Fluent 多相流理论指南
Fluent多相流模型选择与设定
1.多相流动模式我们可以根据下面的原则对多相流分成四类:・气•液或者液•液两相流:O气泡流动:连续流体中的气泡或者液泡。
O液滴流动:连续气体中的离散流体液滴。
O活塞流动]在连续流体中的大的气泡O分层自由面流动:由明显的分界面隔开的非混合流体流动。
・气•固两相流:O充满粒子的流动:连续气体流动中有离散的固体粒子。
O气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
O流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液•固两相流O泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes数通常小于1。
当Stokes数大于1时,流动成为流化(fluidization) 了的液-固流动。
o水力运输:在连续流体中密布着固体颗粒o沉降运动:在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子:泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2.多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗丨丨法,后面分别简称欧拉法和拉格朗日法。
fluent 多相流 设置 操作流程
fluent 多相流设置操作流程如果你想要在ANSYS Fluent中模拟多相流现象,那么你需要进行一系列的设置操作,以确保模拟得以顺利完成。
下面,我们将分享这些设置操作的流程及步骤。
1. 边界条件设置首先,在进行多相流模拟前,你需要准确地划分出相应的边界条件。
这包括定义每个物理区域(例如,更具粘度变化的液相和气相),设置模型计算的初始值,以及对每个物理区域进行必要的粗糙处理等。
2. 网格划分和网格质量检测Fluent是一个非常强大的数值计算工具,使用该工具需要先将三维空间分割成无数的小体素,以形成网格。
通过网格划分,我们可以将需要进行数值仿真的物体划分成小块,从而使我们能够更好地研究物体的工作原理。
在进行网格划分时,你需要注意网格质量,以确保网格能够契合你所需要的物体形状。
此外,你还需要在网格上设置初值和边界条件。
3. 选择流体模型选择正确的流体模型是成功模拟多相流的关键。
目前,ANSYS Fluent支持多种流体模型,包括拉格朗日-欧拉耦合方法、欧拉方法等。
你需要根据自己的需要选择合适的流体模型。
4. 定义物质属性在进行多相流的模拟时,你还需要定义物质的属性,也就是不同区域的物质粗略参数。
该项工作很大程度上是根据实验数据和文献资料确定。
5. 设置模拟参数模拟参数的设置包括初始条件选择、物理参数的上下限选择等,你需要根据自己的需要在ANSYS Fluent中进行设置。
6. 进行模拟完成前面的所有步骤后,你就可以开始模拟了。
在模拟的过程中,你可能需要进行微调和调整,以确保模型能够尽可能地逼近真实物体的工作原理。
总的来说,在ANSYS Fluent中进行多相流的模拟虽然有很多细节需要注意,但只要你遵循正确的流程,就能够获得很好的仿真效果。
Fluent多相流模型选择及设定
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流 (上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
Fluent 多相流
Primary and secondary phases
One of the phases is considered continuous (primary) and others (secondary) are considered to be dispersed within the continuous phase.
2
© Fluent Inc. 7/13/2013
Fluent Software Training TRN-98-006
Definitions
Multiphase flow is simultaneous flow of
Matters with different phases( i.e. gas, liquid or solid). Matters with different chemical substances but with the same phase (i.e. liquid-liquid like oil-water).
Multiphase Models
Four models for multiphase flows currently available in structured
FLUENT 4.5 Lagrangian dispersed phase model (DPM) Eulerian Eulerian model Eulerian Granular model Volume of fluid (VOF) model
Unstructured FLUENT 5 Lagrangian dispersed phase model (DPM) Volume of fluid model (VOF) Algebraic Slip Mixture Model (ASMM) Cavitation Model
如何在fluent中设置多相流讲解
3 设置一般的多相流问题(Setting Up a General Multiphase Problem)3.1使用一般多相流模型的步骤(Steps for Using the General Multiphase Models)设置和求解一般多相流问题的步骤的要点如下,各个子部分详细的讲述在随后的章节中。
记住这里给出的仅是与一般多相流计算相关的步骤。
有关你使用的其它模型和相关的多相流模型的输入的详细信息,将在这些模型中合适的部分给出。
1)选中你想要使用的多相流模型(VOF, mixture, or Eulerian)并指定相数。
Define Models Multiphase...2)从材料库中复制描述每相的材料。
Define Materials...如果你使用的材料在库中没有,应创建一种新材料。
!!如果你的模型中含有微粒(granular)相,你必须在fluid materials category中为它创建新材料(not the solid materials category.)3)定义相,指定相间的相互作用(interaction)(例如,使用欧拉模型时的drag functions)Define Phases...4)(仅对欧拉模型)如果流动是紊流,定义多相紊流模型。
Define Models Viscous...5)如果体积力存在,turn on gravity and specify the gravitational acceleration.Define Operating Conditions...6)指定边界条件,包括第二相体积份额在流动边界和壁面上的接触角。
Define Boundary Conditions...7)设置模拟具体的解参数Solve Controls Solution...8)初始化解和为第二相设定初始体积份额。
Solve Initialize Patch...9)计算求解和检查结果*欧拉多相流模拟的附加指南(Additional Guidelines for Eulerian Multiphase Simulations)一旦你决定了欧拉多相流模型适合你的问题,你应当考虑求解你的多相流问题的需求计算能力。
在fluent中设置多相流
如何在fluent中设置多相流————————————————————————————————作者:————————————————————————————————日期:3 设置一般的多相流问题(Setting Up a General Multiphase Problem)3.1使用一般多相流模型的步骤(Steps for Using the General Multiphase Models)设置和求解一般多相流问题的步骤的要点如下,各个子部分详细的讲述在随后的章节中。
记住这里给出的仅是与一般多相流计算相关的步骤。
有关你使用的其它模型和相关的多相流模型的输入的详细信息,将在这些模型中合适的部分给出。
1)选中你想要使用的多相流模型(VOF, mixture, or Eulerian)并指定相数。
Define Models Multiphase...2)从材料库中复制描述每相的材料。
Define Materials...如果你使用的材料在库中没有,应创建一种新材料。
!!如果你的模型中含有微粒(granular)相,你必须在fluid materials category中为它创建新材料(not the solid materials category.)3)定义相,指定相间的相互作用(interaction)(例如,使用欧拉模型时的drag functions)Define Phases...4)(仅对欧拉模型)如果流动是紊流,定义多相紊流模型。
Define Models Viscous...5)如果体积力存在,turn on gravity and specify the gravitational acceleration.Define Operating Conditions...6)指定边界条件,包括第二相体积份额在流动边界和壁面上的接触角。
Define Boundary Conditions...7)设置模拟具体的解参数Solve Controls Solution...8)初始化解和为第二相设定初始体积份额。
多相流(multiphaseflows)fluent教程
Choosing a Multiphase Model
In order to select the appropriate model, users must know a priori the characteristics of the flow in terms of the following:
Turbulence Modeling in Multiphase Flows
Turbulence modeling with multiphase flows is challenging. Presently, single-phase turbulence models (such as k– or RSM) are used to model turbulence in the primary phase only. Turbulence equations may contain additional terms to account for turbulence modification by secondary phase(s). If phases are separated and the density ratio is of order 1 or if the particle volume fraction is low (< 10%), then a single-phase model can be used to represent the mixture. In other cases, either single phase models are still used or “particlepresence-modified” models are used.
