ϕ +(1−ϕ)⎤⎦n =Cn0ϕ0 (1−ϕ)n +Cn1ϕ1 (1−ϕ)n−1 +"+Cnxϕx (1−ϕ)n−x +"+Cnnϕn (1−ϕ)0 = p(0) + p(1) + p(2) +"+ p( x) +"+ p(n)
⎛ ⎜⎝
1 2
⎞10 ⎟⎠
=
2−10
=
0.0009766
( ) p(1)
=
10! ⎛
1!(10 −1)!⎜⎝
1 2
⎞1 ⎟⎠
⎛ ⎜⎝
1 2
⎞9 ⎟⎠
=
10
2−10
= 0.0097656
( ) p(2) =
10! ⎛ 1 ⎞2 ⎛ 1 ⎞8
2!(10 − 2)!⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠
= 45
2−10
(1) 二项分布图形的形状取决于P 和 n 的大小; (2) 当P = 0.5时,无论 n 的大小, 均为对称分布; (3) 当P ≠ 0.5,n 较小时为偏态分 布,n 较大时逼近正态分布。
《生物统计学》课程说明书
![《生物统计学》课程说明书](https://img.taocdn.com/s3/m/ed7f3833c281e53a5802ff58.png)
第三章 几种常见的概率分布律 第三节 正态分布
4 第四章 抽样分布 第一节一个正态总体中的抽样分布 第二节 两个正态总体中的抽样分布
章后作业 2 号教学楼 416 见课件
2 号教学楼 416,418
章后作业 见课件
第七周 第八周 第九周
第五章 统计假设检验
2
第一节 显著性检验的基本原理
第五章 统计假设检验
先修课程 课程性质
高等数学、概率论等 专业方向课
学时 /学分
45 /3
授课范围
20XX 级 2、3、4 班
授课时间 和地点
周三 5-6 节,2 号教学楼 416 教室 周五(双)5-6 节,2 号教学楼 418 教室
人数 限制
126 人
生物统计学是用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的科
4
第二节适合性检验
第三节独立性检验
第八章 单因素方差分析
2
第一节 单因素方差分析的基本原理
第二节 固定效应模型
第八章 单因素方差分析
第三节 随机效应模型
4
第四节 多重比较
第五节 方差分析应具备的条件
第十三周
2
上机 操作 SPSS 软件使用 (平均数的计算、成对 t 检验等)
2 号教学楼 416,418
[1]《生物统计学》(第一版)杜荣骞主编, 高等教育出版社,1999 年。 [2]《生物统计学》 李春喜主编,科学出版社,20XX 年。
教学网站
四、教学信息 教学目标
通过本课程的教学,使学生掌握生物统计学的基本理论和方法,能应用生物 统计的思维和分析方法,结合其它相关学科,正确地阅读文献资料,科学地设计 实验,开展生物科学研究。
生物统计学 几种常见的概率分布律
![生物统计学 几种常见的概率分布律](https://img.taocdn.com/s3/m/2c7dee1dfc4ffe473368ab1d.png)
非此即彼
随机试验有两种互不相容不同结果。 重要条件: 1. 每次试验两个结果(互为对立事件),每一种结果在每次 试验中都有恒定的概率; 2. 试验之间应是独立的。
P(AB)=P(A)P(B)
2.14
二项分布的概率函数
服从二项分布的随机变量的特征数
方差 当以比率表示时
偏斜度
了解
峭度
做题时请先 写公式,代 数字,出结 果,描述结 果的意义。
正态分布表的单侧临界值
上侧临界值
下侧临界值
双侧临界值
§3.5 另外几种连续型概率分布
指数分布(exponential distribution)
了解
Γ分布(gamma distribution)
了解
了解
随着p的增加, Γ分布愈来愈 接近于正态分 布。
§3.6 中心极限定理 (Central Limit Theorem) 假设被研究的随机变量X可以表 示为许多相互独立的随机变量Xi 的和。如果Xi的数量很大,而且 每一个别的Xi对于X所起的作用 又很小,则X可以被认为服从或 近似地服从正态分布。
作业
P51
3.1, 3.2(算出各表现型概率即可); 3.12, 3.18
正态分布的密度函数和分布函数 正态分布(normal distribution) 高斯分布(Gauss distribution) 正态曲线(normal curve) 连续型概率分布律 两头少,中间多,两侧对称
了解
标准正态分布
/fai/
标准正态分布的特性
ቤተ መጻሕፍቲ ባይዱ
正态分布表的使用方法
正态分布标准化
生物统计学
第三章 几种常见的概率 分布律
2010.9
生物统计学:第三章随机变量与概率分布
![生物统计学:第三章随机变量与概率分布](https://img.taocdn.com/s3/m/b3cf6014da38376bae1fae8d.png)
例:用复合饲料饲养动物,每天增重的kg数及 其相应的概率如下:
每天增重xi /kg 0.5
概率 0.10
1.0
0.20
1.5
0.50
2.0
0.20
问每天增重的数学期望和方差是多少?
