(转)高二数学选修2-1、2-2、2-3知识点小结
【实用】高中数学人教版选修2-2-2-3知识点总结 - 最新整理
数学选修2-2导数及其应用知识点1.函数的平均变化率是什么?答:平均变化率为=∆∆=∆∆x fx y xx f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念是什么?答:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。
5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ————————n y x =()*n N ∈ 1'n y nx -=11n nx x dx n +=+⎰x y a =()0,1a a >≠ 'ln x y a a = ln x xa a dx a =⎰x y e = 'x y e = x xe dx e =⎰log a y x=()0,1,0a a x >≠>1'ln y x a = ————————ln y x = 1'y x=1ln dx x x =⎰ sin y x = 'cos y x = cos sin xdx x =⎰cos y x ='sin y x =-sin cos xdx x =-⎰6、常见的导数和定积分运算公式有哪些? 答:若()f x ,()g x 均可导(可积),则有: 和差的导数运算 []'''()()()()f x g x f x g x ±=±积的导数运算[]'''()()()()()()f x g x f x g x f x g x ⋅=± 特别地:()()''Cf x Cf x =⎡⎤⎣⎦商的导数运算[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ 特别地:()()21'()'g x g x g x ⎡⎤-=⎢⎥⎣⎦复合函数的导数x u x y y u '''=⋅微积分基本定理()baf x dx =⎰ (其中()()'F x f x =)和差的积分运算1212[()()]()()bb baaaf x f x dx f x dx f x dx±=±⎰⎰⎰ 特别地:()()()bbaakf x dx k f x dx k =⎰⎰为常数积分的区间可加性()()()()bc baacf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中6.用导数求函数单调区间的步骤是什么? 答:①求函数f (x )的导数'()f x②令'()f x >0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围,就是递减区间; 注:求单调区间之前一定要先看原函数的定义域。
高中数学选修2-2-2-3知识点
f ( x ) 的极值的方法是 :
1 x ln a
(1) 如果在
x0 附近的左侧 f ( x )
0 , 右侧 f ( x)
0 ,那么 f ( x0 ) 是极大值 ;
(2) 如果在
x0 附近的左侧 f ( x )
0 ,右侧 f ( x)
0 ,那么 f ( x0 ) 是极小值 ;
y
2 2 1
4. 函数的最大 (小 ) 值与导数 函数极大值与最大值之间的关系 求函数 y ( 1) ( 2) .
x0 处的导数就是切线
PT 的
考点:导数的求导及运算
★ 1 、已知
f x
x
x
2
2 x sin f
'
,则
f 0
'
斜率 k,即 k
lim
x
0
f ( x0 )
★ 2 、若 f x
e sin x ,则
x 4 ,则
16 3
3.
导函数:当 x 变化时, f ( x ) 便是 x 的一个函数, 我们称它为 即 f (x)
f ( x)
g ( x) f ( x) g ( x)
f ( x) g ( x)
y
f (x) 在 x
x0 处的瞬时变化率是
x0
lim x 0
f ( x0
x) x
f ( x0 )
,
3. [
f ( x) g ( x)
]
f ( x) g ( x)
f ( x) g ( x)
2
[ g ( x)]
y f ( x0
1. 函数的单调性与导数 : 一般的 ,函数的单调性与其导数的正负有如下关系: 在某个区间 ( a, b) 内,如果 f ( x ) 如果 f ( x )
数学选修2-3知识点总结
数学选修2-3知识点总结
计数原理:这部分主要讲解分类加法计数原理与分步乘法计数原理。
分类加法计数原理指的是,如果完成一件事情有N类方法,每类方法中有不同的方法数,那么完成这件事情的总方法数就是各类方法数之和。
而分步乘法计数原理则是说,如果完成一件事情需要分成N 个步骤,每个步骤中有不同的方法数,那么完成这件事情的总方法数就是各步骤方法数之积。
二项式定理:这部分主要讲解二项式定理及其通项公式,以及二项式系数的性质。
二项式定理给出了(a+b)^n的展开式,而二项式通项公式则给出了展开式中每一项的具体形式。
二项式系数的性质包括对称性、增减性与最大值以及各二项式系数和等。
概率论初步:这部分主要讲解随机事件、概率等基本概念,以及概率的基本性质。
随机事件是指在一次试验中可能出现的结果,而概率则是衡量随机事件发生的可能性的数值。
随机变量及其分布:这部分主要讲解随机变量的概念及其分布。
随机变量是随机试验可能出现的结果的数值表示,常见的随机变量分布有离散型分布和连续型分布。
以上就是数学选修2-3的主要知识点,通过学习这些内容,学生可以掌握基本的计数原理、二项式定理、概率论以及随机变量及其分布等数学知识,为进一步学习数学或其他相关学科打下基础。
高中数学选修2-2-2-3知识点、考点、典型例题
