离散数学第五版模拟试题及答案

合集下载

离散数学(第五版)清华大学出版社第2章习题解答

离散数学(第五版)清华大学出版社第2章习题解答

离散数学(第五版)清华大学出版社第2章习题解答2.1 本题没有给出个体域,因而使用全总个体域.(1) 令F(x):x是鸟G(x):x会飞翔.命题符号化为∀x(F(x)→G(x)).(2)令F(x):x为人.G(x):x爱吃糖命题符号化为¬∀x(F(x)→G(x))或者∃x(F(x)∧¬G(x))(3)令F(x):x为人.G(x):x爱看小说.命题符号化为∃x(F(x)∧G(x)).(4) F(x):x为人.G(x):x爱看电视.命题符号化为¬∃x(F(x)∧¬G(x)).分析1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。

(1)-(4)中的F(x)都是特性谓词。

2° 初学者经常犯的错误是,将类似于(1)中的命题符号化为27∀x(F(x)∧G(x))即用合取联结词取代蕴含联结词,这是万万不可的。

将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。

”因而符号化应该使用联结词→而不能使用∧。

若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。

”这显然改变了原命题的意义。

3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。

2.2 (1)d (a),(b),(c)中均符号化为∀xF(x)其中F(x):(x+1)2=x2+2x+1,此命题在(a),(b),(c)中均为真命题。

(2)在(a),(b),(c)中均符号化为∃xG(x)其中G(x):x+2=0,此命题在(a)中为假命题,在(b)(c)中均为真命题。

(3)在(a),(b),(c)中均符号化为∃xH(x)其中H(x):5x=1.此命题在(a),(b)中均为假命题,在(c)中为真命题。

分析1°命题的真值与个体域有关。

2° 有的命题在不同个体域中,符号化的形式不同,考虑命题“人都呼吸”。

离散数学(第五版)清华大学出版社第1章习题解答

离散数学(第五版)清华大学出版社第1章习题解答

离散数学(第五版)清华大学出版社第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。

分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。

本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。

其次,4)这个句子是陈述句,但它表示的判断结果是不确定。

又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。

(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。

这里的“且”为“合取”联结词。

在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。

但要注意,有时“和”或“与”联结的是主语,构成简单命题。

例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。

1.2 (1)p: 2是无理数,p为真命题。

(2)p:5能被2整除,p为假命题。

(6)p→q。

其中,p:2是素数,q:三角形有三条边。

由于p与q都是真命题,因而p→q为假命题。

(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。

由于p为假命题,q为真命题,因而p→q为假命题。

(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。

(9)p:太阳系外的星球上的生物。

它的真值情况而定,是确定的。

1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。

离散数学第五版--模拟试题--及答案

离散数学第五版--模拟试题--及答案

离散数学第五版--模拟试题--及答案《离散数学》模拟试题3⼀、填空题(每⼩题2分,共20分)1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。

2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___,A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。

3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___,ρ(A)-ρ(B)=_____ _ _。

4. 已知命题公式RQPG→∧=)(,则G的析取范式为。

5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。

”符号化,其真值为。

⼆、单项选择题(选择⼀个正确答案的代号填⼊括号中,每⼩题4分,共16分。

)1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为().A.{1}B. {1, 3}C. {3,4}D. {1,2}2. 下列式⼦中正确的有()。

A. φ=0B. φ∈{φ}C. φ∈{a,b}D. φ∈φ3. 设集合X={x, y},则ρ(X)=()。

A. {{x},{y}}B. {φ,{x},{y}}C. {φ,{x},{y},{x, y}}D. {{x},{y},{x, y}}4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)},则R不具备().三、计算题(共50分)1. (6分)设全集E=N,有下列⼦集:A={1,2,8,10},B={n|n2<50 ,n∈N},C={n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D))(3)B-(A∩C) (4)(~A∩B) ∪D2. (6分)设集合A={a, b, c},A上⼆元关系R1,R2,R3分别为:R1=A×A,R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别⽤定义和矩阵运算求R1·R2 ,22R,R1·R2 ·R3 , (R1·R2 ·R3 )-1 。

离散数学第五版课后答案

离散数学第五版课后答案

离散数学第五版课后答案【篇一:离散数学课后答案(四)】txt>4.1习题参考答案-------------------------------------------------------------------------------- 1、根据结合律的定义在自然数集n中任取 a,b,c 三数,察看 (a。

b)。

c=a。

(b。

c) 是否成立?可以发现只有 b、c 满足结合律。

晓津观点:b)满足结合律,分析如下: a) 若有a,b,c∈n,则(a*b)*c =(a-b)-c a*(b*c) =a-(b-c)在自然数集中,两式的值不恒等,因此本运算是不可结合的。

b)同上,(a*b)*c=max(max(a,b),c) 即得到a,b,c中最大的数。

a*(b*c)=max(a,max(b,c))仍是得到a,b,c中最大的数。

此运算是可结合的。

c)同上,(a*b)*c=(a+2b)+2c 而a*(b*c)=a+2(b+2c),很明显二者不恒等,因此本运算也不是可结合的。

d)运用同样的分析可知其不是可结合的。

-------------------------------------------------------------------------------- 2、d)是不封闭的。

--------------------------------------------------------------------------------其不满足交换律、满足结合律、不满足幂等律、无零元、无单位元晓津补充证明如下:(1)a*b=pa+qb+r 而b*a=pb+qa+r 当p,q取值不等时,二式不相等。

因此*运算不满足交换律。

(2)设a,b,c∈r则(a*b)*c=p(pa+qb+r)+qc+r=p^2a+pab+pr+qc+r 而a*(b*c)=pa+q(pb+qc+r)+r=pa+qpb+q^2c+qr+r 二式不恒等,因此*运算是不满足结合律的。

离散数学考试模拟试题及详细参考答案共四套

离散数学考试模拟试题及详细参考答案共四套

离散模拟答案11命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.一、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A⋃B)-C=(A-B) ⋃(A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)二、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→⌝F)→⌝C, B→(A∧⌝S)⇒B→Eb)∀x(P(x)→⌝Q(x)), ∀x(Q(x)∨R(x)),∃x⌝R(x) ⇒∃x⌝P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠∅且B≠∅,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

