信号与系统(第二章)ppt课件

合集下载

信号与系统课件:第二章 LTI系统

信号与系统课件:第二章 LTI系统
第2章 线性时不变系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2

信号与系统 第二章ppt剖析

信号与系统 第二章ppt剖析
网络拓扑约束:由网络结构决定的电压电流约束关系, KCL,KVL。

例1 求并联电路的端电压 vt 与激励 is t 间的关系。
7 页
电阻
iR t
1 R
vt
电感
iLt
1 L
t v d
ist
电容
iC
t
C
dv d
t
t
iR iL R LC
a ic
vt
b
根据KCL iRt iLt iC t iS t
系统的完全响应
第 17

求出齐次解rh t 和特解rp t 相加即得方程的完全解:
n
rt Aieit rp t i 1
利用初始条件求待定系数Ai 我们一般将激励信号加入的时刻定义为t=0,响应
的求解区间定为 t ,如0 果响应在0时刻没有跳变,通常
取t=0,这样对应的一组条件称为初始条件。
1
2
10
B1
, 3
B2
, 9
B3 27
所以,特解为
rp t
1 3

2 9
t
10 27
第 15

(2)
(原方程:
d2 rt
dt2
2
d rt
dt
3r t
d et
dt
et

当et et时, 很明显, 可选rt Bet。这里,B是待定系数。
代入方程后有:
Bet 2Bet 3Bet et et
于是,特解为 1 et。 3
B 1 3
几种典型激励函数相应的特解
第 16

激励函数e(t)
E(常数)
响应函数r(t)的特解

《信号与系统 》课件第2章

《信号与系统 》课件第2章

ε(at)=ε(t)
(2.1-21)
由单位阶跃函数的定义即可理解式(2.1-21)是成立的。因
a>0,当t>0时ε(at)=1,当t<0 时ε(at)=0,当t=0时
ε(at)=1/2,这样所画出的ε(at)之图形正是ε(t)。
可以证明:若a为不等于零的实常数,则有
(2.1-22) 单位冲激函数定义的特殊性,决定了冲激函数相乘运算无 定义,即是说δ(t)×δ(t)无定义。
(2.1-13) 这样的猜想尽管欠严密,但可以理解。下面就此性质作如下 推导:考虑积分
式中,f(t)在t=0处连续。将上式中的-t换为τ,t换为-τ,dt 换为-dτ,使积分的上、下限亦随之作相应的变化,这样就 有
(2.1-14)
比较式(2.1-11)与式(2.1-14),得 从而有
3. 单位冲激函数的导数 单位冲激函数的一阶导dδ(t)/dt常用δ′(t)表示,称它为单 位冲激偶,简称冲激偶,其定义为
式(2.1-10)表明,一个连续有界函数f(t)与位于t=0处单位冲激 函数δ(t)相乘,其乘积结果函数为位于t=0、强度为f(0)的冲激 函数。可这样理解式(2.1-10):由于δ(t)在除t=0之外处处 为零,而f(t)处处有界,所以乘积为0;当t=0时f(t)的函数值为 f(0),所以f(t)与δ(t)相乘得到式(2.1-10)所表述的结果。上述分 析过程可用图2.1-7作直观简明表示。
(2.1-17)
证明:先设a>0。对式(2.1-17)左端积分,有
再设a<0。对式(2.1-17)左端积分,有
(2.1-18)
(2.1-19)
对式(2.1-17)右端积分,有 (2.1-20)
比较式(2.1-18)、式(2.1-19)、式(2.1-20),可知式(2.1-17)成立。