One of the phases is considered continuous (primary) The others (secondary) are considered to be dispersed within the continuous phase. There may be several secondary phase denoting particles with different sizes
【多相流】fluent中如何选择多相流模型?(3)
【多相流】fluent中如何选择多相流模型?(3)“长风破浪会有时,直挂云帆济沧海!”对于分层流和段塞流,模型比较表明VOF模型的选择很简单。
为其他类型的流动选择模型就不那么简单了。
作为一般准则,有一些参数可以帮助为这些其他流动确定适当的多相流模型:颗粒载荷β和斯托克斯数st(注意,在本讨论中“颗粒”一词是指颗粒、液滴或气泡)。
1 颗粒载荷的影响颗粒载荷对相的相互作用有很大的影响。
定义颗粒载荷为分散相(d)与载体相(c)的质量密度比:材料密度比为:气-固流动大于1000,液-固流动约为1,气-液流动小于0.001。
通过这些参数,可以估算出颗粒相各颗粒之间的平均距离,Crowe等人已经给出了这个距离的估计。
其中,,有关这些参数的信息对于确定应如何处理分散相是重要的。
例如,对于颗粒载荷为1的气-固流动,颗粒间距离约为8;因此,颗粒可以被视为孤立的(即非常低的颗粒载荷)。
根据颗粒载荷的不同,相间相互作用程度可分为以下三类:•对于非常低的载荷,两相之间的耦合是单向的(即流体通过阻力和湍流影响颗粒,而颗粒对流体没有影响)。
离散相模型、混合模型和欧拉模型都能正确地处理这类问题。
由于欧拉模型是计算量最大的,建议采用离散相或混合模型。
•对于中等载荷,耦合是双向的(即流体通过阻力和湍流影响颗粒相,而颗粒反过来通过平均动量和湍流的降低影响流体)。
离散相、混合和欧拉模型都适用于这种情况,但需要考虑其他因素,以决定哪种模型更合适。
下面是使用Stokes数作为指南的信息。
•对于高载荷,有双向耦合加上颗粒压力和颗粒引起的粘性应力(四向耦合)。
只有欧拉模型才能正确地处理这类问题。
2 斯托克斯数的意义具有中等颗粒载荷的系统,估计Stokes数的值可以帮助选择最合适的模型。
可以将Stokes数定义为粒子响应时间与系统响应时间的关系:其中,,是基于所研究系统的特征长度和特征速度,。
•当,粒子将紧密跟随流动,三种模型(离散相、混合相或欧拉)均适用;因此,可以选择最经济的(大多数情况下是混合模型),或者考虑到其他因素,选择最合适的。
如何在fluent中设置多相流讲解
3 设置一般的多相流问题(Setting Up a General Multiphase Problem)3.1使用一般多相流模型的步骤(Steps for Using the General Multiphase Models)设置和求解一般多相流问题的步骤的要点如下,各个子部分详细的讲述在随后的章节中。
记住这里给出的仅是与一般多相流计算相关的步骤。
有关你使用的其它模型和相关的多相流模型的输入的详细信息,将在这些模型中合适的部分给出。
1)选中你想要使用的多相流模型(VOF, mixture, or Eulerian)并指定相数。
Define Models Multiphase...2)从材料库中复制描述每相的材料。
Define Materials...如果你使用的材料在库中没有,应创建一种新材料。
!!如果你的模型中含有微粒(granular)相,你必须在fluid materials category中为它创建新材料(not the solid materials category.)3)定义相,指定相间的相互作用(interaction)(例如,使用欧拉模型时的drag functions)Define Phases...4)(仅对欧拉模型)如果流动是紊流,定义多相紊流模型。
Define Models Viscous...5)如果体积力存在,turn on gravity and specify the gravitational acceleration.Define Operating Conditions...6)指定边界条件,包括第二相体积份额在流动边界和壁面上的接触角。
Define Boundary Conditions...7)设置模拟具体的解参数Solve Controls Solution...8)初始化解和为第二相设定初始体积份额。
Solve Initialize Patch...9)计算求解和检查结果*欧拉多相流模拟的附加指南(Additional Guidelines for Eulerian Multiphase Simulations)一旦你决定了欧拉多相流模型适合你的问题,你应当考虑求解你的多相流问题的需求计算能力。
多相流模型 FLUENT入门培训知识讲解
• 案例
– 气旋 – 喷雾干燥器 – 粒子的分离和分类 – 浮质散布 – 液体燃料 – 媒的燃烧
Introductory FLUENT Notes
DPM 案例 – 喷雾干燥器仿真 FLUENT v6.3 December 2006
• 使用FLUENT中DPM 模型模拟仿真喷雾干 燥过程,包括液体喷 雾进入加热室接触干 燥粉末时的流动,热 交换和质量交换。
Introductory FLUENT Notes
DPM模型的适用条件 FLUENT v6.3 December 2006
• 流域: • 填充体积: • 填充粒子: • 建立湍流模型: • Stokes数:
气泡流, 液滴流, 粒子流 必须是分散型 (体积率 < 12%) 少量到适中 相之间的弱结合和强结合 所有 Stokes数
Liquid/Liquid – 活塞流-大的气泡在连续液体中
Slug Flow
– 层流/自由表面流-不能混合的流体有 清晰的分离面,例如:自由表面流
– 粒子流-连续液体中的固体颗粒,例 如 :旋转分离器,空气清新器,吸尘
Gas / Solid 器,尘埃环境流
Stratified / FreeSurface Flow
Fluidized Bed
Introductory FLUENT Notes FLUENT v6.3 December 2006
Introductory FLUENT Notes
多相流中的湍流模型 FLUENT v6.3 December 2006
• 多相流中的湍流模型非常具有挑战性。 • 如今,单相湍流模型(例如k–ε 和 RSM )只
(例如:液体-液体,油-水)
• 液体由原相(primary)和次相的混合相
fluent多组分多相流模型_理论说明
fluent多组分多相流模型理论说明1. 引言1.1 概述本文旨在探讨fluent多组分多相流模型的理论说明。