离散数学第五版前3章课后习题答案

离散数学第五版前3章课后习题答案

第1章习题1.1(2) 简单命题(3),(4),(5)不是命题(6) 复合命题1.5p∧,其中,p:2是偶数,q:2是素数。

(1)qp→,其中,p:天下大雨,q:他乘公共汽车上班(5)qq→,其中,p,q的含义同(5)(6)pq→,其中,p,q的含义同(5)(7)p1.7(1)对(1)采用两种方法判断它是重言式。

真值表法表1.2给出了(1)中公式的真值表,由于真值表的最后一列全为1,所以,(1)为重等值演算法→)p∨∨q(rp∨⇔(蕴含等值式)∨⌝qp∨(r)p∨⌝⇔)((结合律)p∨∨rqp⇔1(排中律)∨rq∨⇔(零律)1由最后一步可知,(1)为重言式。

(3)用等值演算法判(3)为矛盾式(→⌝)p∧qq⌝⇔)((蕴含等值式)⌝q∨qp∧⇔(德·摩根律)⌝∧p∧qq∧⇔(结合律)⌝(q)qp∧0∧⇔p (矛盾律)0⇔(零律)由最后一步可知,(3)为矛盾式。

(10)非重言式的可满足式 1.8(1)从左边开始演算)()(q p q p ⌝∧∨∧)(q q p ⌝∨∧⇔ (分配律)1∧⇔p (排中律) .p ⇔ (同一律)(2)从右边开始演算)(r q p ∧→)(r q p ∧∨⌝⇔ (蕴含等值式) )()(r p q p ∨⌝∧∨⌝⇔ (分配律) ).()(r p q p →∧→⇔ (蕴含等值式)1.9(1)))((p q p →∧⌝ ))((p q p ∨∧⌝⌝⇔ (蕴含等值式)p q p ⌝∧∧⇔(德·摩根律) q p p ∧⌝∧⇔)((结合律、交换律)q ∧⇔0 (矛盾式).0⇔(零律)由最后一步可知该公式为矛盾式。

(2))())()((q p p q q p ↔↔→∧→)()(q p q p ↔↔↔⇔(等价等值式)由于较高层次等价号两边的公式相同,因而此公式无成假赋值,所以,它为重言式。

1.12 (1) 设(1)中公式为A.)())((r q p r q p A ∧∧→∧∨⇔ )())((r q p r q p A ∧∧∨∧∨⌝⇔)()(r q p r q p A ∧∧∨⌝∨⌝∧⌝⇔ )()()(r q p r p q p A ∧∧∨⌝∧⌝∨⌝∧⌝⇔)())(())((r q p r q q p r r q p A ∧∧∨⌝∧⌝∨∧⌝∨∨⌝∧⌝∧⌝⇔)()()()()(r q p r q p r q p r q p r q p A ∧∧∨⌝∧∧⌝∨⌝∧⌝∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔)()()()(r q p r q p r q p r q p A ∧∧∨⌝∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔7210m m m m A ∨∨∨⇔于是,公式A 的主析取范式为7210m m m m ∨∨∨易知,A 的主合取范式为6543M M M M ∨∨∨A 的成真赋值为000, 001, 010, 111A 的成假赋值为011,100,101,110(2)设(2)中公式为B)()(p q q p B ∨⌝→→⌝⇔ )()(p q q p ∨⌝→∨⌝⌝⇔ )()(p q q p ∨⌝→∨⇔ )()(p q q p ∨⌝∨∨⌝⇔ p q q p ∨⌝∨⌝∧⌝⇔)())(())(()(q q p q p p q p ⌝∨∧∨⌝∧⌝∨∨⌝∧⌝⇔)()()()()(q p q p q p q p q p ∧∨⌝∧∨⌝∧∨⌝∧⌝∨⌝∧⌝⇔ )()()(q p q p q p ∧∨⌝∧∨⌝∧⌝⇔320m m m ∨∨⇔所以,B 的主析取范式为320m m m ∨∨.B 的主合取范式为1M B 的成真赋值为00,10,11. B 的成假赋值为01. 1.14 设p:A 输入;设q:B 输入; 设r:C 输入;由题的条件,容易写出C B A F F F ,,的真值表,见表1.5所示.由真值表分别写出它们的主析范邓范式,而后,将它们都化成与之等值的}{↓中的公式即可.)()()()(r q p r q p r q p r q p F A ∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧⇔)()()()(r r q p r r q p ∨⌝∧∧∨∨⌝∧⌝∧⇔)()(q p q p ∧∨⌝∧⇔ )(q q p ∨⌝∧⇔ p ⇔)()(r q p r q p F B ∧∧⌝∨⌝∧∧⌝⇔)()(r r q p ∨⌝∧∧⌝⇔ )(q p ∧⌝⇔ )(q p ∧⌝⌝⌝⇔ )(q p ⌝∨⌝⇔q p ⌝↓⇔)(q q p ↓↓⇔. )(r q p F C ∧⌝∧⌝⇔r q p ∧∨⌝⇔)(r q p ∧↓⇔)( ))((r q p ∧↓⌝⌝⇔ ))((r q p ⌝∨↓⌝⌝⇔ r q p ⌝↓↓⌝⇔)()())()((r r q p q p ↓↓↓↓↓⇔1.19 (1)证明 ①r q ∨⌝ 前提引入②r ⌝ 前提引入③q ⌝ ①②析取三段论 ④)(q p ⌝∧⌝ 前提引入 ⑤q p ∨⌝ ④置换⑥p ⌝ ③⑤析取三段论 (2)附加前提证明法:证明 ①r 附加前提引入 ②r p ⌝∨ 前提引入③p ①②析取三段论④)(s q p →→ 前提引入 ⑤s q → ③④假言推理 ⑥q 前提引入 ⑦s ⑤⑥假言推理 (5)归缪法:证明 ①q 结论的否定引入②s r ∨⌝ 前提引入 ③s ⌝ 前提引入④r ⌝ ②③析取三段论 ⑤r q p →∧)( 前提引入 ⑥)(q p ∧⌝ ④⑤拒取式 ⑦q p ⌝∨⌝ ⑥置换⑧p 前提引入⑨q ⌝ ⑦⑧析取三段论 ⑩q q ⌝∧ ①⑨合取 ⑪0 ⑩置换 1.20 设p :他是理科生q :他是文科生 r :他学好数学 前提 r p q r p ⌝→⌝→,,结论q通过对前提和结论的观察,知道推理是正确的,下面用构造证明法给以证明。