高中数学选修2----2知识点第一章 导数及其应用 知识点:一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:无 知识点:1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=•考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x =★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() ° ° ° ° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点:1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减.极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用 一、题型一:导数在切线方程中的运用★3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)★53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3πD.π43二、题型二:导数在单调性中的运用★1.(05广东卷)函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)★2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数★★3.(05江西)已知函数()y xf x '=的图象如右图所示(其中'()f x的导函数),下面四个图象中()y f x =的图象大致是( )★★★4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性. 三、导数在最值、极值中的运用:★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.5★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 4 , - 15 D.5 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。
高中数学选修2-2与选修2-3知识点(反复修改)
数学选修2-2第一章导数及其应用知识点必记1、函数的平均变化率:=∆∆=∆∆x fx y xx f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 3、平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4、导数的背景:切线的斜率;(2)瞬时速度;(3)边际成本。
5、常见的函数导数和积分公式有哪些?6、常见的导数和定积分运算公式有哪些? 答:若()f x ,()g x 均可导(可积),则有:7、用导数求函数单调区间的步骤: (注:求单调区间之前一定要先看原函数的定义域)。
①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围就是递减区间; 8、利用单调性求参数的取值(转化为恒成立问题)(1)()f x 在该区间内单调递增⇒'()0f x ≥在该区间内恒成立; (2)()f x 在该区间内单调递减⇒'()0f x ≤在该区间内恒成立; 9、求可导函数f (x )的极值的步骤(1)确定函数的定义域。
(2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值; 如果左负右正,那么f (x )在这个根处取得极小值; 如果左右不改变符号,那么f (x )在这个根处无极值。
高中数学人教版选修2-2-2-3知识点总结
数学选修2-2导数及其应用知识点1.函数的平均变化率是什么?yf f(x 2) f(x 1) f(x 1 x) f(x 1)答:平均变化率为 — ———— ----- -- -xx x 2 x i x注1 :其中x 是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平也要。
2、导函数的概念是什么?答:函数y f(x)在x x 0处的瞬时变化率是lim 」lim fx —x) f(x0) ,则称函数y x 0 x x 0 x 可导,并把这个极限叫做y f(x)在x 0处的导数,记作f '(x °)或 J y .. f(x o x) f(x o )f (x 0) = lim — lim --------------- .x 0 x x 0 x3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。
6、常见的导数和定积分运算公式有哪些?答:若f x , g x 均可导(可积),则有:f(x)在点x 0处y|x x 0,即性质5若f (x) 0, xb①推广:a [f 1(x)b②推广:f(x)dxba,b ,则 f(x)dx 0 , a f 2(x) L f m (x)]dxc1c 2f (x)dx f (x)dxb bf 1(x)dxf z (x)dxaabL f (x)dxc k11定积分的取值情况有哪几种?答:定积分的值可能取正值,也可能取负值,还可能是0.特别地:,‘当地 g x g x复合函数的导数 y x y u U x微积分基本定理bf x dx(其中 F' x f x )a 和差的积分运算bbb[f [(x) f z (x)]dxf 〔(x)dxf z (x)dxaaabb蚌口 wakf(x)dx ka"x)dx(k 为常数)积分的区间可加性bcbaf(x)dx a f(x)dx c f(x)dx (其中a c b)6.用导数求函数单调区间的步骤是什么?答:①求函数f(x)的导数f'(x)②令f'(x)>0,解不等式,得x 的范围就是递增区间.③令f '(x)<0,解不等式,得x 的范围,就是递减区间; 注:求单调区间之前一定要先看原函数的定义域。
高中数学选修2-2-2-3知识点
高中数学选修2----2知识点第一章 导数及其应用 知识点:一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3.导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()lim x f x x f x f x x∆→+∆-'=∆考点:无 知识点: 二.导数的计算1)基本初等函数的导数公式: 1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '=6 若()x f x e =,则()x f x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'= 2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f = ★2、若()sin x f x e x =,则()'f x =★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是()° ° ° °★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用 知识点:1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;4.