解: μ=E(X)=1.40
E(X2 ) =2.15
var=σ2 = E(X2 ) –μ2=2.15-1.42=0.19
15.167
(4)随机变量的方差(variance) - 总体方差
度量随机变量取值的变异程度的指标,其定义式:
Var( X ) 2 ( xi )2 E[( X )2 ]
N
E[( X )2 ] E( X 2 2 X 2 )]
E(X 2) 2E(X ) 2
对于例1:
件的集合)的概率有以下关系:P(A )=1-P(A)
2 )条件概率
➢ 已知事件B发生的条件下,事件A发生的概率 称为条件概率,记为P(A︱B) P(A∣B)=P(AB)/P(B) P(B∣A)=P(AB)/P(A)
例:一周的天气情况如下:
周日
日
一
二
三
四
五
六
预报
晴
阴
雨
雨
雨
晴
雨
实际
晴
雨
阴
雨
雨
晴
晴
设A表示预报有雨的事件,B表示实际下雨的事件
些值的概率p(x1),p(x2),…,p(xn),…,排列起来,构 成了离散型随机变量的概率分布。常用概率分布表或概 率分布图表示(如,p28表与p29图3-1)。
例3.1 掷一次骰子所得点数的概率函数
f (x) 1 , x 1, 2, 3, 4, 5, 6 6
生物统计学03概率和概率分布
![生物统计学03概率和概率分布](https://img.taocdn.com/s3/m/3ca41aa4f524ccbff12184bb.png)
e
−λ
(λ = np)
x = 0, 1, 2…, n
第二节 常用的概率分布 二、泊松分布
☆ 参数 参数:
µ= λ
2 = λ σ
☆ 形状
λ=0.5 λ=1.5 λ=2.5
λ→20
泊松分布→正态分布 泊松分布 正态分布
第二节 常用的概率分布 三、正态分布
☆ 是一种连续随机变量的概率分布 ☆ 许多生物现象的计量资料均服从正态分布 ☆ 一般假定试验误差的分布服从正态分布 ☆ 非正态总体统计数的抽样分布近似服从正态分布
☆当 p 值较小且 n 值不
0.25 0.2 0.15 0.1 0.05 0 1 3 5 7
p=0.3
p=0.5
p=0.75
大时, 大时,图形是偏倚的
☆当 p 值趋于 时,分 值趋于0.5时
布趋于对称
9
11
13
15
17
19
21
第二节 常用的概率分布 二、泊松分布
☆ 概率函数
P( x ) =
λ
x
x!