离散数学(第五版)清华大学出版社第4章习题解答

离散数学(第五版)清华大学出版社第4章习题解答

离散数学(第五版)清华大学出版社第4章习题解答4.1 A:⑤;B:③;C:①;D:⑧;E:⑩4.2 A:②;B:③;C:⑤;D:⑩;E:⑦4.3 A:②;B:⑦;C:⑤;D:⑧;E:④分析题4.1-4.3 都涉及到关系的表示。

先根据题意将关系表示成集合表达式,然后再进行相应的计算或解答,例如,题4.1中的Is ={<1,1>,<2,2>}, Es ={<1,1>,<1,2>,<2,1>,<2,2>}Is ={<1,1>,<1,2>,<2,2>};而题4.2中的R={<1,1>,<1,4>,<2,1>,<3,4>,<4,1>}.为得到题4.3中的R须求解方程x+3y=12,最终得到R={<3,3>,<6,2>,<9,1>}.求RoR有三种方法,即集合表达式、关系矩阵和关系图的主法。

下面由题4.2的关系分别加以说明。

1°集合表达式法将domR,domRUran,ranR的元素列出来,如图4.3所示。

然后检查R的每个有序对,若<x,y>∈R,则从domR中的x到ranR中的y画一个箭头。

若danR中的x 经过2步有向路径到达ranR中的y,则<x,y>∈RoR。

由图4.3可知RoR={<1,1>,<1,4><4,1>,<4,4>,<2,1>,<2,4>,<3,1>}.如果求FoG,则将对应于G中的有序对的箭头画在左边,而将对应于F中的有序对的箭头画在右边。

对应的三个集合分别为domG,ranUdomF,ranF,然后,同样地寻找domG到ranF的2步长的有向路径即可。

2° 矩阵方法若M是R的关系矩阵,则RoR的关系矩阵就是M·M,也可记作M,在计算2 48乘积时的相加不是普通加法,而是逻辑加,即0+0=0,0+1=1+0=1+1=1,根据已知条件得⎡1 0 0 1⎤⎡1 0 0 1⎤⎡1 0 0 1⎤⎢1 0 0 0⎥⎢1 0 0 0⎥⎢1 0 0 1⎥2 ⎢⎥⎢⎥⎢⎥M =⎢⎥⋅⎢⎥=⎢⎥⎢0 0 0 1⎥⎢0 0 0 1⎥⎢1 0 0 0⎥⎣1 0 0 0⎦⎣1 0 0 0⎦⎣1 0 0 1⎦M2中含有7个1,说明RoR中含有7个有序对。

离散数学试卷五试题与答案

离散数学试卷五试题与答案

试卷五试题与答案一、 填空.给定命题公式A 、B ,若 ,则称A 和B 是逻辑相等的。

2.命题公式)(Q P →⌝的主析取范式为 ,主合取范式的编码表示为 。

3.设E 为全集, ,称为A 的绝对补,记作~A ,且~(~A )= ,~E = ,~Φ= 。

4.设},,{c b a A =考虑下列子集}},{},,{{1c b b a S =,}},{},,{},{{2c a b a a S =,}},{},{{3c b a S =,}},,{{4c b a S =}}{},{},{{5c b a S =,}},{},{{6c a a S =则A 的覆盖有 ,A 的划分有 。

5.设S 是非空有限集,代数系统<P (S ),⋂,⋃>中,P (S )对⋂的幺元为 , 零元为 。

P (S )对⋃的幺元为 ,零元为 。

6.若>=<E V G ,为汉密尔顿图,则对于结点集V 的每个非空子集S ,均有W(G-S)S成立,其中W(G-S)是 。

7、 n 阶完全图结点v 的度数d(v) = 。

8、 设n 阶图G 中有m 条边,每个结点的度数不是k 的是k+1,若G 中有N k 个k 度顶点,N k +1个k+1度顶点,则N k = 。

9、 如图给出格L ,则e 的补元是 。

10、一组学生,用二二扳腕子比赛法来测定臂力的大小,则幺元是 。

二、选择1、设S={0,1,2,3},≤为小于等于关系,则{S ,≤}是( )。

A 、群;B 、环;C 、域;D 、格。

2、设[{a , b , c},*]为代数系统,*运算如下:则零元为( )。

A 、a ;B 、b ;C 、c ;D 、没有。

3、如右图 相对于完全图K 5的补图为( )。

4、一棵无向树T 有7片树叶,3个3度顶点,其余顶点均为4度。

则T 有( )4度结点。

A 、1;B 、2;C 、3;D 、4。

5、设[A ,+,·]是代数系统,其中+,·为普通加法和乘法,则A=( )时,[A ,+,·]是整环。

离散数学试题带答案(五)

离散数学试题带答案(五)

离散数学试题带答案一、选择题1、G是一棵根树,则()。

A、G一定是连通的B、G一定是强连通的C、G只有一个顶点的出度为0D、G只有一个顶点的入度为12、下面哪个语句不是命题()。

A、中国将成功举办2008年奥运会B、一亿年前地球发生了大灾难C、我说的不是真话D、哈密顿图是连通的3、设R是实数集合,在上定义二元运算*:a,b∈R,a*b=a+b-ab,则下面的论断中正确的是()。

A、0是*的零元B、1是*的幺元C、0是*的幺元D、*没有等幂元4、下面说法中正确的是()。

A、所有可数集合都是等势的B、任何集合都有与其等势的真子集C、有些无限集合没有可数子集D、有理数集合是不可数集合5、无向完全图K3的不同构的生成子图有()个。

A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A、无回路的连通图B、有n个顶点n-1条边的连通图C、每对顶点间都有通路的图D、连通但删去一条边则不连通的图7、设集合A={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。