函数的最大(小)值与导数 函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤(1)求函数()y f x =在(,)a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用 2、导数在单调性中的应用 3、导数在极值、最值中的应用 4、导数在恒成立问题中的应用 一、题型一:导数在切线方程中的运用★1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( )A.(-2,-8)B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)★2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( )A.6πB.4πC.3πD.π43二、题型二:导数在单调性中的运用★1.(05广东卷)函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)★2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数★★3.(05江西)已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )★★★4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a =-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.三、导数在最值、极值中的运用:★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A .2 B. 3 C. 4★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) , - 15 , 4 4 , - 15 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。
(完整word版)高中数学人教版选修2-2,2-3知识点总结,推荐文档
数学选修2-2导数及其应用知识点1 •函数的平均变化率是什么?答:平均变化率为丄丄f(X2) f(X i) fix―X)f(X i)X X X2 X! x注1:其中X是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念是什么?答:函数y f(x)在X X o处的瞬时变化率是lim y lim —X)f(Xo),贝U称函数y f(x)在点x。
处xX 0 X X 0可导,并把这个极限叫做y f(x)在x o处的导数,记作f'(x。
)或y'—,即' y f (x0x) f (x0)f (X o)= lim lim 0 0 .x 0 x x 0 x3. 平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。
5、常见的函数导数和积分公式有哪些?6、常见的导数和定积分运算公式有哪些?答:若f x,g x均可导(可积),则有:微积分基本定理bf x dx(其中 F' x f x )a和差的积分运算bbb[h(x) f 2(x)]dxh(x)dxf 2(x)dxaaabb特别地:akf(x)dxk a f(x)dX (k 为常数)积分的区间可加性b c b r r.f (x)dx f (x)dxf(x)dx (其中a c b)aac6.用导数求函数单调区间的步骤是什么? 答:①求函数f(x)的导数f'(x)② 令f'(x)>0,解不等式,得x 的范围就是递增区间.③ 令f '(x) <0,解不等式,得x 的范围,就是递减区间; 注:求单调区间之前一定要先看原函数的定义域。
7•求可导函数f(x)的极值的步骤是什么?答:(1)确定函数的定义域。
(2)求函数f(x)的导数f'(x)⑶求方程f '(x) =0的根 ⑷ 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间, 并列成表格,检查『(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么 f(x)在这个根处无极值8•利用导数求函数的最值的步骤是什么?答:求f(x)在a,b 上的最大值与最小值的步骤如下: ⑴求f (x)在a, b 上的极值; ⑵将f(x)的各极值与f(a), f(b)比较,其中最大的一个是最大值,最小的一个是最小值注:实际问题的开区间唯一极值点就是所求的最值点; 9•求曲边梯形的思想和步骤是什么? _ 答:分割 近似代替| 求和 取极限|(以直代曲”的思想)10•定积分的性质有哪些?根据定积分的定义,不难得出定积分的如下性质:…十b性质1 1dx b aa性质 5 若 f (x)0, x a,b ,贝U b f(x)dx 0abqC 2b②推广:f (x)dx f(x)dx f (x)dx L f (x)dxaaqq11定积分的取值情况有哪几种? 答:定积分的值可能取正值,也可能取负值,还可能是 0.(l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且 等于X 轴上方的图形面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且 等于X 轴上方图形面积的相反数;3)当位于x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯 形面积时,定积分的值为 Q ,且等于x 轴上方图形的面积减去下方 的图形的面积. 12•物理中常用的微积分知识有哪些?答:(1)位移的导数为速度,速度的导数为加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中间变量对自变量的导数。
6. 定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的
选取,以及区间的分割.微积分基本定理
b a
f (x)dx F (x) |ba F (b) F(a) .