随着科学技术的不断发展,多组分多相流模型在各个领域中得到了广泛应用。
该模型能够考虑多种组分和相态的存在,从而更准确地描述复杂的流体行为。
1.2 文章结构文章共分为五个部分,每个部分都包含了相关的内容。
首先,在引言部分介绍了本文的概述和结构。
接下来,第二部分将详细解释多组分流动模型、多相流动模型以及Fluent软件中的多组分多相流模型。
第三部分将探讨该模型在化工工艺过程、石油与天然气行业以及环境工程领域中的应用场景。
第四部分将评估该模型的优势和挑战,并提出可能面临的问题。
最后,在结论部分总结了主要观点和发现,并提出了对未来研究方向的展望和建议。
1.3 目的本文旨在深入理解fluent多组分多相流模型,并研究其在不同领域中的应用场景。
通过对该模型进行理论说明和分析,我们可以更好地了解其优势、挑战以及潜在问题。
此外,在总结主要观点和发现的同时,本文还将对未来的研究方向提出展望和建议,为该领域的科学研究和工程实践提供指导。
2. 多组分多相流模型理论说明:2.1 多组分流动模型:多组分流动模型是描述在系统中同时存在多个物质组分时的流动行为的数学模型。
在多组分流动模型中,每个物质组分都被视为一个单独的相,并且通过质量守恒方程和动量守恒方程来描述每个组分的运动。
此外,还引入了物质浓度、温度、压力等参数来完整描述系统状态。
2.2 多相流动模型:多相流动模型是用于描述具有不同物理性质的两种或更多相互作用的复杂系统中的流体行为的数学模型。
在传统单相流动模型中,假设介质是均匀连续的,但在实际情况下,往往存在着两种或者更多不同相态之间的界面。
因此,通过引入界面张力、表面张力等参数以及液滴或气泡等微观结构来描述这些不同相态之间的交互关系。
2.3 Fluent中的多组分多相流模型:Fluent是一种常用于计算流体力学仿真软件,在其中提供了丰富有效的多组分多相流建模工具和方法。
【多相流】fluent中如何选择多相流模型?(2)
【多相流】fluent中如何选择多相流模型?(2)“长风破浪会有时,直挂云帆济沧海!”计算流体力学的发展为进一步了解多相流的动力学特性提供了基础。
目前多相流数值计算主要有两种方法:欧拉-拉格朗日法和欧拉-欧拉法。
01—fluent中的多相流模型在欧拉-欧拉方法中,不同的相在数学上被视为相互渗透的连续相。
由于某一相的体积不能被其他相所占据,因此引入了相体积分数的概念。
假设这些体积分数是空间和时间的连续函数,它们的和等于1。
推导出各相的守恒方程,得到各相具有相似结构的方程组。
这些方程通过提供从经验获得的本构关系而封闭,或者,在粒状流动的情况下,通过动力学理论的应用而封闭。
在ANSYS Fluent中,提供了三种欧拉多相流模型: volume of fluid (VOF) 模型, mixture模型, 和 Eulerian 模型。
•VOF模型VOF模型是一种应用于固定欧拉网格的表面跟踪技术。
VOF模型用于两种或多种不混溶的流体,而流体之间的界面位置是我们感兴趣的。
在VOF模型中,流体共享一组动量方程,并且在整个域中跟踪每个计算单元中每种流体的体积分数。
VOF模型可应用于:分层流动、自由表面流动、填充、晃动、大气泡在液体中的运动、溃坝后液体的运动、射流破裂的预测(表面张力)以及任何液-气界面的稳态或瞬态跟踪。
•Mixture模型混合模型可用于两种或两种以上的相(流体或颗粒)。
在欧拉模型中,相被视为相互渗透的连续体。
混合模型求解混合动量方程,用相对速度来描述分散相。
混合模型可应用于:低负荷颗粒流、气泡流、沉降和旋风分离器。
混合模型也可以用于没有相对速度的分散相来模拟均匀多相流。
•Eulerian模型欧拉模型是ANSYS Fluent中最复杂的多相流模型。
它要为每一项求解一系列的动量和连续性方程。
通过压力和相间交换系数实现了耦合。
处理这种耦合的方式取决于所涉及相的类型:颗粒状(流体-固体)流动与非颗粒状(流体-流体)流动的处理方法不同。
Fluent多相流模型选择与设定
1.多相流动模式我们可以根据下面的原则对多相流分成四类:气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡;o 液滴流动:连续气体中的离散流体液滴;o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动;气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子;o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素;最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流;o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内;从床底不断充入的气体使得颗粒得以悬浮;改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合;液-固两相流o 泥浆流:流体中的颗粒输运;液-固两相流的基本特征不同于液体中固体颗粒的流动;在泥浆流中,Stokes 数通常小于1;当Stokes数大于1 时,流动成为流化fluidization了的液-固流动;o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质;随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降;在澄清层和沉降层中间,是一个清晰可辨的交界面;三相流上面各种情况的组合各流动模式对应的例子如下:气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗活塞流例子:管道或容器内有大尺度气泡的流动分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动风力输运例子:水泥、谷粒和金属粉末的输运流化床例子:流化床反应器,循环流化床泥浆流例子: 泥浆输运,矿物处理水力输运例子:矿物处理,生物医学及物理化学中的流体系统沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法;欧拉法即为两相流模型,拉格朗日法即为离散相模型欧拉法着眼于空间的点,基本思想是考察空间一个点上的物理量及其变化;在欧拉方法中,FLUENT将不同的相被处理成互相贯穿的连续介质;各相的体积率是时间和空间的连续函数,其体积分率之等于1;欧拉法中两相流模型包括:VOFthe volumeoffluid模型,混合模型和欧拉一欧拉模型VOF模型Volume of Fluid Model混合模型Mixture Model欧拉模型Eulerian ModelVOF模型Volume