信号与系统 第二章ppt_part2

信号与系统 第二章ppt_part2
1
0 t 1

[1 e(t 1) ]
演示
[1 e(t 1) ]u(t 1) f1 (t ) f2 (t )
f1 (t )* f2 (t )
1
0
1
t
解法二:f 2 ( ) 不变,反褶 f1 ( ), f 2 ( ) f1 ( )
1 1 1
f1 (t ) f2 (t ) f 2 ( ) f1 (t )d
f
( 1) 2
t e d u ( ) e t u (t ) (1 e t )u (t ) (t ) e u ( )d 0
t
f1(t)*f2(t)=(1-e-t) u(t)- [(1-e-(t-2)] u(t-2)
n

y zs (t ) lim x(kt )h(t kt )t
t 0 k 0
y zs (t ) lim x(kt )h(t kt )t
t 0 k 0
n
当 t 0 时,t d , kt ,
t 0
t 0
lim
t k 0 0
s(t )
1 e
T
(t T )
e ]u(t T )
t
t
(t T )
]u(t T )
1
0
t
T
演示
例2-13 已知信号x(t)与h(t)如下图所示,求 h(t) x(t) 1 1
y(t ) x(t ) h(t )
-1/2 0 解:

1
t
0
2
t
y (t ) x( )h(t )d
h(t )
1

信号与系统课件 L02_CH2 更多课件可进我文库查看

信号与系统课件 L02_CH2 更多课件可进我文库查看

:初始相位
周期信号
t
0
0
T0

0
A
4
2.1 连续时间信号的时域描述
——典型普通信号
3. 指数类信号 — 实指数信号
f (t ) Aet
f (t ) Ae
t
0
0
A
0
t
5
2.1 连续时间信号的时域描述
——典型普通信号
3. 指数类信号 — 虚指数信号
周期性:


f (t ) ' (t t0 )dt f ' (t0 )
(取样特性) (展缩特性)
' (t )
1

' (t )
( 0)

' (t ) ' (t )
' (t )dt 0
29
d (t ) ' (t ) dt
(t ) ' ( )d

t
du(t ) (t ) dt dr (t ) u(t ) dt
u (t ) ( )d

t
r (t ) u ( )d

30
t
f (t ) e
j0t
f (t ) f (t T ) e j0t e j0 (t T )
0T 2πm, m 1, 2
虚指数信号的基本周期:
Euler公式: 1 j t cos( t ) (e e jt ) 2
T 2π
0
1 jt sin(t ) (e e jt ) 2j
1 t 0 u(t ) ( )d 0 t 0

信号与系统第二章ppt课件

信号与系统第二章ppt课件
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4

信号与系统-吴大正PPT课件

信号与系统-吴大正PPT课件
■ 第 17 页
§1.2 信号的描述和分类
信号的描述 信号的分类 几种典型确定性信号
■ 第 18 页
一、信号的描述
信号是信息的一种物理体现。它一般是随时间或 位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。
电信号容易产生,便于控制,易于处理。本课 程讨论电信号——简称“信号”。


第1页
信号与系统
是电子技术、信息工程、通信工程 等专业重要的学科基础课
课程介绍
Signals and Systems
电子技术、 信息工程、 通信工程 等专业的 考研课程

第3页
课程位置
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 《数字图像处理》


第7页
参考书目
(1)郑君里等. 信号与系统(第二版) . 北京:高等教育出 版社, 2000 (2) 管致中等 . 信号与线性系统 (第四版) . 北京:高等 教育出版 社, 2004 (3)A.V.OPPENHEIM. 信号与系统 (第二版) .北京 :电 子工业出版 社, 2002 (4)王松林、张永瑞、郭宝龙、李小平.信号与线性系统 分析 (第4版) 教学指导书. 北京:高等教育出版 社, 2006


第8页
信号与系统
第一章 信号与系统
第二章 连续系统的时域分析
第三章 离散系统的时域分析
第四章 傅里叶变换和系统的频域分析
第五章 连续系统的s域分析
第六章 离散系统的z域分析
第七章 系统函数
第八章 系统的状态变量分析