A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。

A、必惟一B、不惟一C、不一定惟一D、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的?()A、x*y=max{x,y}B、x*y=min{x,y}C、x*y=GCD(x,y),即x,y的最大公约数D、x*y=LCM(x,y),即x,y的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。

A 、R 是对称的 B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。

A.1,1,1,2,2B.2,2,2,2,3C.1,2,2,4,6D.2,3,3,312. *是定义在Z 上的二元运算,y x xy y x Z y x -+=*∈∀,,,则*的幺元和零元分别是( )。

离散数学(第五版)清华大学出版社第5章习题解答

离散数学(第五版)清华大学出版社第5章习题解答

离散数学(第五版)清华大学出版社第5章习题解答5.1 A:③; B:⑥; C:⑧; D:⑩; E:⑨分析S 为n 元集,那么S×S有n2个元素.S 上的一个二元运算就是函数n2n2f:S×S→S.这样的函数有n 个.因此{a,b}上的二元运算有n =16个.下面说明通过运算表判别二元运算性质及求特导元素的方法.1 °交换律若运算表中元素关于主对角线成对称分布,则该运算满足交换律.2 °幂等律设运算表表头元素的排列顺序为x1,x2,Lxn,如果主对角线元素的排列也为x1,x2,Lxn,则该运算满足幂等律.其他性质,如结合律或者涉及到两个运算表的分配律和吸收律,在运算表中没有明显的特征,只能针对所有可能的元素x,y,z等来验证相关的算律是否成立.3 °幺元e设运算表表头元素的排列顺序为x1.,x2,Lxn,如果元素xi所在的行和列的元素排列顺序也是x1,x2,Lxn,则xi为幺元.4 °零元θ.如果元素xi所在的行和列的元素都是xi,则xi是零元.5 °幂等元.设运算表表头元素的排列顺序为x1,x2,Lxn,如果主对角线上第i个元素恰为xii∈{1,2,L,n}那么xi是幂等元.易见幺元和零元都是幂等元.6 °可逆元素及其逆元.设xi为任意元素,如果xi所在的行和列都有幺元,并且这两个幺元关于主对角线成对称分布,比如说第i行第j列和第j行第i列的两个位置,那么xj与xi互为逆元.如果xi所在的行和列具有共同的幺元,则幺元一定在主对角线上,那么xi的逆元就是xi自己.如果xi所在的和地或者所在的列没有幺元,那么x 不是可逆元素.不难看出幺元e一定是可逆元素,且e−1=e;而i零元θ不是可逆元素.以本题为例,f1,f2,f3的运算表是对称分布的,因此,这三个运算是可交换的,62而f4不是可交换的.再看幂等律.四个运算表表头元素排列都是a,b,其中主对角线元素排列为a,b的只有f4,所以, f4遵从幂等律.下面考虑幺元.如果某元素所在的行和列元素的排列都是a,b,该元素就是幺元.不难看出只有f2中的a满足这一要求,因此,a 是f2的幺元,其他三个运算都不存在幺元.最后考虑零元.如果a所在的行和列元素都是a,那么a就是零元;同样的,若b所在的行和列元素都是b,那么b 就是零元.检查这四个运算表,f1中的a满足要求,是零元,其他运算都没有零元.在f4的运算表中,尽管a和b的列都满足要求,但行不满足要求.因而f4中也没有零元.5.2 A:①; B:③; C:⑤; D:⑦; E:⑩分析对于用解析表达式定义的二元运算°和*,差别它们是否满足交换律,结合律,幂等律,分配律和吸收律的方法总结如下:任取x,y,根据°运算的解析表达式验证等式xoy=yox是否成立.如果成立°运算就满足交换律.2 ° °运算的地合律任取x,y,z根据°运算的解析表达式验证等式(xoy)oz=xo(yoz)是否成立. 如果成立, °运算就是可结合的.3 ° °运算的幂等律任取x,根据°运算的解析表达式验证等式xox=x是否成立.如果成立,°运算满足幂等律.4 ° °运算对*运算的分配律任取x,y,z , 根据°和* 运算的解析表达式验证等式xo(y*z)=(xoy)*(xoz)和(y*z)ox=(yox)*(zox)是否成立。

离散考试试题及答案

离散考试试题及答案

离散考试试题及答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念不是布尔代数的基本运算?A. 与B. 或C. 非D. 模答案:D2. 集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A3. 命题逻辑中,下列哪个符号表示“蕴含”关系?A. ∧B. ∨C. →D. ↔答案:C4. 关系R在集合A上是自反的,意味着什么?A. 对于所有a∈A,(a, a)∈RB. 对于所有a∈A,(a, a)∉RC. 对于所有a∈A,(a, b)∈RD. 对于所有a∈A,(a, b)∉R答案:A二、填空题(每题5分,共20分)1. 一个集合的基数是集合中元素的________。

答案:数量2. 在有向图中,如果存在一条从顶点u到顶点v的路径,则称顶点v 是顶点u的________。

答案:可达的3. 一个图是连通的,当且仅当图中任意两个顶点都是________。

答案:连通的4. 在命题逻辑中,一个命题的否定是________。

答案:它的对立命题三、简答题(每题10分,共30分)1. 请解释什么是图的哈密顿回路。

答案:哈密顿回路是一个图中的闭合回路,它恰好访问图中的每个顶点一次。

2. 描述一下什么是二元关系,并给出一个例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是数字集合上的一个二元关系。

3. 什么是图的生成树?答案:图的生成树是图的一个子图,它包含图中的所有顶点,并且是一棵树,即它是连通的且没有环。

四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4,5},计算它的幂集。

答案:幂集P(A)={∅, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5},{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}, A}。