of Fluid ModelVOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面;VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法;VOF模型在应用的过程中存在某些局限性:l在利用该模型进行模拟时要求所有的控制体积必须被任何一种流体相或混合相所填满,即不能存在无流体流动的区域;2只允许一相流体是可压缩的;3很难对具有混合物料和反应存在的流动进行模拟;4相间存在较大速度差时,界面的速度精度会受到很大的影响;混合模型Mixture Model混合模型Mixture Model是一种简化的两多相流模型,它使用单流体方用于模拟各相有不同速度的两多相流,但是假定了在短空间尺度上局部的,相之间的耦合很强;同时也用于模拟有强烈藕合的各向同性相流和各相以相度运动的两多相流;混合模型可以通过求解混合相的动量、连续性和能量,第二相的体积分率方程,以及相对速度的代数表达式模拟多相fluldorculate;典型的应用包括低负载的粒子负载流,沉降,旋风分离器以及气相容很低的泡状流;混合物模型也可用于没有离散相相对速度的均匀多相流;用混合特性参数描述的两相流场的场方程组称为混合模型;考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动;用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流;缺点:界面特性包括不全,扩散和脉动特性难于处理;欧拉模型Eulerian Model欧拉一欧拉模型Euler-Euler Model是两多相流中最复杂的两多相流模型,也称为双流体模型;连续相与分散相被视为连续的一体;欧拉一欧拉模型对每一相都建立动量方程和连续性方程,通过压力和相间交换系数的藕合来计算求解;欧拉模型的应用包括气泡柱、颗粒悬浮以及流化床的模拟;有人将其成功地应用欧拉-模型模拟了鼓泡塔中两多相流的模拟及气泡聚并和破碎的影响;欧拉模型指的是欧拉—欧拉模型;把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;颗粒群与气体有相互作用,并且颗粒与颗粒之间相互作用,颗粒群紊流输运取决于与气相间的相互作用而不是颗粒间的相互作用;各颗粒相在空间中有连续的速度、温度及体积分数分布;几种多相流模型的选择VOF模型适合于分层流动或自由表面流;Mixture和Eulerian模型适合于流动中有混合或分离,或者离散相的体积份额超过10%-12%的情况;Mixture模型和Eulerian模型区别如果离散相在计算域分布较广,采用 Mixture模型;如果离散相只集中在一部分,使用Eulerian模型;当考虑计算域内的interphase drag laws 时,Eulerian模型通常比Mixture模型能给出更精确的结果;从计算时间和计算精度上考虑;拉格朗日法着眼于流体的质点,基本思想是跟踪每个流体质点在流动过程中的运动全过程,记录每个质点在每一时刻、每一位置的各个物理量及变化;在拉格朗日方法中,FLUENT将主体相视为连续相,稀疏相视为离散颗粒,主体相用欧拉法,而离散相利用拉格朗日法进行粒子跟踪,这就是所谓的欧拉一拉格朗日模型;此模型中需要离散相体积含量不超过15%,离散相和主体相都有自己的压力、粘度及湍流扩散稀疏参数,并在拉格朗日坐标系中考察离散相颗粒的运动轨迹;该模型能详细地分析粒子/液滴间的作用力以及流体间复杂的作用力,避免了应用大量的经验关系,又避免了离散相数值解的扩散问题,虽然计算量庞大,但是相对欧拉模型来讲,精度要更高一些;比较了各种模型,认为离散相模型能更准确地模拟气—固两相流动,能更好的跟踪固体颗粒、气泡、液滴在连续相中运动轨迹;3.选择基本原则通常,你一旦决定了采用何种模式最能符合实际的流动,那么就可以根据以下的原则来挑选最佳的模型;对于体积率小于 10%的气泡、液滴和粒子负载流动,采用离散相模型;对于离散相混合物或者单独的离散相体积率超出 10%的气泡、液滴和粒子负载流动,采用混合物模型或者欧拉模型;对于活塞流,采用 VOF 模型;对于分层/自由面流动,采用VOF 模型;对于气动输运,如果是均匀流动,则采用混合物模型;如果是粒子流,则采用欧拉模型;对于流化床,采用欧拉模型模拟粒子流;对于泥浆流和水力输运,采用混合物模型或欧拉模型;对于沉降,采用欧拉模型;对于更加一般的,同时包含若干种多相流模式的情况,应根据最感兴趣的流动特征,选择合适的流动模型;此时由于模型只是对部分流动特征做了较好模拟,其精度必然低于只包含单个模式的流动;Fluent软件中对喷雾这类气液两相流问题的模拟主要采用其自带的离散相模型DPM——Discrete Phase Model;此模型是以欧拉—拉格朗日方法为基础建立的;它把流体作为连续介质,在欧拉坐标系内加以描述,对此连续相求解输送方程,而把雾滴颗粒群作为离散体系,通过积分拉氏坐标系下的颗粒作用力微分方程来求解离散相颗粒的轨道,可以计算出这些颗粒的轨道以及由颗粒引起的热量/质量传递;同时,在计算中,相间耦合以及耦合结果对离散相轨道、连续相流动的影响均可考虑进去;当计算颗粒的轨道时,Fluent跟踪计算颗粒沿轨道的热量、质量、动量的得到与损失,这些物理量可作用于随后的连续相的计算中去;于是,在连续相影响离散相的同时,用户也可以考虑离散相对连续相的作用;交替求解离散相与连续相的控制方程,直到二者均收敛二者计算解不再变化为止,这样,就实现了双向耦合计算;在采用FLUENT中的离散相模型时,需要定义每个粒子尺寸以及温度;这些初始条件以及有关离散相物理性质的输入量/质量计算的必要条件;轨迹以及热量/质量传递的计算是粒子的对流或辐射传热、质量传递以及粒子在流场运动时的;而预测所得的轨迹以及相关的质量、热量传递可以通过1稳态问题建立及求解程序纲要建立和求解稳态离散相问题的一般程序如下所示:l求解连续相流动;2生成离散相的入射;3根据需要选择是否连续相与离散相关联求解;4用画图或者提取数据来跟踪离散相入射;2非稳态问题建立及求解程序纲要建立和求解非稳态离散相问题的一般程序如下所示:l生成离散相入射;2初始化流场;3取合适的时间步长数目进行求解;随着求解的进行,粒子的位置将会被更新;利用Fluent自带的空气雾化喷嘴模型预测雾化颗粒的颗粒行为;首先假设不带颗粒的空气为连续相,对其进行单相模拟;之后,假设雾化喷嘴喷出的甲烷颗粒为离散相,进行了气液两相耦合模拟;单相稳态模拟的基础上打开DPM模型Discrete Phase Model 加入离散相——甲烷雾滴进行两相耦合模拟,重点介绍了DPM中参数的设定;1 打开DPM模型利用Define/Models/Discrete Phase Model打开DPM,本文截取了Discrete Phase Model 设置面板的一部分,对其中参数的设定进行详细的分析,如图1所示;图1 Discrete Phase Model面板当模拟两相耦合过程时,用户应该首先计算得到收敛或部分收敛的连续相流场,然后再创建喷射源进行耦合计算;在每一轮离散相的计算,FLUENT 计算颗粒/液滴轨迹并且更新每一个流体计算单元内的相间动量、热量以及质量交换项;然后,这些交换项就会作用到随后的连续相的计算;耦合计算时FLUENT 在连续相迭代计算的过程中,按照一定的迭代步数间隔来计算离散相迭代;直到连续相的流场计算结果不再随着迭代步数加大而发生变化即,达到了所有的收敛标准,耦合计算才会停止;当达到收敛时,离散相的轨迹也不再发生变化若离散相轨迹发生变化将会导致连续相流场的变化;耦合计算的设定步骤如下:1. 