信号与系统第二章课件

信号与系统第二章课件



(t 0)
18
连续系统的时域求解(例)
例.(2.4-1)系统 r (t ) r (t ) r (t ) e(t ) e(t ) 解: 2 1 0 1,2 0.5 j 0.5 3 求h (t)和g (t)。
1
在所选专用树的单树支割集、单连支回路方程中列方程
消去其它变量,得 i(t) 的微分方程
3 2 L C uc (t ) 1 H F 1 4
i(t ) 7i(t ) 10i(t ) e(t ) 6e(t ) 4e(t )
2nd.确定初始值/定解条件
i (0 ), i(0 )
[前例]
m n ( i ) ( j) ai rzs (t ) b j e (t ) j0 i 0 (k ) rzs (0 ) 0
求全响应:
13
第二章 连续时间信号与系统的时域分析
§2.5 系统的零状态响应 2.
n (i ) r(t )求解:先求零输入响应 a r i zi (t ) 0 即解零输入方程(即齐次方程)i 0 (k ) (k ) r ( t ) r ( t ) r ( 0 ) r 经典法得解为: zi h zi (0 ) zi
8
1st. i(t ) 7i(t ) 10i(t ) e(t ) 6e(t ) 4e(t ) nd i ( 0 ) 14 5 ( A ) i ( 0 ) 2( A) 2 .求出初始条件 3rd.解: 2 7 10 0 1 2, 2 5
[求取h(t) ]
1. 作为一种特殊的零状态响应(经典法) 例1:系统 r(t ) 4r(t ) 3r (t ) e(t ) 2e(t ) 求 h(t ) 解: 即解 h(t ) 4h(t ) 3h(t ) (t ) 2 (t ) h ( 0 ) h ( 0 ) 0(无初始储能 )

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。

信号与系统第2章ppt课件

信号与系统第2章ppt课件

(B) u(t)Limetu(t) 0
假设u(t)的傅立叶变换为:
F ()A ()jB ()
e t u (t ) 的傅立叶变换为 :
依据傅立叶变换具有唯一性:
F e()A e()jB e()
F()li m0Fe()
所以
A()li m0Ae()精选pBpt()li m0Be()
第二章 傅立叶变换
F ()A ()jB () A()li m0Ae() B()li m0Be()
,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)乘以Cs(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
精选ppt
第二章 傅立叶变换
11周期信号的傅里叶变换
周期信号的频谱------用傅里叶级数表示。 非周期信号的频谱——用傅里叶变换表示。 周期信号的频谱可以用傅里叶变换表示吗? (1)正弦、余弦信号的傅里叶变换 直流信号的博立叶变换为

信号与系统奥本海默原版第二章PPT课件

信号与系统奥本海默原版第二章PPT课件

h1(t)*h2(t)
x(t)
h1(t)
y(t)=x(t)*h1(t)*h2(t) h2(t)
-
19
2 Linear Time-Invariant Systems
2.3.4 LTI system with and without Memory
Memoryless system: Discrete time: y[n]=kx[n], h[n]=k[n] Continuous time: y(t)=kx(t), h(t)=k (t)
-
25
2 Linear Time-Invariant Systems
2.4 Causal LTI Systems Described by Differential and Difference Equation
Discrete time system: Differential Equation Continuous time system: Difference Equation
Integrating:
y(t) x()h(t)d
Example 2.6 2.8
-
15
2 Linear Time-Invariant Systems
2.3 Properties of Linear Time Invariant System
Convolution formula:
y (t) x (t)* h (t) x ()h (t)d
[n-k] h[n-k]
x[k][n-k] x[k] h[n-k]
x [ n ] x [ k ][ n k ] y [ n ] x [ k ] h [ n k ]
k
k
-

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统导论1.1 信号的定义与分类定义:信号是自变量为时间(或空间)的函数。