物理上的应用:汽车行驶路程、位移;变力做功问题。
7. 函数的单调性
(1)设函数 y f (x) 在某个区间(a,b)可导,如果 f ' (x) 0 ,则 f (x) 在此区间上为增函数;
面面垂直: n1 n2
4. 夹角问题
线线角 cos | cos a,b | | a b | (注意异面直线夹角范围 0 )
| a || b |
2
线面角 sin | cos a, n | | a n | | a || n |
二面角
|
cos
||
cos
n1, n2
|
| n1 n2 | n1 || n2
线线平行: a / /b a / /b 线面平行: a / / a n 或 a / /b , b 或 a xb yc(b,c 是 内不共线向量)
面面平行: // n1 / /n2
3. 垂直
线线垂直: a b a b a b 0
线面垂直: a a / /n 或 a b, a c (b,c 是 内不共线向量)
① 直线具有斜率 k ,两个交点坐标分别为 A(x1, y1), B(x2, y2 )
AB
1 k2 x1 x2
(1 k2 ) (x1 x2 )2 4x1x2
1 1 k2
y1 y2
② 直线斜率不存在,则 AB y1 y2 .
(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。
(最后一定说明当 n=k+1 时,结论成立,根据(1)(2),结论对于 n N*(或者其他)成立,必不可
少)
第三章 数系的扩充与复数的引入
1. 复数的概念 三种表示形式:代数形式: z a bi ,复平面内点 Z(a,b),向量 OZ .
2. 区分实数,虚数,纯虚数,复数 3. 复数的四则运算及其几何意义 4. 复数的模
如果 f ' (x) 0 ,则 f (x) 在此区间上为减函数;
(2)如果在某区间内恒有 f ' (x) 0 ,则 f (x) 为常数。
★★★反之,若已知可导函数 y f (x) 在某个区间上单调递增,则 f '(x) 0 ,且不恒为零;
可导函数 y f (x) 在某个区间上单调递减,则 f '(x) 0 ,且不恒为零.
第二步有 M2不同的方法,……,做第 N 步有 MN 不同的方法.那么完成这件事共有 N=M1M2...MN 种
不同的方法。 3、排列:从 n 个不同的元素中任取 m(m≤n)个元素,按.照.一.定.顺.序.排成一列,叫做从 n 个不同元素 中取出 m 个元素的一个排列
4、排列数:从 n 个不同元素中取出 m(m≤n)个元素排成一列,称为从 n 个不同元素中取出 m 个元素
x a2 c
ybx a
(0,0) x轴
( p ,0) 2
e=1
x p 2
|
PF
|
x0
p 2
第三章 空间向量与立体几何 1. 空间向量及其运算
①
a
aa
x12
y12
z12
d
,
x2 x1 2 y2 y1 2 z2 z1 2
② 共线向量定理: a / /b a b (b 0) ③ 共面向量定理: p, a,b共面 p xa yb(x, y R) ;
选修 2-2 第一章 导数及其应用
1. 平均变化率
y f (x0 x) f (x0)
x
x
2. 导数(或瞬时变化率) 导函数(导数):
f (x0)
lim
x 0
f
( x0
x) x
f
(x0 )
f (x) lim f (x x) f (x)
x0
x
3. 导数的几何意义:函数 y=f(x)在点 x0 处的导数 f (x0)就是曲线 y=f(x)在点(x0,f(x0))处的切
二是建立不等式,通过解不等式求范围。 4.注意向量在解析几何中的应用(数量积解决垂直、距离、夹角等) (4)求曲线轨迹常见做法:定义法、直接法(步骤:建—设—现(限)—代—化)、代入法(利
用动点与已知轨迹上动点之间的关系)、点差法(适用求弦中点轨迹)、参数法、交轨法等。
椭圆
双曲线
抛物线
与两个定点的距离差的绝对
2. “回归定义” 是一种重要的解题策略。如:(1)在求轨迹时,若所求的轨迹符合某种圆锥 曲线的定义,则根据圆锥曲线的方程,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个 焦点构成的焦点三角形问题时,常用定义结合解三角形(一般是余弦定理)的知识来解决;(3)在 求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形利用 几何意义去解决。
四点共面 MP xMA yMB(x, y R)
④ 空间向量基本定理 p xa yb zc(x, y, z R) (不共面的三个向量 a, b, c 构成一组基
底,任意两个向量都共面)
2. 平行:(直线的方向向量,平面的法向量)( a, b 是 a,b 的方向向量, n 是平面 的法向量)
3. 直线与圆锥曲线的位置关系 (1)有关直线与圆锥曲线的公共点的个数问题,直线与圆锥曲线的位置关系有三种情况:相交、
相切、相离.联立直线与圆锥曲线方程,经过消元得到一个一元二次方程(注意在和双曲线和抛物线
方程联立时二次项系数是否为 0),直线和圆锥曲线相交、相切、相离的充分必要条件分别是 0 、 0、 0.