计算连续相流场;2. 在Discrete Phase Model panel 面板中,激活Interaction with Continuous Phase 选项;3. 在Number Of Continuous Phase Iterations Per DPM Iteration 文本框中设定颗粒轨迹的计算频率即连续相迭代多少步,就进行一轮离散相的计算;若用户设定此参数为5,即意味着在连续相进行了五步迭代之后,就开始离散相的迭代计算;两个离散相计算中间应该间隔多少连续相的迭代步,要视用户问题的物理意义而定;需要注意的是,若此参数设定为0,那么FLUENT 将不进行离散相的计算;另外,图1中绿色圈的2个参数是最大计算步数Max. Number Of Steps和积分尺度Length Scale;最大计算步数Max. Number Of Steps是用积分方程1,2 求解颗粒轨道时,允许的最大时间步数;当某个颗粒轨道计算达到此时间步数时,FLUENT 就自动中止了此颗粒的轨道计算,输出时,此颗粒被标记为“incomplete”;对最大时间步数的规定消除了对某些在流场中不停循环的颗粒的无休止的计算;但是,对于缺省的500 步的最大时间步数,很多问题的计算都不止这么多;这种情况下,当颗粒信息在输出时被标记未完成,而实际颗粒并不是在流场中无休止的打转,那么,用户可以增加最大时间步数注值得注意的是:设定上述各个参数的一个简便方法是,若用户希望颗粒穿越长度为D的计算域,那么用长度标尺乘以最大积分时间步数,其结果应该大致等于D,即等于所设定的Number Of Continuous Phase Iterations Per DPM Iteration的值;2 创建injection通过Define/injection/create进入创建injection面板,如下图所示:在Injection Type中选择射流源类型,本文选定空气雾化喷嘴air-blast-atomizer;在Particle Type中选择颗粒类型,本文选择Droplet液滴是一种存在于连续相气流中的液体颗粒;它服从力的平衡并受到加热/冷却的影响由定律1 确定;此外,他还由定律2 和3 确定自身的蒸发与沸腾请参阅User’s Guide中的19.3.4;只有传热选项被激活并且至少两种化学组份在计算中是被激活的,或者已经选择了非预混燃烧或部分预混燃烧模型,液滴类型才是可选的;当选择了液滴类型之后,用户应该使用理想气体定律来定义气相密度在空气辅助雾化模型里,用户应直接设定液膜厚度,如图3所示;在Point Properties 面板上,设定喷口处液膜的内外半径,即液膜的厚度;另外,用户还必须设定液膜与空气间的最大相对速度差和喷射角度,如图4所示;液膜离开喷口之后,它的初始轨道沿着设定的喷射角;注意:如果初始液膜的轨道指向中心线,那么,喷射角度为负值;3 离散相边界条件的设定在Discrete Phase Model Conditions 属性框下的Boundary Cond. Type 下拉框中选择reflect,trap,或escape 边界条件在面板中,需要点击DPM 才能激活Discrete Phase Model conditions;如图5所示;FLUENT 中的离散相缺省边界条件为:1.壁面wall、对称面symmetry、轴对称的轴线axis均为``reflect''边界条件,且恢复系数均为;2.所有的流动类型边界压力入口-pressure inlets、速度入口-velocity inlets、压力出口-pressure outlets 等,均为``escape''边界条件;3.所有的内部区域边界辐射体- radiator、多孔介质间断面- porous jump均为边界条件;4.有对壁面边界wall才可以修改恢复系数;注意:在Boundary Conditions 面板打开的面板中可以设定离散相边界条件;当设定完一个以上的喷射源之后,离散相边界条件的输入项就会出现在相应的面板中;4 模拟结果及后处理颗粒轨道的输出时,颗粒的可能的结果如下:1.Escaped:逃逸意味着颗粒在已经设定了逃逸边界条件的流动边界终止了轨迹的计算; 2.Incomplete:未完成:意味着颗粒轨迹的计算时间步长已经达到设定的最大步数在Discrete Phase Model panel 面板中的Max. Number Of Steps 文本框中设定, 3.Trapped:捕获:意味着颗粒在已经设定了捕集边界条件的流动边界终止了轨迹的计算;4.Evaporated:蒸发:意味着颗粒在计算域中被完全蒸发掉了;5. Aborted:忽略:意味着颗粒由于舍入误差原因而不能进行计算;用户可以修改长度标尺或设定不同的初始条件来重新计算颗粒轨迹;需要注意的是,除了用连续相的变量值来着色颗粒轨迹外,也可以使用离散相的各种变量值来进行着色;这些变量值包括:颗粒已停留时间、颗粒速度、颗粒直径、颗粒密度、颗粒质量、颗粒温度、颗粒所使用的定律、颗粒积分时间步长、颗粒雷诺数;在Color By 类目框下的Particle Variables...下拉框中列出了所有可选的着色颗粒变量;为了显示计算域内的最大/最小值,可以点击Update Min/Max 按钮更新;—————————————————————DPM 模型的基本操作和注意事项1 DPM 模型概述DPM 模型可以用来模拟流场中的离散相,它的特点是使用方便,模拟思路清晰,计算中可以对颗粒运动轨迹进行跟踪,结果直观;其缺点是,计算结果无法得到离散相各种场图,为结果分析造成很大不便;FLUENT 提供了如下的离散相模型选项:1. 使用Lagrangian 坐标下的公式计算颗粒的轨迹;这些公式涉及了稳态及非稳态条件下离散相的惯性力、曳力和重力;2. 连续相中的漩涡对于离散相扩散产生的扰动进行预测;3. 离散相的加热与冷却;4. 液滴的蒸发和沸腾;5. 提供对颗粒燃烧的模拟,可以通过对挥发份析出和焦炭燃烧来模拟煤粉的燃烧;6. 可以选择是否进行连续相与离散相的耦合计算;7. 