第二节 常用的概率分布
随机抽取20株小麦 测得平均株高为82.3cm,标准差为 株小麦, cm, 例3.4 随机抽取 株小麦,测得平均株高为 cm 1.7502cm,试计算: cm,试计算: cm 1)株高≥85cm的概率; 的概率; 的概率 的正常值范围。 2)小麦株高的95%的正常值范围。 小麦株高的 的正常值范围
第二节 常用的概率分布 三、正态分布
1. 概率函数
f (x) = 1
− ( x−µ)2 2σ 2
σ 2 π
e
记为x~ 记为 ~N(µ,σ2)
第二节 常用的概率分布
2. 正态曲线的特点
几种常见的概率分布率分解课件
![几种常见的概率分布率分解课件](https://img.taocdn.com/s3/m/041ae4a3162ded630b1c59eef8c75fbfc67d9477.png)
均匀分布的定 义
均匀分布是一种概率分布,其特点是随机变量在一定区间内取值的可能性是等可 能的。
在数学表达上,如果一个随机变量X服从某个区间[a, b]上的均匀分布,则其概率 密度函数f(x)可以表示为f(x)=1b−a,当x∈[a,b]时,f(x)=0,当x∉[a,b]时。
均匀分布的特点
均匀分布的期望值E(X)和方差Var(X) 分别为(a+b)/2和(b-a)^2/12。
泊松分布在生活中的应用
02
01
03
在物理学中,泊松分布用于描述放射性衰变过程中粒 子发射的次数。
在统计学中,泊松分布常用于二项分布的近似,当试 验次数很大而事件发生的概率很小时。
在计算机科学中,泊松分布在处理网络流量和计算机 系统中的任务调度等问题时非常有用。
04
二项分布
二项分布的定义
总结词
二项分布是一种离散概率分布,描述了在n次独立重复的伯努利试 验中成功的次数。
指数分布的期望值和方差是有限的,分别为1/λ和1/λ^2,其中λ是概率密度函数的 参数。
指数分布在生活中的应用
指数分布在可靠性工程中广泛应 用,用于描述产品寿命、故障间
隔时间等。
在排队论中,指数分布用于描述 顾客到达和服务时间等随机变量。
在保险精算中,指数分布用于计 算保费和准备金。
06
均匀分布
几种常见的概率分布率分解课 件
CONTENCT
录
• 概率分布率概述 • 正态分布 • 泊松分布 • 二项分布 • 指数分布 • 均匀分布
01
概率分布率概述
概率分布率的定 义
概率分布率
表示随机变量取值的概率规律。
定义方式
对于离散随机变量,概率分布律为P(X=xi)=pi,i=1,2,3...;对于连续随机变量, 概率分布函数为P(a≤X≤b)=∫[a,b]f(x)dx,其中f(x)为概率密度函数。
生物统计学 第三章 概率分布09
![生物统计学 第三章 概率分布09](https://img.taocdn.com/s3/m/adc840fb011ca300a7c3908b.png)
2
2 2
x
= 期望 2 = 方差
X ~ N(, 2)
正态分布
正态分布概率密度函数的几何表示
f (x)
正态曲线
x
曲线下某区间的面积即为随机变量在该区间取值的概率
正态分布
正态分布的特点
➢只有一个峰,峰值在x = 处 ➢曲线关于x = 对称,因而平均数=众数=中
位数 ➢x轴为曲线向左、右延伸的渐进线
P(x≥4)=1-P(x<4)=1-P(0)-P(1)-P(2)-P(3)
1
30!0 e331 1!e3 Nhomakorabea32 2!
e3
33 3!
e3
=0.3528
连续型随机变量的概率分布
正态分布(normal distribution)
➢具有如下概率密度函数的随机变量称为正态 分布随机变量:
f (x) 1 e[ (x )2 ]
第三章 常用概率分布
二项分布 普哇松分布 正态分布 抽样分布
离散型随机变量的概率分布
二项分布(binomial distribution)
假设:1. 在相同条件下进行了n次试验 2. 每次试验只有两种可能结果(1或0) 3. 结果为1的概率为p,为0的概率为1-p 4. 各次试验彼此间是独立的
在n次试验中,结果为1的次数(X = 0,1,2, ,n)服从二项分布,表示为
较大,顶部略低,尾部略高。自由度小的t 分布,更为明显。 n>30时, t 分布接近于标准正态分布; n>100时,t 分布基本与标准正态分布相同; n→∞时,t 分布与标准正态分布完全一致。 3. t 分布概率求法 可查P302 t 分布的双侧分位表。
例:df=4 双侧 t0.05=2.776 t0.01=4.604 单侧 t0.05=2.132 t0.01=3.747
d 几种常见的概率分布律
![d 几种常见的概率分布律](https://img.taocdn.com/s3/m/013e82b4bed5b9f3f90f1cdd.png)
三、服从二项分布的随机变量的特征数
平均数: μ=nφ
方差: σ2=nφ(1-φ)
随着样本含量的增加,偏斜度和峭度趋 向于0,二项分布逐渐接近于正态分布。
四、二项分布应用实例
例:3.2 例:3.3 例:3.4
【例3.4】
用 棕 色 正 常 毛 (bbRR) 的 家 兔 和 黑 色 短 毛 (BBrr)兔杂交,杂种F1为黑色正常毛长的 家兔,F1雌、雄兔近亲交配,问最少需要 多少只F2代的家兔,才能以99%的概率至 少得到一只棕色短毛兔?