离散数学(第五版)清华大学出版社第6章习题解答

离散数学(第五版)清华大学出版社第6章习题解答

离散数学(第五版)清华大学出版社第6章习题解答6.1 A:⑨; B:⑨; C:④; D:⑥; E:③分析对于给定的集合和运算判别它们是否构成代数系统的关键是检查集合对给定运算的封闭性,具体方法已在5.3节做过说明. 下面分别讨论对各种不同代数系纺的判别方法.1°给定集合S和二元运算°,判定<S, °>是否构成关群、独导点和群.根据定义,判别时要涉及到以下条件的验证:条件1 S关于°运算封闭:条件2 °运算满足结合集条件3 °运算有幺元,条件4 °∀x∈S,x−1∈S.其中关群判定只涉及条件1和2;独导点判定涉及条件1、2、和3;而群的判定则涉及到所有的四个条件。

2 ° 给定集合S和二元运算°和*,判定<S, °, *>是否构成环,交换环,含幺环,整环,域.根据有关定义需要检验的条件有:条件1 <S, °>S构成交换群,条件2 <S, *> 构成关群,条件3 * 对°运算的分配律,条件4 * 对运算满足交换律,条件5 * 运算有幺元,条件6 * 运算不含零因子——消去律,条件7 |S|≥2,∀x∈S,x≠0,有x−1∈S(对*运算).其中环的判定涉及条件1,2和3;交换环的判定涉及条件1,2,3和4;含幺环的判定涉及条件1,2,3和5;整环的判定涉及条件1-6;而域的判定则涉及全部7个条件. 3° 判定偏序集<S,≤>或代数系统<S,o,*>是否构成格、分本配格、有补格和布尔格. 73若<S,≤>为偏序集,首先验证∀x,y∧y和x∨y是否属于S.若满足条件则S为格,且<S,∨,∧>构成代数系统.若<S,o,*>是代数系统且°和*运算满足交换律、结合律和吸收律,则<S,o,*>构成格。

离散数学试题带答案(五)

离散数学试题带答案(五)

离散数学试题带答案一、选择题1、G是一棵根树,则()。

A、G一定是连通的B、G一定是强连通的C、G只有一个顶点的出度为0D、G只有一个顶点的入度为12、下面哪个语句不是命题()。

A、中国将成功举办2008年奥运会B、一亿年前地球发生了大灾难C、我说的不是真话D、哈密顿图是连通的3、设R是实数集合,在上定义二元运算*:a,b∈R,a*b=a+b-ab,则下面的论断中正确的是()。

A、0是*的零元B、1是*的幺元C、0是*的幺元D、*没有等幂元4、下面说法中正确的是()。

A、所有可数集合都是等势的B、任何集合都有与其等势的真子集C、有些无限集合没有可数子集D、有理数集合是不可数集合5、无向完全图K3的不同构的生成子图有()个。

A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A、无回路的连通图B、有n个顶点n-1条边的连通图C、每对顶点间都有通路的图D、连通但删去一条边则不连通的图7、设集合A={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。

A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。

A、必惟一B、不惟一C、不一定惟一D、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的?()A、x*y=max{x,y}B、x*y=min{x,y}C、x*y=GCD(x,y),即x,y的最大公约数D、x*y=LCM(x,y),即x,y的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。

A 、R 是对称的 B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。

A.1,1,1,2,2B.2,2,2,2,3C.1,2,2,4,6D.2,3,3,312. *是定义在Z 上的二元运算,y x xy y x Z y x -+=*∈∀,,,则*的幺元和零元分别是( )。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学试题带答案(五)

离散数学试题带答案(五)

离散数学试题带答案一、选择题1、G是一棵根树,贝IJ ()。

A、G —住是连通的B, G —定是强连通的C、G只有一个顶点的出度为0D、G只有一个顶点的入度为12、下而哪个语句不是命题(A、中国将成功举办2008年奥运会B、一亿年前地球发生了大灾难C、我说的不是真话D、哈密顿图是连通的3、设R是实数集合,在上泄义二元运算*: a, bGR, a*b=a+b-ab,则下而的论断中正确的是()。

A、0是*的零元C、0是*的幺元4、下面说法中正确的是()。

A、所有可数集合都是等势的C、有些无限集合没有可数子集B、1是*的幺元D. *没有等幕元B、任何集合都有与其等势的真子集D、有理数集合是不可数集合5、无向完全图6的不同构的生成子图有()个。

6、下而哪一种图不一泄是无向树?A、无回路的连通图B、有n个顶点n-1条边的连通图C、每对顶点间都有通路的图D、连通但删去一条边则不连通的图7、设集合A= {{1,2, 3}, {4,5}, {6,7,8}},则下列各式为真的是()。

A. leAB. {{4,5}}uAC. {1,2, 3}cAD.0eA8、在有界格中,若一个元素有补元,则补元()0A、必惟一B、不惟一C、不一定惟一D、可能惟一9、设集合A={l,2,3/-,10},下面泄义的哪种运算关于集合A是不封闭的?()A、x*y=max{x,y}B、x*y=min{x,y}C、x*y=GCD(x,y),即x,y的最大公约数D.x*y=LCM(x z y),即x,y的最小公倍数A. 6B.5C.4D.3□・下列各组数中.哪个可以构成无向图的度数列()。

15.下列各Hasse 图中,是格的有(1 10、集合X 中的关系R,其矩阵是A/= 1 1 0 11 0,则关于R 的论述中正确的是()。

1 1A 、R 是对称的C 、R 是反自反的B 、R 是反对称的 D 、R 中有7个元素A.1, 1, 1, 2, 2B. 2, 2, 2, 2, 3C.l> 2, 2, 4, 6D.2, 3, 3, 312.水是左义在Z 上的二元运算,V A \y eZ,x*y = AT + x-y ,则木的幺元和零元分别是()oA •不存在,0 B.0> 1C.1,不存在 D ・不存在,不存在23・设N 为自然数,且若X 为奇数 若X 为偶数则 /(0)»/({0))分别是()。