分类:连续信号、离散信号、模拟信号、数字信号等。

1.2 系统的定义与分类定义:系统是一个输入与输出之间的映射关系。

分类:线性系统、非线性系统、时不变系统、时变系统等。

1.3 信号与系统的研究方法数学方法:微分方程、差分方程、矩阵分析等。

图形方法:波形图、频谱图、相位图等。

第二章:连续信号与系统2.1 连续信号的性质连续时间:自变量为连续的实数。

有限能量:能量信号的能量有限。

有限带宽:带宽有限的信号。

2.2 连续系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

2.3 连续信号的运算叠加运算:两个连续信号的叠加仍然是连续信号。

齐次运算:连续信号的常数倍仍然是连续信号。

第三章:离散信号与系统3.1 离散信号的性质离散时间:自变量为离散的整数。

有限能量:能量信号的能量有限。

有限带宽:带宽有限的信号。

3.2 离散系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

3.3 离散信号的运算叠加运算:两个离散信号的叠加仍然是离散信号。

齐次运算:离散信号的常数倍仍然是离散信号。

第四章:模拟信号与系统4.1 模拟信号的定义与特点定义:模拟信号是连续时间、连续幅度、连续频率的信号。

特点:连续性、模拟性、无限可再生性。

4.2 模拟系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

4.3 模拟信号的处理方法模拟滤波器:根据频率特性对模拟信号进行滤波。

模拟调制:将信息信号与载波信号进行合成。

第五章:数字信号与系统5.1 数字信号的定义与特点定义:数字信号是离散时间、离散幅度、离散频率的信号。

特点:离散性、数字化、抗干扰性强。

5.2 数字系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

信号与线性系统第二章ppt课件

信号与线性系统第二章ppt课件
2.6 卷积的数值计算 卷积积分除通过直接积分或查表的方法进行求解外,还可以
利用计算机求解,这就是卷积积分的数值计算。
.
单位冲激函数的工程定义:
(t) 0
t 0 t 0

(t)dt1
单位冲激函数的工程定义直观地反映了它出现时间极短和面
积为1两个特点。从它t=0时函数值趋于无穷大,可以看出,
不是通常意义下的函数。人们将这类非常规函数称为广义函
数(generalized function),或称分配函数(distribution
function)。这类函数的数学定义不是象普通函数那样,由对
应于自变量的变化值所取的函数值来定义,而是由它对另一
个函数(常称为测试函数)的作用效果来定义的,也就是说,
不是用它“是”什么来定义,而. 是用它能“做”什么来定义 的。
单位冲激函数的严格的数学定义。
(t)(t)d t (0)
(2.1-4)
y(t) x()h(t)d
t1
(2.3-14)
更一般的确定卷积积分的积分限的方法将在下一节中进一步
进行分析讨论。 .
2.4 卷积的图解和卷积积分限的确定 上一节讨论了一般形式的卷积积分,以及x(t)和h(t)均为有始
函数时积分上下限的表示方法,但实际上卷积积分限还要根 据具体情况来确定,特别是当x(t)和h(t)两者或两者之一是分段 定义的函数时,图解能帮助正确地确定卷积积分的上下限。
2.4.2 卷积的另一种计算方法 如果x(t)和h(t)两者或两者之一是分段连续的函数时,采用式 (2.3-14)进行卷积计算也是一种较为简便的方法。 2.5 卷积积分的性质 作为一种数学运算方法,卷积积分具有某些特殊的性质。利 用这些性质可使卷积运算大为简化。

信号与系统分析PPT全套课件可修改全文

信号与系统分析PPT全套课件可修改全文

1.系统的初始状态
根据各电容及电感的状态值能够确定在 t 0
时刻系统的响应及其响应的各阶导数
( y(0 ) k 1, 2 , , n 1)
称这一组数据为该系统的初始状态。
2.系统的初始值
一般情况下,由于外加激励的作用或系统内 部结构和参数发生变化,使得系统的初始值与 初始状态不等,即:
y(0 ) y(0 )
自由响应又称固有响应,它反映了系统本身 的特性,取决于系统的特征根; 强迫响应又称强制响应,是与激励相关的响 应。 利用经典法可以直接求得自由响应与强迫响 应,强迫响应即特解
先求得系统的零输入响应和零状态响应,并 获得系统的全响应;
然后利用系统特性与自由响应、激励与强迫 响应的关系可以间接得到自由响应和强迫响应。
t
f (t) (t)dt f (0) (t)dt
f (0) (t)dt f (0)
(1)
0
t
ห้องสมุดไป่ตู้(3)偶函数
(4)
(at)
1 a
(t)
f (t) (t) ( f (0))
(5) (t)与U (t)的关系
0
t
1.2 基本信号及其时域特性
单位冲激偶信号 '(t)
f (t) 1/
f ' (t) (1/ )
第2章 连续系统的时域分析
2.1 LTI连续系统的模型 2.2 LTI连续系统的响应 2.3 冲激响应与阶跃响应 2.4 卷积与零状态响应
2.1 LTI连续系统的模型
2.1.1 LTI连续系统的数学模型 2.1.2 LTI连续系统的框图
返回首页
2.1.1 LTI连续系统的数学模型
对于任意一个线性时不变电路,当电路结构 和组成电路的元件参数确定以后, 根据元件的伏安关系和基尔霍夫定律,可以 建立起与该电路对应的动态方程。