二、二项分布概率函数表达式:
p( y) Cny y (1)ny , y 0,1,2,, n
n=试验次数(或样本含量) y=在n次试验中事件A出现的次数 φ=事件A发生的概率(每次试验都是恒定的) 1-φ=事件A的对立事件发生的概率 p(y)=Y的概率函数=P(Y=y)
例:3.1
从雌雄各半的100只动物中做一抽样试验。第一次从这100只动 物中随机抽取一只,记下性别后放回,再做第二次抽取。共 做了10次抽样,计算抽中3只和3只以下雄性动物的概率。
(5)曲线和X坐标轴所夹的面积等于1。 (6)正态分布表查出的φ(u)的值表示随机变量
U落入区间(-∞, u)的概率。 (7)累积分布函数图形的特点是围绕点
(0, 0.5)对称。 (8)正态分布的偏斜度γ1=0 ,峭度γ2=0。
5. 一些重要值
68.27%
68.27%
95.00%
95.00%
99.00%
解: n=10 y=3,2,1,0 φ=1/2 p( y) Cny y (1)ny
p(3) 10! ( 1 )3 ( 1 )7 120 (210 ) 0.1171876 3!(10 3)! 2 2
几种常见的概率分布率
![几种常见的概率分布率](https://img.taocdn.com/s3/m/907af064783e0912a2162a56.png)
❖对于一般正态分布,要先进行标准化,再查表;
标准化的公式为: u = x -
u
=
x-
=
9.2 10
5
= 0.42
正态分布 σ= 10
标准正态分布 σ=1
μ=5 9.2
x
μ=0 0.42 u
例3.7 查标准正态分布u=-0.82 及u=1.15时的F(u)的值 例3.8 随机变量u服从正态分布N(0,1),问随机变量u的值落
在生物统计学中,正态分布占有极其重要的地位。许多生物学 现象所产生的数据,都服从正态分布。
一、 正态分布(x—N (μ,σ2))的密度函数与分布函数
➢ 正态分布的规律是数据分布集
中在平均数附近,并且在平均
数的两侧成对称分布。正态分
布密度函数的图像,称为正态
曲线。
➢ 密度函数: f (x) =
1
正态曲线
p(x)
=
cnx
px (1-
p)n-x
=
n! x!(n -
x)!
p x (1-
p)n-x
= n(n -1)(n - 2)(n - x 1) px (1- p)n-x
=
1(1-
1
)(1-
x! x -1)
(np) x
(1-
p)n-x
(将系数的分子分母同乘以nx)
n
n
x!
= x (1- p)n-x
=
x!
2
=
1
概率函数内的λ ,不但是它的平均数,而且是
它的方差。
λ很大时, γ1和γ2则接近于0,这时的泊松分布近
似于正态分布。
三、 泊松分布应用实例
例3.5 在麦田中,平均每10m2有一株杂草,问每 100m2麦田中,有0株、1株、2株、…杂草的概率 是多少?