《离散数学课程》模拟题附标准答案

《离散数学课程》模拟题附标准答案

《离散数学课程》模拟题附标准答案离散数学课程模拟题附标准答案一、选择题1、在下列命题中,正确的是:(D) A. 一条直线和一点确定一个平面 B. 两条相交直线确定一个平面 C. 三条直线可能确定一个平面D. 两条平行直线确定一个平面2、若空间有四个点,则下列命题正确的是:(B) A. 若四点不共面,则这四点中至少有一个点在其它三点确定的平面内 B. 若四点中三点共线,则这四点必共面 C. 若四点中任意三点不共线,则这四点必共面 D. 以上都不正确3、设A、B、C是三个集合,A中含有1、2、3三个元素,B中含有1、2、3、4四个元素,C中含有1、2、3、4、5五个元素,则集合A在B中的补集和集合B在C中的补集的交集有几个元素?(C) A. 0 B.1 C.2 D. 3二、填空题1、已知A={1,2,3},B={3,4},则A和B的交集为__________,A 和B的并集为__________。

答案:{3},{1,2,3,4}2、设空间有四个点A、B、C、D,其中任意三点不共线,则下列结论正确的是:(A) A. 必有一点在其它三点确定的平面内 B. 任意两点确定的直线与另外两点确定的直线异面 C. 都可以构成一个三角形D. 全部点都在同一个平面上3、若集合A和B都是C的子集,且A和B的交集为空集,则下列结论正确的是:(D) A. C一定是A和B的并集 B. A和B中没有公共元素 C. C中至少有一个元素不属于A也不属于B D. C中的元素个数大于或等于A和B中的元素个数之和三、解答题1、已知A={1,2,3},B={2,4},求A和B的交集、并集和补集。

解:A和B的交集为{2},并集为{1,2,3,4},补集为空集。

2、已知空间四个点A、B、C、D不在同一个平面上,求证:直线AB 与CD异面。

证明:∵ A、B、C、D不在同一个平面上,∴ AB和CD是异面直线。

∵ A、B、C、D共面时,AB和CD共面,与已知矛盾。

离散数学模拟试题(05年6月)

离散数学模拟试题(05年6月)

离散数学模拟试题(一)一、选择题1、由集合运算的定义,下列各式中,正确的是( )。

(A) A ∪E = A; (B) A ∩∅ = A; (C) A ⊕ ∅ = A; (D) A ⊕ A = A.2、设G 如右图:那么G 不是( ). (A)平面图; (B)完全图;(C)欧拉图; (D)哈密顿图.3、设个体域为整数,下列公式中真值为1的是( )。

(A)∀x ∀y(x + y = 1); (B)∀x ∃y(x + y = 1); (C)∃x ∀y(x + y = 1); (D) ⌝ ∃x ∃y(x + y = 1)。

4、下列命题为假的是( )。

(A) {∅}∈ρ(∅); (B) ∅ ⊆ρ({∅});(C) {∅} ⊇ρ(∅); (D)ρ(∅) ∈ρ({∅})。

5、设集合A = {1,2,3,4},A 上的关系R = {(1,1),(2,3),(2,4),(3,4)},则R 具有( ). (A)自反性; (B)传递性; (C)对称性; (D)以上都不是.6、谓词公式)())()((x Q y yR x P x →∃∨∀中量词∀x 的辖域是( )(A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q7、谓词公式∃xA (x )∧⌝∃xA (x )的类型是( )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 不属于(A),(B),(C)任何类型8、设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( ) (A) ),()(y x A x xL →∀ (B) )),()(()((y x A y J y x L x ∧∃→∀(C) )),()()((y x A y J x L y x ∧∧∃∀ (D) )),()()((y x A y J x L y x →∧∃∀9、设命题公式⌝(P ∧(Q →⌝P )),记作G ,则使G 的真值指派为0的P ,Q 的取值是( ) (A) (0,0) (B) (0,1) (C) (1,0) (D) (1,1) 10、与命题公式P →(Q →R )等值的公式是( )(A) (P ∨Q )→R (B)(P ∧Q )→R (C) (P →Q )→R (D) P →(Q ∨R ) 二、填空题1、命题: ∅ ⊆ {{a }} ⊆ {{a },3,4,1} 的真值 = ____ .2、 设A= {a,b}, B = {x | x 2-(a+b) x+ab = 0}, 则两个集合的关系为:A____B.3、设集合A ={a ,b ,c },B ={a ,b }, 那么 ρ(B )-ρ(A )=______ .4、无孤立点的有限有向图有欧拉路的充分必要条件为: _______________________________________________.5、公式))(),(()),()((x S z y R z y x Q x P x →∃∨→∀的自由变元是 , 约束变元是 .6、设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 .7、设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为 8、设G 是n 个结点的简单图,若G 中每对结点的度数之和 ,则G 一定是哈密顿图. 9、设全集合E ={1,2,3,4,5},A ={1,2,3},B ={2,5},~A ⋃~B = .10、设集合A ={a ,b ,c },B ={a ,b },那么P (A )-P (B )= 三、计算题1、求公式 G = (P ∧Q)→R 的主析取范式和主合取范式。