液滴的破碎与合并;这些模型时的FLUENT 可以用来对许多种离散相的问题进行模拟,包括颗粒的分离与分级,喷雾干燥,烟雾的扩散,液体中气泡的搅浑,液体燃料和煤的燃烧;当需要在FLUENT 的模型中加入离散相时,可以通过定义颗粒的初始位置、速度、粒径、温度等参数实现,具体的操作过程在“Discrete Phase Model”面板中完成;以上的参数再加上颗粒的物理属性,就可以作为计算颗粒轨迹和颗粒热、质传递的初始化条件; 下面就使用DPM 模型的基本步骤归纳如下:对于稳态问题,可采用以下步骤求解:1. 求解连续相流动;2. 添加离散相;3. 如果需要的话可以求解耦合流动;4. 对计算结果进行后处理对于非稳态问题,可通过以下步骤求解;1. 添加离散相;2. 初始化流场;3. 设定时间步长;对于非耦合问题,FLUENT 会在每个时间步长的最后更新离散相的位置;对于耦合问题,在每次相间耦合计算中离散相的位置都回更新;2 应用DPM 模型需要注意的一些问题在Fluent 中应用DPM 模型进行计算时,需要注意DPM 模型忽略了两相流中颗粒之间的相互作用,以及颗粒相对连续相流动产生的影响;这就决定了两相流中颗粒相的体积分数不能太高,通常情况下这一体积分数要小于10%~20%;但是,这并不意味着在应用DPM 模型时颗粒相的质量分数也要小于10%~20%,实际上,我们可以使用DPM 模型来模拟离散相质量分数等于或超过连续相质量分数的流动;1如果颗粒是以喷射的形式进入连续相的,而且流场中有明确的入口和出口,这种情况下可以使用稳态的DPM 模型来计算;2如果颗粒相在连续相中处于一种无限期的悬浮状态,这种情况下稳态的Lagrangian 模型就不再适用了,对于这样的工况可以考虑使用非稳态的DPM 模型来进行求解;换句话说,对于搅拌器、混和器、流化床这一类容器如果应用DPM 模型来模拟其流场,应该在非稳态的前提下进行;一旦应用DPM 模型来对流动进行模拟后,Fluent 中的某些功能将不能再被使用;具体如下:1. 周期性的边界条件;2. 可调的时间步长;3. 使用非预混燃烧模型时,颗粒不能参加反应;4. 当使用动网格或变形网格时,颗粒喷射的表面便不能随网格一起运动;5. 如果使用了复合参考系,在参考系下颗粒轨道失去了原有的意义,同理,相间耦合计算也失去了意义;解决这个问题的方法就是采用绝对速度来对颗粒进行跟踪而不是采用相对速度,这一方法可以通过在文本窗口输入以下命令实现:define/models/dpm/tracking/track-inabsolute-frame;需要注意的是,计算结果会与符合参考系下壁面的位置有很大关系;颗粒的跟踪是在哪个参考坐标系下进行的,颗粒的入射速度就要在哪个参考坐标系下定义的;默认情况下,颗粒速度是基于当地坐标系定义的,如果你激活了track-in-absolute-frame方法如前所述,颗粒速度就基于绝对坐标系来定义; 3.DPM 模型的傻瓜用法所谓的傻瓜用法,就是不用考虑细节,甚至不必知道模型设置面板中每一项的意义所在,而只给出相应参数的设定来进行求解;我们不提倡这样的做法,但这也确实是能让新手尽快上路的好办法,当然,有可能计算的结果不准确,但对于简单的流场来讲,应该还可以接受,对于稍复杂的情况,即便是老手,也不敢保证一次建模、一次计算就能得到满意的结果,所以,慢慢调试吧对于稳态的工况,为了确保计算结果的收敛,可以暂时先不在流场中添加离散相,而仅仅进行连续相的迭代,一直迭代到连续相收敛再加入离散相;当然,也可在计算得到收敛趋势时加入离散相;本节只讨论DPM 模型面板的设定; 下面说明傻瓜用法的操作步骤:1. 通过Define→Models→Discrete Phase 来打开DPM 模型的控制面板,2. 选中interaction with Continuous Phase;3. 将Number of Continuous Phase Iterations per DPM Iteration 置为20;4. 选中Specify Length Scale,将Length Scale 置为,注意Length Scale 后面的单位是m;5. 粗略估计颗粒的行程,然后用该行程除以Length Scale,得到的值就是Max. Number Of Steps 要输入的值;实际上,Length Scale 与Of Steps 的乘积即为跟踪颗粒轨迹的最大长度,如果你想观察颗粒在整个流场中的流动,那么这个乘积的值就要大于颗粒的轨迹长度,所以此时可以适当地扩大Max. Number Of Steps 的值;6. 点击面板下方的injections,弹出Injections 面板,再点击Create,弹出Set Injection Properties 面板,在此面板中设定颗粒的属性;7. 在Point Properties 下输入颗粒的各种参数;8. 在Turbulent Dispersion 下激活Stochastic Tracking 选项,将Number of Tries 改成10;至此,DPM 模型的基本设定就全部结束了;接下来的任务就是针对自己模型的特点,有针对性的到帮助文件中去寻找解决问题的方法;_______________________________我们先看看燃烧中的组分输运和有反应流动该如何处理;这是燃烧问题中很重要的一部分,前人发展了很多模型来处理不同的具体问题:a 通用有限速度模型该方法基于组分质量分数的输运方程,采用你所定义的化学反应机制,对化学反应进行模拟;反应速度在这种方法中是以源项的形式出现在组分输运方程中的,计算反应速度有几种方法:从Arrhenius 速度表达式计算,从Magnussen 和Hjertager 的漩涡耗散模型计算或者从EDC 模型计算;b 非预混燃烧模型在这种方法中,并不是解每一个组分输运方程,而是解一个或两个守恒标量混和分数的输运方程,然后从预测的混合分数分布推导出每一个组分的浓度;该方法主要用于模拟湍流扩散火焰;在守恒标量方法中,通过概率密度函数或者PDF 来考虑湍流的影响;c 预混和燃烧模型这一方法主要用于完全预混合的燃烧系统;在这些问题中,完全的混合反应物和燃烧产物被火焰前缘分开;我们解出反应发展变量来预测前缘的位置;湍流的影响是通过考虑湍流火焰速度来计算得出的;d 部分预混和燃烧模型顾名思义,部分预混和燃烧模型就是用于描述非预混和燃烧和完全预混和燃烧结合的系统;在这种方法中,我们解出混合分数方程和反应发展变量来分别确定组分浓度和火焰前缘位置;模型选取的大致方针如下:1通用有限速度模型主要用于:化学组分混合、输运和反应的问题;壁面或者粒子表面反应的问题如化学蒸汽沉积;2 非预混燃烧模型主要用于:包括湍流扩散火焰的反应系统,这个系统接近化学平衡,其中的氧化物和燃料以两个或者三个流道分别流入所要计算的区域;3 预混燃烧模型主要用于单一、完全预混和反应物流动;。
Fluent多相流模型选择与设定(优选.)