生物统计学(第3版)杜荣骞 课后习题答案 第三章 几种常见的概率分布律
![生物统计学(第3版)杜荣骞 课后习题答案 第三章 几种常见的概率分布律](https://img.taocdn.com/s3/m/d563ffedb8f67c1cfad6b88b.png)
第三章 几种常见的概率分布律3.1 有4对相互独立的等位基因自由组合,问有3个显性基因和5个隐性基因的组合有多少种?每种的概率是多少?这一类型总的概率是多少?答:代入二项分布概率函数,这里φ=1/2。
()75218.02565621562121!5!3!83835==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=p结论:共有56种,每种的概率为0.003 906 25(1/256 ),这一类型总的概率为0.218 75。
3.2 5对相互独立的等位基因间自由组合,表型共有多少种?它们的比如何? 答:(1)543223455414143541431041431041435434143⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+ 表型共有1+5+10+10+5+1 = 32种。
(2)()()()()()()6976000.0024114165014.00241354143589087.002419104143107263.0024127104143105395.00241815414353237.0024124343554322345541322314==⎪⎭⎫⎝⎛==⨯=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛===⎪⎭⎫⎝⎛=隐隐显隐显隐显隐显显P P P P P P它们的比为:243∶81(×5)∶27(×10)∶9(×10)∶3(×5)∶1 。
3.3 在辐射育种实验中,已知经过处理的单株至少发生一个有利突变的概率是φ,群体中至少出现一株有利突变单株的概率为P a ,问为了至少得到一株有利突变的单株,群体n 应多大?答: 已知φ为单株至少发生一个有利突变的概率,则1―φ为单株不发生一个有利突变的概率为:()()()()()φφφ--=-=--=-1lg 1lg 1lg 1lg 11a a an P n P n P3.4 根据以往的经验,用一般的方法治疗某疾病,其死亡率为40%,治愈率为60%。
生物统计学课件ch3常用的概率分布
![生物统计学课件ch3常用的概率分布](https://img.taocdn.com/s3/m/e534107f5f0e7cd184253688.png)
(3) 各次试验独立。即一次试验出现什么样的 结果与前面已出现的结果无关。
成功次数的概率分布——二项分布
• 例 设某毒理试验采用白鼠共3只,它们有 相同的死亡概率π,相应存活概率为1-π。记 试验后白鼠死亡的例数为X,分别求X=0、 1、2和3的概率
35
30
25
人数
20
15
10
5
0
2.7~ 3.1~ 3.5~ 3.9~ 4.3~ 4.7~ 5.1~ 5.9~56..53~
血清总胆固醇(mmol/L)
如果样本量很大,组段很多,矩形顶端组 成的阶梯型曲线可变成光滑的分布曲线。
大多数情况下,可采用一个函数拟合这 一光滑曲线。这种函数称为概率密度函数
把钱分成7份,赢了4局的就拿4份,赢了3局 的就拿3份呢?或者一人分一半呢?
频率与概率 frequency and probability
样本的实际发生率称为频率。设在相同条 件下,独立重复进行n次试验,事件A出现f 次,则事件A出现的频率为f/n。
概率:随机事件发生的可能性大小,用大 写的P 表示;取值[0,1]。
p(X=xi) p(x1) p(x2) …… p(xk) ……
离散型随机变量分布的特点:
(1) 0 p(xi ) 1(i 1, 2,...)
(2) p(xi ) 1 所有xi
离散型随机变量的概率分布举例
f(x)
抗体滴度 人数, x 比例, f(x)
1:10
4
.058
1:20
3
.043
二项分布的概率计算
例 如 果 =0.4,
生物统计学 第三章 概率论
![生物统计学 第三章 概率论](https://img.taocdn.com/s3/m/2dbba0d426fff705cc170a9b.png)
即复合事件的概率必等于该事件出现的组合数目乘以
单个事件的概率;而这一复合事件的可能组合数目则相
当于从n(3)个物体中任取其x(2)个物体的组合数。数学上 的组合公式为:
n! C x!(n x)!
x n
(二)二项分布的概率函数
二项式中包含两项,这两项的概率为p、q,并且 p+q=1,可推知变量x的概率函数为:
0 2
• 若期望有0.99的概率获得1头或1头以上的 死去的,至少应该调查多少头?