离散数学试题及答案5

离散数学试题及答案5

离散数学总分:100 考试时间:100分钟一、单项选择题1、“所有人都要呼吸.”令F(x)表示x是人,G(x)表示x要呼吸。

命题符号化为(正确答案:A,答题答案:)A、任意x(F(x)→G(x))B、任意x(F(x)«G(x))C、存在x(F(x)→G(x))D、存在x(F(x)ΛG(x))2、"所有村干部都参加了这次活动."令F(x)表示x是村干部,G(x)表示x参加了这次活动.则原命题可符号化为(正确答案:B,答题答案:)A、任意x(F(x)→G(x))B、任意x(F(x)∧G(x))C、存在x(F(x)→G(x))D、存在x(F(x)∧G(x))3、"有些学生考了不及格."令F(x)表示x是学生,G(x)表示x考了不及格.则原命题可符号化为(正确答案:A,答题答案:)A、存在x(F(x)∧G(x))B、任意x(F(x)∧G(x))C、任意x(F(x)→G(x))D、存在x(F(x)→G(x))4、"并不是所有的人都吃早饭."令F(x)表示x是人,G(x)表示x吃早饭.则原命题可符号化为(正确答案:B,答题答案:)A、﹁(任意x)(F(x)∧G(x))B、﹁(任意x)(F(x)→G(x))C、任意x(F(x)→G(x))D、存在x(F(x)→G(x))5、"没有人会长生不老."令F(x)表示x是人,G(x)表示x会长生不老.则原命题可符号化为(正确答案:C,答题答案:)A、﹁(任意x)(F(x)∧G(x))B、任意x(F(x)→G(x))C、﹁(任意x)(F(x)→G(x))D、存在x(F(x)→G(x))6、“因为并非所有的鸟都会飞,所以存在有的鸟不会飞”设A(x)表示x是鸟,B(x)表示x会飞.可符号化为(正确答案:C,答题答案:) A、﹁(任意x)(A(x)→B(x))) B、存在x(A(x)∧﹁B(x)) C、(﹁(任意x)(A(x)→B(x)))→(存在x(A(x)∧﹁B(x))) D、任意x(A(x)∧﹁B(x))7、“尽管有些人聪明,但聪明人未必都能成绩好”设A(x)表示x是人,B(x)代表x聪明,C(x)代表x成绩好.符号化为(正确答案:A,答题答案:)A、(存在x(A(x)∧B(x)))∧(﹁(任意x)((A(x)∧B(x))→C(x)))B、(存在x(A(x)∧B(x)))V(﹁(任意x)((A(x)∧B(x))→C(x)))C、(任意x(A(x)∧B(x)))∧(﹁(任意x)((A(x)∧B(x))→C(x)))D、(任意x(A(x)∧B(x)))8、任意xA(x)→存在xB(x)的前束范式是(正确答案:C,答题答案:)A、任意x(A(x)→B(x))B、A(x)→B(x)C、存在x(A(x)→B(x))D、A(x)→存在xB(x)9、任意xA(x)∧﹁存在xB(x)的前束范式是(正确答案:B,答题答案:)A、存在x任意y(A(x)→B(y))B、任意x任意y(A(x)→B(y))C、存在x存在y(A(x)→B(y))D、存在x(A(x)→B(y))10、任意xP(x)=>P(c) 是(正确答案:A,答题答案:)A、全称指定规则(US)B、全称推广规则(UG)C、存在指定规则(ES)D、存在推广规则(EG)二、多项选择题1、有限个体域中量词消去等值式有()(正确答案:AB,答题答案:)A、任意xA(x)⇔A(a)∧A(a2)∧…∧A(an)B、存在xA(x)⇔A(a1)∨A(a2)∨…∨A(an) C、﹁任意xA(x)⇔存在x﹁A(x) D、﹁存在xA(x)⇔任意x﹁A(x)2、量词否定等值式有()(正确答案:CD,答题答案:)A、任意xA(x)⇔A(a)∧A(a3)∧…∧A(an)B、存在xA(x)⇔A(a1)∨A(a3)∨…∨A(an) C、﹁任意xA(x)⇔存在x﹁A(x) D、﹁存在xA(x)⇔任意x﹁A(x)3、量词分配等值式有()(正确答案:AB,答题答案:)A、任意x(A(x)∧B(x))⇔(任意xA(x)∧任意xB(x))B、存在x(A(x)∨B(x))⇔(存在xA(x)∨存在xB(x)) C、﹁任意xA(x)⇔存在x﹁A(x)D、﹁存在xA(x)⇔任意x﹁A(x)4、多个量词等值式有() (正确答案:AC,答题答案:)A、任意x任意yA(x,y)⇔任意y任意xA(x,y)B、存在x(A(x)∨B(x))⇔(存在xA(x)∨存在xB(x)) C、﹁任意xA(x)⇔存在x﹁A(x)D、存在x存在yA(x,y)⇔存在y存在xA(x,y)5、哪些公式是有效式?(正确答案:AB,答题答案:)A、任意x(﹁P(x)→﹁P(x))B、任意xP(x)→存在xP(x)C、存在xP(x)→任意xP(x) D、﹁(P(x)→任意y(G(x,y)→P(x)))6、哪些公式是可满足式?(正确答案:A,答题答案:)A、任意x存在yP(x,y)→存在x任意yP(x,y)B、任意x任意yP(x,y)<->任意y任意xP(x,y)C、﹁任意x(P(x)→任意yQ(y))∧任意yQ(y)D、﹁任意x(Q(x))<->存在x(﹁Q(x))7、哪些公式是矛盾式?(正确答案:AC,答题答案:)A、﹁(P(x)→任意y(G(x,y)→P(x)))B、任意x任意yP(x,y)<->任意y任意xP(x,y)C、﹁任意x(P(x)→任意yQ(y))∧任意yQ(y)D、﹁任意x(Q(x))<->存在x(﹁Q(x))8、推理演算中的两个规则是() (正确答案:AB,答题答案:)A、换名规则B、代替规则C、交换规则D、结合规则9、将任意一个谓词公式通过()步骤转化成其对应的前束范式:(正确答案:ABCD,答题答案:)A、消去联结词<->B、利用换名规则或代替规则,使得每个变元在公式中的出现只是一种状态C、使否定联结词深入到各原子公式之前D、利用量词辖域扩张等值式或量词分配等值式将量词逐个移至公式前面10、谓词公式的构成包括()(正确答案:ABCD,答题答案:)A、原子谓词公式是谓词公式B、若A是谓词公式,则﹁A也是谓词公式C、若A和B都是谓词公式,则(A∧B)、(A∨B)、(A→B)、(A<->B)都是谓词公式D、若A是谓词公式,x是任何个体变元,则(任意x)A和(存在x)A都是谓词公式.三、判断题1、“7是素数且是奇数。

离散数学(第五版)清华大学出版社第4章习题解答

离散数学(第五版)清华大学出版社第4章习题解答

离散数学(第五版)清华大学出版社第4章习题解答4.1 A:⑤;B:③;C:①;D:⑧;E:⑩4.2 A:②;B:③;C:⑤;D:⑩;E:⑦4.3 A:②;B:⑦;C:⑤;D:⑧;E:④分析题4.1-4.3 都涉及到关系的表示。