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
Fluent多相流模型选择及设定
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流 (上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
Fluent 多相流理论指南
返回主页
第17章:多相流
Fluent理论指南第十七章
翻译:刘芹芹 校对:李娇娇(北京计算科学研究中心)
本章讨论ANSYS Fluent的通用多相流模型。首先简单介绍多相流模型,离散相一章简要讨论拉格朗日离散相模 型,凝固和融化一章讨论凝固和融化模型。关于ANSYS Fluent中如何使用多相流模型的信息,可参见《ANSYS Fluent用户指南》中的多相流模拟部分。以下小节介绍多相流模型的各种理论知识: 17.1. 介绍 17.2. 选择多相流模型 17.3. VOF模型 17.4. Mixture模型 17.5. 欧拉模型 17.6. 湿蒸汽模型 17.7. 多相流中的质量传输 17.8. 多相流中的组分传输
/Fluent/17.html
2/20
11/5/2017
Fluent理论指南第十七章
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
活塞流:管道或容器内大气泡流动。
分层流/自由表面流:海上设备中的晃动、核反应堆中的沸腾和冷凝。
颗粒流:旋风分离器、空气分级器、吸尘器、充满灰尘的环境中流动。
水力运输: 连续液体中存在稠密的固体颗粒;
沉降: 初始状态下,一个较高的圆柱形容器内为均匀离散的颗粒液体混合物。随后在容器底部颗粒将会下沉 形成淤泥层,在顶部会出现清晰分界层,在中间存在恒定的沉淀区。
17.1.1.4.三相流
三相流是前面列出的几种流动模式组合
17.1.2. 多相流例子
下面列出多相流的一些具体例子: 气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
如果求解问题简单,精度要求不高,使用Mixture模型更好,因为Mixture模型比欧拉模型需求解的方程数量 少。如果更在意准确性而非计算工作量,使用欧拉模型更好。然而,欧拉模型不如Mixture模型计算稳定。
12-fluent_multiphase多相流讲解
9-2
ANSYS, Inc. Proprietary
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
选择多相流模型
为能选择合理的模型,用户需要预先了解流动的特点:
流态 微粒 (连续介质中的气泡,液滴和固体颗粒) 分层 (流体分界面的长度和域的长度相当)
多相湍流模型 在颗粒流动中,以下值需要估算
颗粒体积含量 Stokes数
© 2006 ANSYS, Inc. All rights reserved.
9-3
ANSYS, Inc. Proprietary
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
Vc e ll
© 2006 ANSYS, Inc. All rights reserved.
9-5
ANSYS, Inc. Proprietary
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
Stokes数
流体系统中有颗粒时,根据Stokes数选择合适的模型
© 2006 ANSYS, Inc. All rights reserved.
9-6
ANSYS, Inc. Proprietary
Introductory FLUENT Notes FLUENT v6.3 Aug 2008
混合物质相
在 FLUENT的所有多相流模型中,任何相都可以看成是由单个物质 或多个物质组成的混合物构成。
多相流的各种形式
气泡流-连续流体中的离散气泡, 例 如: 减震器, 蒸发器, 喷射装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多相流主要分为五类:气-液,液-液、气-固、液-固、三相流。
17.1.1.1. 气-液或液-液流
下面是不同气-液或液-液流动的分类: 气泡流:连续流体中存在分散的气泡或液滴。 液滴流:连续气体中存在分散的液滴。 段塞流:连续流体中存在较大的气泡。 分层流/自由表面流:不相容的流体混合且具有明显的相界面。
气力输运:水泥、谷物、金属粉末的输运。
流化床:流化床反应器、循环流化床。
泥浆流:泥浆输运、矿物处理。
水力输运:矿物处理、生物医学及物理化学中的流体系统。
沉降:矿物处理。
17.2. 选择多相流模型
解决任何多相流问题的第一步,就是确定多相流模型。模型比较一节中提供了一些基本原则。具体指导原则一节 中给出了详细的方法:如何确定流动中(包含气泡、液滴、或颗粒)各相之间的耦合程度,以及不同耦合程度适 合的多相流模型。
如果求解问题简单,精度要求不高,使用Mixture模型更好,因为Mixture模型比欧拉模型需求解的方程数量 少。如果更在意准确性而非计算工作量,使用欧拉模型更好。然而,欧拉模型不如Mixture模型计算稳定。
ANSYS Fluent中的多相流模型和动网格兼容,关于动网格,可详见应用动网格的流动一节。关于ANSYS Fluent中 其他模型与多相流模型的兼容性,可参考用户指南中的附录A。
对高负载率,除了双向耦合,还有颗粒引起的颗粒压力和粘性应力,即四向耦合,此时只能使用双流体模 型。
17.2.2.1.2.Stokes数的影响
对于中等负载率的系统,需要估算Stokes数来选择最合适的模型。Stokes数定义为颗粒响应时间与系统响应时间 之比:
τd St =
ts
(4)
式中的τd
=
, ρd
17.2.1.1.3. 双流体模型
/Fluent/17.html
3/20
11/5/2017
Fluent理论指南第十七章
双流体模型是ANSYS Fluent中最复杂的多相流模型。该模型中的每一相都具有一组动量方程和连续性方程。各相 之间通过压力和相间交换进行耦合,耦合的处理方式取决于流动中相的类型。比如颗粒流和非颗粒流的处理方式 就不同。对于颗粒流,是通过运动学理论获得相间的耦合特性。相间的动量交换也取决于流动中相的类型。ANSYS Fluent的用户可以通过自定义函数(UDF)个性化定制动量交换的计算方式。双流体模型的应用场合有:鼓泡床、 上浮、颗粒悬浮、以及流化床。
d
2 d
/(18μc
)
ts
=
Ls /Us。这里的ts 指得是基于所研究系统的特征长度Ls 和特征速度Us的比值。