• 若期望有0.99的概率获得1头或1头以上的 死去的,至少应该调查多少头? 解:应调查的头数应该满足 P(0)=1-0.99=0.01 P(0)=Cn0p0qn=0.01 0.6n=0.01 nlg0.6=lg0.01 n=(lg0.01)/(lg0.6)=-2/(-0.222)=9头
抽取三粒种子(以Y代黄子叶,以G代青子叶), 即n=3,有两粒黄子叶种子,即x=2,这时有3种不
同组合: GGY,GYG,YGG。出现第一粒,第二
粒和第三粒种子是互不影响的,因此这三个事件是 独立事件,由乘法法则可得:
3 3 1 9 P(GGY ) ( )( )( ) 4 4 4 64
3 1 3 9 P (GYG ) ( )( )( ) 4 4 4 64
当p=q,二项式分布呈对称状,如p≠q,则表现偏斜状。
二项分布的几点性质 (1) 当p值较小且n不大时 ,分布是偏倚的。但随着n的增大,分布 逐渐趋于对称 (下图1) (2) 当 p 值趋于0.5,分布趋于对称(下图2) (3) 对于固定的n及p,当k增加时,Pn(k)先随之增加并达到其极大 值,以后又下降 (4) 在n较大,np、nq 较接近时,二项分布接近于正态分布;当 n→∞时,二项分布的极限分布是正态分布
第三章常用概率分布生物统计学课件
![第三章常用概率分布生物统计学课件](https://img.taocdn.com/s3/m/c863c5022cc58bd63186bdd7.png)
上一张 下一张 主 页 退 出
【例3·3】 抛掷一枚硬币,其可能结 果是“币值一面朝上” 、“币值一面朝 下”。“币值一面朝上”用1表示,“币 值一面朝下”用0表示,用x表示试验结果, 则x的取值为0、1。
如“取得1个数字是2的倍数”是一个复合 事件,它由“取得1个数字是2”、“是4”、 “是6”、…… 、“是20”10个基本事件组合 而成。
(2)必然事件 在一定条件下必然会发生的事件称为必然
事件,用Ω表示。
上一张 下一张 主 页 退 出
(3)不可能事件 在一定条件下不可能发生的事件称为不可
能事件,用ф表示。 必然事件与不可能事件实际上是确定性现
第三章 常用概率分布
本章在介绍概率论中最基本的两个概念— —事件、概率的基础上,重点介绍生物科学研 究中常用的几种随机变量的概率分布——二项 分布、正态分布以及样本平均数的抽样分布、t 分布、 2 分布和F分布。
上一张 下一张 主 页 退 出
第一节 事件与概率
一、事 件 (一)必然现象与随机现象
在自然界与生产实践和科学试验中,人 们会观察到各种各样的现象,把它们归纳起 来,大体上分为两大类:
上一张 下一张 主 页 退 出
从表3-1可看出,随着实验次数的增多, 1粒小麦种子发芽这个事件的概率越来越稳定地 接近0.7,我们就把0.7作为这个事件的概率。
在一般情况下,随机事件的概率 p 是不可 能准确得到的。通常以试验次数n充分大时随机 事件A的频率作为该随机事件概率的近似值。
第三章 概率与概率分布 华中农业大学生物统计学讲义
![第三章 概率与概率分布 华中农业大学生物统计学讲义](https://img.taocdn.com/s3/m/25a76b55e87101f69f319530.png)
该试验样本空间由10个等可能的基本事件构成,即n=10,而事 件A所包含的基本事件有3个,即抽得编号为1、2、3中的任何一 个,事件A便发生。
P(A)=3/10=0.3
P(B)=5/10=0.5
12 3 4 5
6
7
8 9 10
一、概率基本概念
A=“一次取一个球,取得红球的概率”
10个球中取一个球,其可能结果有10个基本事件(即每个球 被取到的可能性是相等的),即n=10 事件A:取得红球,则A事件包含3个基本事件,即m=3
P(A)=3/10=0.3
12 3 4 5
6
7
8
9 10
一、概率基本概念
B= “一次取5个球,其中有2个红球的概率” 10个球中任意取5个,其可能结果有C105个基本事件,即n= C105 事件B =5个球中有2个红球,则B包含的基本事件数m= C32 C73
P(B) = C32 C73 / C105 = 0.417
2、在一定条件下可能发生也可能不 发生。
(二)频率(frequency)
一、概率基本概念
若在相同的条件下,进行了n次试验,在这n 次试验中,事件A出现的次数m称为事件A出现的 频数,比值m/n称为事件A出现的频率(frequency), 记为W(A)=m/n。
0≤W(A) ≤1
例:
一、概率基本概念
设样本空间有n个等可能的基本事件所构成,其中事件A包 含有m个基本事件,则事件A的概率为m/n,即P(A)=m/n。
古典概率(classical probability) 先验概率(prior probability)
一、概率基本概念
1 2 3 4 5 6 7 8 9 10
随机抽取一个球,求下列事件的概率; (1)事件A=抽得一个编号< 4 (2)事件B =抽得一个编号是2的倍数
生物统计学:几种常见的概率分布律
![生物统计学:几种常见的概率分布律](https://img.taocdn.com/s3/m/c7bb0b3b227916888486d780.png)
头仔猪中白色的为x头,则x为服从二项分布B(10,0.75)
的随机变量。于是窝产10头仔猪中有7头是白色的概率
为:
10! P ( x 7) C 0.75 0.25 0.75 7 0.253 0.2503 7!3!