信号与系统第二章(陈后金)2PPT课件

信号与系统第二章(陈后金)2PPT课件
2 1 0 1 2
x [k]
3
22
1
k
2 1 0 1 2 3
x [ k ] 3 [ k 1 ] [ k ] 2 [ k 1 ] 2 [ k 2 ]
2021/4/8
28
二、基本离散时间序列
5.单位阶跃序列
定义:
u[k] 1
2 1 0 1 2
✓ [k]与u[k]的关系:
[k]u[k]u[k1]
2021/4/8
1 k 0 u[k]0 k 0
k
k
u[k] [n] n 29
二、基本离散时间序列
6.矩形序列
1 0kN1
RN[k]0 otherwise
N 1
R N[k]u[k]u[kN ][km ] m 0 RN[k] 1
k
21 0 1 2
N1
2021/4/8
30
二、基本离散时间序列
7.斜坡序列
即0N = m2p , m = 正整数时,信号是周期信号。
如果0 /2p m/N , N、m是不可约的整数, 则信号的周期为N。
2021/4/8
23
[例]判断下列离散序列是否为周期信号.
1) x1[k] = cos(kp/6)
0 /2p 1/12, 由于1/12是不可约的有理数,
故离散序列的周期N=12。
-1 0 1 2 3
k
➢ 序列的列表表示
表示k=0的位置
x[k]=[0, 2, 0, 1, 3, 1, 0]
2021/4/8
18
二、基本离散时间序列
1.实指数序列
r >1
x[k]Akr, kZ
0< r <1
r <1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 线性时不变系统
主要内容: • 信号的时域分解——用 表示离散时间信号 用 ( t ) 表示连续时间信号
• LTI系统的时域分析——卷积积分与卷积和 • LTI系统的微分方程及差分方程表示 • LTI系统的框图结构表示 • 奇异函数
引言 ( Introduction )
LTI系统特点: 齐次性和可加性,具有时不变性 信号与系统分析理论与方法的基础
n 时刻的 y ( n )
可分解为四步,对f (n) =x(n) *h(n)
(1)换元:n换为k→得x(k),h(k)
(2)反转平移:由h(k)反转→h(–k)右移n位 →h(n –k)
(3)乘积:x(k) h(n –k)
(4)求和:k 从–∞到∞对乘积项求和
注意:n 为参变量
.
13
.
14
例2:
为 的n 特点。
x (0 ) x (1 ) x (2 ) x (3 )
h(n) x(n) 1 0 2 1
h(1) 1
1021
y (1)
h(0) 2
2042
h (1 ) 0 y (0 ) 0 0 0 0
h ( 2 ) 3 y (1) 3 0 6 3
h (3) 1 y (2 ) 1 0 2 1
y (3). y (4 ) y (5) y (6 )
k
h[n ]
LTI
h[n k]
LTI
x[k]h[nk]
LTI
x[k]h[n k]
k
.
7
LTI系统对任何输入信号 的响应:
上面这种求得系统响应的运算关系称为卷积和(The convolution sum) 这表明:一个LTI系统对任意输入的响应都可以由它 的单位脉冲响应来表示 卷积的意义:
单位脉冲响应完全表征LTI系统的特性
yf(k)[i k0aibki]u(k)bk[i k0(b a)i]u(k) bk11(b a (b a)k)1u(k),ab
.
bk(k1)u(k),a1b0
例:求 u(k)*u(k)
u(k)*u(k)u(i)*u(ki) i
k
u(k)1(k1)u(k) i0
例:求 aku(k)u(k4)
22
2. 结合律:
.
23
结论:
• 两个LTI系统级联可以等效为一个单一系统,该系 统的单位脉冲响应等于两个级联系统的单位脉冲响 应的卷积
aku(k)u(k4 ) aiu(k)u(k4i) i
k 4
u (k 4 ) a i (1 a a 2 ... a k 4 )u (k 4 ) i 0
ak4 1u(k 4)
a 1
.
11
例: x(n)nu(n) 01 h(n)u(n)
x(k)ku(k)
1
h(nk)u(nk)
1
k ...
解:
(1)换元:k换为i→ 得f1(i),f2(i) (2)反转平移:由f2(i) 反转→f2(–i),再右移k →f2(k –i)
.
15
(3)乘积:f1(i) f2(k –i) (4)求和:i 从–∞到∞
对乘积项求和
.
16
1
k
0
① n 0 时,