当St ≪ 1.0的情况下,颗粒紧密跟随主流,离散相模型、Mixture模型、双流体模型都适用;用户可选择计算资源 消耗最小的模型(大多数情况下为Mixture模型),或者根据其他因素选择最合适的模型。当St > 1.0,颗粒运动 将独立于主流运动,需选择离散相模型或欧拉模型。当St ≈ 1.0,三种模型也可任选其中之一。用户可以根据计 算资源消耗的大小或者其他因素选择最合适的模型。
17.2.2.1.2.1.例子
某煤粉分离器的特征长度为1 m,特征速度为10m/s,当颗粒直径为30μ m时,Stokes数值为0.04 。而当颗粒直径为 300μm,Stokes数等于4 。显然后者不能使用Mixture模型。
某矿物处理系统的特征长度为0.2m,特征速度为2 m/s,当颗粒直径为300μm时,Stokes数等于0.005。这种情况 下,用户可以选择Mixture模型和双流体模型。由于这种情况下相体积分数太高而不能选择离散相模型(原因如 下)。
在欧拉方法中,不同的相被处理成互相贯穿的连续介质。各相的体积不能被其他相占有,因此引入‘体积分 数’的概念。其假定体积分数是空间和时间的连续函数,所有相的体积分数和等于1 。每一相都有各自的控制方 程,且所有相的这些方程形式相同。另外附加一些经验性的关系式来使这些方程封闭。
ANSYS Fluent提供了三种基于欧拉方法的多相流模型:VOF模型、Mixture模型、和双流体模型。
17.1. 介绍
很多在自然界和工程中遇到的流动是多相混合的流动。物理学中物质的‘相’指气相、液相、固相,而多相流 中‘相’的概念更加广义。在多相流中,‘相’不仅可以定义为不同类型的物质,也可定义为相同类型物质。比 如,某固相颗粒中,不同尺寸的固体颗粒也可视为不同的相。 本节分为以下两部分: 17.1.1. 多相流模式 17.1.2. 多相流例子
流化床: 由盛有颗粒的容器构成,气体从分布器进入容器,通过床底升起使颗粒悬浮。气泡的出现取决于气 体流率。气泡通过床底的升起可加强流化床内颗粒混合。
17.1.1.3.液-固流
以下是液-固流:
泥浆流: 在液体中输运颗粒的流动。液-固流的基本行为随固体颗粒属性相对于液体属性的不同而改变。在 泥浆流中,Stokes数一般小于1 。当Stokes数大于1 ,流动成为液固流态化;
根据计算的颗粒负载率,相间耦合程度可分为以下三类:
对于低负载率,相间耦合是单向的(即主流通过拖曳和湍流对颗粒运动产生影响,但是颗粒不影响主流)。 用离散相模型、Mixture模型、双流体模型都正确,但双流体模型工作量大,推荐使用前两种模型。
对中等负载率,相间耦合是双向的(即主流通过拖曳和湍流对颗粒运动产生,反过来颗粒通过减小平均动量 和湍流影响主流)。用离散相模型、Mixture模型、双流体模型都合适,但是用户还需要考虑其他因素来判 断哪种模型更合适。可用下面的Stokes数作为判断标准。
利用这些参数,可以估算颗粒相中颗粒与颗粒之间的平均距离。Crowe et al.给出的一种距离估算方法:
L dd
π 1+κ
1/3
=(
)
6
κ
(3)
式中κ = β/γ。这些参数信息对确定离散相处理方式十分重要。比如,对于颗粒负载率为1的气-固流,相间距离 L/dd 大约为8左右;因此颗粒可彼此视为孤立的(即非常低的负载率)。
17.2.1.1.1. VOF模型
VOF模型是一种网格固定的的表面跟踪技术。该模型用于观察两种及以上互不相融流体间的分界面。VOF模型中, 两种流体共用一组动量方程,计算域中各流体的体积分数在每个计算单元上被跟踪。VOF模型的应用场合有:分层 流、自由面流动、灌注、晃动,液体中大气泡的流动、水坝决堤时的水流、任意液-气的稳态或瞬态分界面问题。
水力运输: 连续液体中存在稠密的固体颗粒;
沉降: 初始状态下,一个较高的圆柱形容器内为均匀离散的颗粒液体混合物。随后在容器底部颗粒将会下沉 形成淤泥层,在顶部会出现清晰分界层,在中间存在恒定的沉淀区。
17.1.1.4.三相流
三相流是前面列出的几种流动模式组合
17.1.2. 多相流例子
下面列出多相流的一些具体例子: 气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
对于流化床,选择双流体模型中的颗粒流模型。
对于泥浆流和水力输运,选择Mixture模型或双流体模型。
对于沉降,选择双流体模型。
对于一般的、包含多种流动模式的复杂多相流,选择最感兴趣的流动特征,并针对该特征选择最适合的模 型。注意:选择的模型只对用户模拟流动的这部分特征有效。
如本节中讨论过的,VOF模型适用于分层/自由表面流动,Mixture模型和欧拉模型适用于相间混合或分离、或离散 相体积分数超过10%的流动(如果离散相体积分数小于等于10%,可用离散相模型。
/Fluent/17.html
2/20
11/5/2017
Fluent理论指南第十七章
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
活塞流:管道或容器内大气泡流动。
分层流/自由表面流:海上设备中的晃动、核反应堆中的沸腾和冷凝。
颗粒流:旋风分离器、空气分级器、吸尘器、充满灰尘的环境中流动。
11/5/2017
返回主页
第17章:多相流
Fluent理论指南第十七章
翻译:刘芹芹 校对:李娇娇(北京计算科学研究中心)
本章讨论ANSYS Fluent的通用多相流模型。首先简单介绍多相流模型,离散相一章简要讨论拉格朗日离散相模 型,凝固和融化一章讨论凝固和融化模型。关于ANSYS Fluent中如何使用多相流模型的信息,可参见《ANSYS Fluent用户指南》中的多相流模拟部分。以下小节介绍多相流模型的各种理论知识: 17.1. 介绍 17.2. 选择多相流模型 17.3. VOF模型 17.4. Mixture模型 17.5. 欧拉模型 17.6. 湿蒸汽模型 17.7. 多相流中的质量传输 17.8. 多相流中的组分传输
本节分为以下四部分:
17.2.1. 多相流建模
17.2.2. 模型比较
17.2.3. 多相流的时间离散格式
17.2.4. 稳定性和收敛性
17.2.1. 多相流建模
计 朗算 日流 方体 法力 和学 欧的 拉发 方展 法为 ;进 (一 李步 东深 岳入 :了 原解 文多 中相 为流 欧动 拉力-欧学拉提方供法了,基为础防。止目其前和多双相流流体的模数型值混计淆算,有此两处种译方为法欧:拉欧方拉法-拉)格 17.2.1.1. 欧拉方法
17.2.2.1.详细指南
对于分层流和活塞流,如模型比较一节中所述,毫无疑问应选择VOF模型。然而对于其他流态不是很明确的流动, 需要定义一些参数来辅助。一般来说,可使用参数颗粒负载率 ,以及Stokes数来进行判断选择合适的模型(注 意,此处的‘颗粒’一词适用于颗粒、液滴、气泡)。
17.2.2.1.1颗粒负载率的影响
17.2.2. 模型比较
一旦用户确定使用欧拉方法下的模型处理实际多相流问题,可以基于下述原则进一步选择合适的多相流模型:
对于气泡、液滴、颗粒负载流,如果混合相或离散相体积分数大于10%,选择Mixture模型或双流体模型。