7 10 7 3
【例3.2】 设在家畜中感染某种疾病的概率为20%,现有两 种疫苗,用疫苗A 注射了15头家畜后无一感染,用疫苗B 注射 15头家畜后有1头感染。设各头家畜没有相互传染疾病的可能, 问:应该如何评价这两种疫苗? 假设疫苗A完全无效,那么注射后的家畜感染的概率仍为20 %,则15 头家畜中染病头数x=0的概率为
1-p=q,则称这一串重复的独立试验为n重贝努利试验,
简称贝努利试验(Bernoulli trials)。
在生物学研究中,我们经常碰到的一类离 散型随机变量,如孵n枚种蛋的出雏数、n头病 畜治疗后的治愈数、n 尾鱼苗的成活数等,可用 贝努利试验来概括。 在n重贝努利试验中,事件 A 可能发生0,1, 2,…,n次,现在我们来求事件A恰好发生 k(0≤k≤n)次的概率Pn(k)。
四、二项分布的平均数与标准差 统计学证明,服从二项分布B(n,p)的随机变 量之平均数μ、标准差σ与参数n、p有如下关系: 当试验结果以事件A发生次数k表示时
μ=np
(3-5)
(3-6)
npq
【例3.4】求【例3.3】平均死亡猪数及死 亡数的标准差。
以p=0.2,n=5代入 (3-5)和(3-6) 式得: 平均死亡猪数 μ=5×0.20=1.0(头) 标准差
一、波松分布的意义
若随机变量x(x=k)只取零和正整数值0,1, 2,…,且其概率分布为
k , k=0,1,…… (3-10) P( x k ) e k!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
Cnk p k q nk (q p)n 1
k 0
3. P( x m) Pn (k m) m Cnk p k q nk (3-2)
4. P( x m) Pn (k m)
nk 0
Cnk p k q nk
(3-3)
5. k m
m2
P(m1 x m2 ) pn (m1 k m2 )
二项分布的应用条件有三:
(1)各观察单位只具有互相对立的一种结果,如阳 性或阴性,生存或死亡等,属于二项分类资料;
(2)已知发生某一结果 (如死亡) 的概率为p,其对立 结果的概率则为1-P=q,实际中要求p 是从大量观察中获 得的比较稳定的数值;
(3)n个观察单位的观察结果互相独立,即每个观察 单位的观察结果不会影响到其它观察单位的观察结果。
一、波松分布的意义
若随机变量x(x=k)只取零和正整数值0,1, 2,…,且其概率分布为
P(x k) k e , k=0,1,…… (3-10)
k!