时,
所以
.
17
例3:
.
18
① n 0 时,
② 0n4 时,
③ 4n6 时,
④ 6n10时,
⑤ n 10 时,
.
19
列表法
分析卷积和的过程,可以发现有如下特点:
① x ( n ) 与 h ( n ) 的所有各点都要遍乘一次
② 在遍乘后,各点相加时,根据 x(k)h(n k), k
参与相加的各点都具有 x ( k )与 h(n k )的宗量之和
k
0
0
n
y(n) x(n)h(n)
x(k)h(nk) ku(k)u(nk)
k
k
n k 1n1 u(n)
k0
1
.
12
图解法
将一个信号 x ( k ) 不动,另一个信号经反转后为 h ( k ) ,
再随参变量 n 移位。在每个n 值的情况下,将 x ( k ) 与
h(n k )对应点相乘,再把乘积的各点值累加,即得到
作为基本单元的信号应满足以下要求: 1. 本身尽可能简单,并且用它的线性组合能够表示 (构成)尽可能广泛的其它信号 2. LTI系统对这种信号的响应易于求得
如果解决了信号分解的问题,即:若有
x(t) aixi(t)
i
则 y(t) aiyi(t)
i
分析方法:
xi(t)yi(t)
将信号分解可以在时域进行,也可以在频域或变换 域进行,相应地就产生了对LTI系统的时域分析法、 频域分析法和变换域分析法
20
通过图形帮助确定反转移位信号的区间表示,对 于确定卷积和计算的区段及各区段求和的上下限是 很有用的。

四. 卷积和运算的性质 1. 交换律:
结论:
一个单位冲激响应是h[n]的LTI系统对输入信
号x[n]所产生的响应,与一个单位冲激响应是x[n]
的LTI系统对输入信号h[n]所产生的响应相同。
.
三. 卷积和的计算
计算方法:
有图解法、列表法、解析法(包括数值解法)
.
9
解析法
例: f (k)aku(k) h(k)bku(k) 求 y f ( k )
yf(k)f(k)*h(k)f(i)h(ki) i aiu(i)bkiu(ki) i
当 i 0 ,u ( i) 0 ;当 i k ,u ( k i) 0
于是有:
上式把任意一个序列 表示成一串移位的单位
脉冲序列
的线性组合,其中 是权因子
二. 卷积和(Convolution sum)
定义: 离散时间LTI系统的单位脉冲响应( impulse
response )
[n]
LTI
h[n ]
时不变性
[n]
[n k]
齐次性
x[k][nk]
可加性
x[k][n k]
2.1 离散时间LTI系统:卷积和
(Discrete-Time LTI Systems:The Convolution Sum)
一. 用单位脉冲表示离散时间信号
离散时间信号中,最简单的是 ,可以由它的线性组
合构成
,即:
对任何离散时间信号 ,如果每次从其中取出一个 点,就可以将信号拆开来,每次取出的一个点都可以 表示为不同加权、不同位置的单位脉冲
基本思想:如果能把任意输入信号分解成基本信号 的线性组合,那么只要得到了LTI系统对基本信号 的响应,就可以利用系统的线性特性,将系统对任 意输入信号产生的响应表示成系统对基本信号的响 应的线性组合
问题的实质:
1. 研究信号的分解:即以什么样的信号作为构成任 意信号的基本信号单元,如何用基本信号单元的线 性组合来构成任意信号 2. 如何得到LTI系统对基本单元信号的响应
相关文档
最新文档