| |
(一般步骤①求平面的法向量;②计算法向量夹角;
③回答二面角(空间想象二面角为锐角还是钝角或借助于法向量的方向),只需说明二面角大小,无
需说明理由))
5. 距离问题(一般是求点面距离,线面距离,面面距离转化为点到面的距离)
P 到平面 的距离 d | PA n | (其中 A 是平面 内任一点, n 为平面 的法向量) |n|
与两个定点的距离和等于
值等于常数
与一个定点和一条
定义
常数 2a (2a | F1F2 |)
2a (2a | F1F2 |)
定直线的距离相等
标准方程
x2 a2
y2 b2
1(a
b
0)
x2 a2
y2 b2
1(a,b
0)
y2 2 px( p 0)
图形
顶点坐标 对称轴 焦点坐标
(±a,0),(0,±b) x 轴,长轴长 2a y 轴,短轴长 2b
最值定理:连续函数在闭区间上一定有最大最小值.
若 f (x) 在开区间 (a, b) 有唯一的极值点,则是最值点。
求极值步骤:
① 确定函数 y f (x) 的定义域(不可或缺,否则易致错);
② 解不等式 f '(x)=0 ;
③ 检验 f '(x)=0 的根的两侧的 f '(x) 符号(一般通过列表),判断极大值,极小值,还是非极
的一个排列. 从 n 个不同元素中取出 m 个元素的一个排列数,用符号 Anm 表示。
Am n(n 1)(n m 1) n! (m n, n, m N) (n m)!
选修 2-3 第一章 计数原理 知识点: 1、分类加法计数原理:做一件事情,完成它有 N 类办法,在第一类办法中有 M1 种不同的方法,在 第二类办法中有 M2 种不同的方法,……,在第 N 类办法中有 MN 种不同的方法,那么完成这件事情 共有 M1+M2+……+MN 种不同的方法。
2、分步乘法计数原理:做一件事,完成它需要分成 N 个步骤,做第一 步有 m1种不同的方法,做
6. 立体几何解题一般步骤 坐标法:①建系(选择两两垂直的直线,借助于已有的垂直关系构造);②写点坐标;③写向量
的坐标;④向量运算;⑤将向量形式的结果转化为最终结果。
基底法:①选择一组基底(一般是共起点的三个向量);②将向量用基底表示;③向量运算;④ 将向量形式的结果转化为最终结果。
几何法:作、证、求 异面直线夹角——平移直线(借助中位线平行四边形等平行线); 线面角——找准面的垂线,借助直角三角形的知识解决; 二面角——定义法作二面角,三垂线定理作二面角;作交线的垂面.
求单调性的步骤:
① 确定函数 y f (x) 的定义域(不可或缺,否则易致错);
② 解不等式 f '(x) 0或f '(x) 0 ;
③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不 能用“ ”连结。
8. 极值与最值
对于可导函数 f (x) ,在 x a 处取得极值,则 f '(a) 0 .
v( x)
(v(x)
0)
.
5. 设函数 u (x) 在点 x 处有导数 ux (x) ,函数 y f (u) 在点 x 的对应点 u 处有导 数
yu f u , 则 复 合 函 数 y f ((x)) 在 点 x 处 也 有 导 数 , 且 y'x y'u u'x 或
f x ((x)) f (u) (x) 。复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以
⑦ (ln x) 1 ; x
(2)导数的运算法则:
⑧ (loga
x)
1 x ln a
(a>0,且
a≠1).
①[u(x)±v(x)]′=u′(x)±v′(x);
②[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x);
③ [ u( x) ] v(x)