其中λ>0;e=2.7182… 是自然对数的底数, 则称x服从参数为λ的波松分布(Poisson‘s distribution),记 为 x~P(λ)。
【例3.3】 仔猪黄痢病在常规治疗下死亡率为20 %,求5 头病猪治疗后死亡头数各可能值相应的概 率。
设5头病猪中死亡头数为x,则x服从二项分布 B(5, 0.2),其所有可能取值为0,1,…,5,按(3-1) 式计算概率,用分布列表示如下:
0 1 23 4 5
0.3277 0.4096 0.2048 0.0512 0.0064 0.0003
npq 5 0.2 0.8 0.894 (头)
3.2 波松分布
波松分布是一种可以用来描述和分析随机地发生 在单位空间或时间里的稀有事件的概率分布。要观察 到这类事件,样本含量 n 必须很大 。
在生物、医学研究中,服从波松分布的随机变量 是常见的。如,一定畜群中某种患病率很低的非传染 性疾病患病数或死亡数,畜群中遗传的畸形怪胎数, 每升饮水中大肠杆菌数,计数器小方格中血球数,单 位空间中某些野生动物或昆虫数等,都是服从波松分 布的。
对于n次独立的试验,如果每次试验结果出现且
只出现对立事件A与 A之一,在每次试验中出现A的概 率是常数p(0<p<1) ,因而出现对立事件 A的概率是
1-p=q,则称这一串重复的独立试验为n重贝努利试验,
简称贝努利试验(Berቤተ መጻሕፍቲ ባይዱoulli trials)。
在生物学研究中,我们经常碰到的一类离
散型随机变量,如孵n枚种蛋的出雏数、n头病 畜治疗后的治愈数、n 尾鱼苗的成活数等,可用
此外,在n较大,np、nq 较接近时,二项分布 接近于正态分布;当n→∞时,二项分布的极限分
布是正态分布。
三、二项分布的概率计算及应用条件
【例3.1】 纯种白猪与纯种黑猪杂交,根据孟德尔遗 传理论 , 子二代中白猪与黑猪的比率为3∶1。求窝产仔 10头,有7头白猪的概率。
根据题意,n=10,p=3/4=0.75,q=1/4=0.25。设10 头仔猪中白色的为x头,则x为服从二项分布B(10,0.75) 的随机变量。于是窝产10头仔猪中有7头是白色的概率 为:
Pn (k ) Cnk pk qnk k=0,1,2…,n 其中p>0,q>0,p+q=1,则称随机变量x 服从参数为n和p的二项分布 (binomial distribution),记为 x~B(n, p)。
二项分布具有概率分布的一切性质,即:
1. P(x=k)= Pn(k) (k=0,1,…,n)
假设疫苗A完全无效,那么注射后的家畜感染的概率仍为20 %,则15 头家畜中染病头数x=0的概率为
p(x 0) C105 0.2000.8015 0.0352
同理,如果疫苗B完全无效,则15头家畜中最多有1头感染的 概率为:
p(x 1) C1050.200.815 C1150.210.814 0.1671
第三章 几种常见的概率分布律
3.1 二项分布 3.2 泊松分布 3.3 另外几种离散型概率分布 3.4 正态分布 3.5另外几种连续型概率分布 3.6 中心极限定理
3.1 二项分布
一、贝努利试验及其概率公式
将某随机试验重复进行n次,若各次试验结果互
不影响,即每次试验结果出现的概率都不依赖于其它
各次试验的结果,则称这n次试验是独立的。
P(x
7)
C170 0.7570.253
10! 0.757 7!3!
0.253
0.2503
【例3.2】 设在家畜中感染某种疾病的概率为20%,现有两 种疫苗,用疫苗A 注射了15头家畜后无一感染,用疫苗B 注射 15头家畜后有1头感染。设各头家畜没有相互传染疾病的可能, 问:应该如何评价这两种疫苗?
波松分布重要的特征:
平均数和方差相等,都等于常数λ,即
μ=σ2=λ 【例3.5】 调查某种猪场闭锁育种群仔猪畸 形数,共记录200窝, 畸形仔猪数的分布情况 如表3-1所示。试判断畸形仔猪数是否服从波 松分布。
Cnk p k q nk
k m1
(m1<m2) (3-4)
二项分布由n和p两个参数决定: 1. 当p值较小且n不大时,分布是偏倚的。但随
着n的增大,分布逐渐趋于对称; 2. 当 p 值 趋于 0.5 时,分布趋于对称; 3. 对于固定的n及p,当k增加时,Pn(k)先随之
增加并达到其极大值,以后又下降。
贝努利试验来概括。
在n重贝努利试验中,事件 A 可能发生0,1, 2,…,n次,现在我们来求事件A恰好发生 k(0≤k≤n)次的概率Pn(k)。
Pn (k ) Cnk pk qnk , k 0,1, 2,n
二、二项分布的意义及性质 二项分布定义如下:
设随机变量x所有可能取的值为零和正整数: 0,1,2,…,n,且有
四、二项分布的平均数与标准差
统计学证明,服从二项分布B(n,p)的随机变
量之平均数μ、标准差σ与参数n、p有如下关系:
当试验结果以事件A发生次数k表示时
μ=np
(3-5)
npq (3-6)
【例3.4】求【例3.3】平均死亡猪数及死 亡数的标准差。
以p=0.2,n=5代入 (3-5)和(3-6) 式得: 平均死亡猪数 μ=5×0.20=1.0(头) 标准差