先根据题意将关系表示成集合表达式,然后再进行相应的计算或解答,例如,题4.1中的Is ={<1,1>,<2,2>}, Es ={<1,1>,<1,2>,<2,1>,<2,2>}Is ={<1,1>,<1,2>,<2,2>};而题4.2中的R={<1,1>,<1,4>,<2,1>,<3,4>,<4,1>}.为得到题4.3中的R须求解方程x+3y=12,最终得到R={<3,3>,<6,2>,<9,1>}.求RoR有三种方法,即集合表达式、关系矩阵和关系图的主法。

下面由题4.2的关系分别加以说明。

1°集合表达式法将domR,domRUran,ranR的元素列出来,如图4.3所示。

然后检查R的每个有序对,若<x,y>∈R,则从domR中的x到ranR中的y画一个箭头。

若danR中的x 经过2步有向路径到达ranR中的y,则<x,y>∈RoR。

由图4.3可知RoR={<1,1>,<1,4><4,1>,<4,4>,<2,1>,<2,4>,<3,1>}.如果求FoG,则将对应于G中的有序对的箭头画在左边,而将对应于F中的有序对的箭头画在右边。

对应的三个集合分别为domG,ranUdomF,ranF,然后,同样地寻找domG到ranF的2步长的有向路径即可。

2° 矩阵方法若M是R的关系矩阵,则RoR的关系矩阵就是M·M,也可记作M,在计算2 48乘积时的相加不是普通加法,而是逻辑加,即0+0=0,0+1=1+0=1+1=1,根据已知条件得⎡1 0 0 1⎤⎡1 0 0 1⎤⎡1 0 0 1⎤⎢1 0 0 0⎥⎢1 0 0 0⎥⎢1 0 0 1⎥2 ⎢⎥⎢⎥⎢⎥M =⎢⎥⋅⎢⎥=⎢⎥⎢0 0 0 1⎥⎢0 0 0 1⎥⎢1 0 0 0⎥⎣1 0 0 0⎦⎣1 0 0 0⎦⎣1 0 0 1⎦M2中含有7个1,说明RoR中含有7个有序对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=(P∨Q)∨(Q∨P)
=((P)∧Q)∨((Q)∧P)
=(P∧Q)∨(Q∧P)
=(P∧Q)∨(P∧Q)
3.(6分)化简等价式(﹁P∧(﹁Q∧R))∨(Q∧R)∨(P∧R).
1
0
0
1
1
0
1
0
0
4.(8分) 设集合A={1,2,3},R为A上的二元关系,且 MR=
写出R的关系表达式,画出R的关系图并说明R的性质.
P
Q
R
GHale Waihona Puke 0001
0
0
1
0
0
1
0
1
0
1
1
1
1
0
0
0
1
0
1
1
1
1
0
0
1
1
1
0
5.(10分) 设公式G的真值表如下.
将真值表中最后一列的0左侧的二进制数,所对应的极大项写出后,将其合取起来,
就得到G的主合取范式.
于是,G=(P∨Q∨﹁R)∧(﹁P∨ Q∨R)∧(﹁P∨ ﹁Q∨R)∧(﹁P∨﹁ Q∨﹁R).
6. 解:
x ( F(x)∨G(x))
( F(-2)∨G(-2)) ∨ ( F(3)∨G(3)) ∨ ( F(6)∨G(6))
=A∩~B∩~C
=左边
(2)
左边=(A∪B)∩(A∪C)
右边=A∪((B∩~A)∩(A∪C))
=A∪((B∩~A∩A)∪(B∩~A∩C))
=A∪(B∩~A∩C)
=(A∪B)∩(A∪~A)∩(A∪C)
=(A∪B)∩(A∪C)
=左边
(3)
左边=(A∪(B∩~A))∩~C
=((A∪B)∩(A∪~A))∩~C
=(A∪B)∩~C
=(A∩~C)∪(B∩~C)
=(A-C)∪(B-C)
=右边
(4)
左边=(A∪B)-A
=(A∪B)∩~A
=(A∩~A)∩(B∩~A)
=B-A
=右边
2.(1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)
=(P∧(Q∧R))∨((Q∨P)∧R)
=((P∧Q)∧R)∨((Q∨P)∧R)
=((P∧Q)∨(Q∨P))∧R
《离散数学》模拟试题3
一、填空题(每小题2分,共20分)
1.已知集合A={φ,1,2},则A得幂集合p(A)=______。
2.设集合E={a,b,c,d,e},A= {a,b,c},B= {a,d,e},则A∪B=______,
A∩B=______,A-B=______,~A∩~B=________。
3.设A,B是两个集合,其中A= {1, 2, 3},B= {1, 2},则A-B=_______,
ρ(A)-ρ(B)=_______。
4.已知命题公式 ,则G的析取范式为。
5.设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。”符号化
,其真值为。
二、单项选择题(选择一个正确答案的代号填入括号中,每小题4分,共16分。)
C.{φ,{x},{y},{x,y}} D.{{x},{y},{x,y}}
4.设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)},
则R不具备( ).
三、计算题(共50分)
1.(6分)设全集E=N,有下列子集:A={1,2,8,10},B={n|n2<50,n∈N},C={n|n可以被3整除,且n<20,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:
其最优支撑树,并求出权和.
四、证明题(每小题8分,共16分)
1.设A,B,C为三个任意集合,试证明:( 8分)
(1)(A-B)-C=(A-C)-(B-C)
(2)A∪(B∩C)=A∪((B-A)∩(A∪C))
(3)(A∪(B-A))-C=(A-C)∪(B-C)
(4)((A∪B∪C)∩(A∪B))-((A∪(B-C))∩A)=B-A
=((﹁P∧﹁Q)∨(Q∨P))∧R
=(﹁(P∨Q)∨(P∨Q))∧R
=1∧R
=R
4.解:
R={(1,1),(2,1),(2,2),(3,1) }
其关系图如下:
R是反对称的和传递的.
5. 解:
将真值表中最后一列的1左侧的二进制数,所对应的极小项写出后,将其析取起来,
就得到G的主析取范式.
于是,G=(﹁P∧﹁Q∧﹁R)∨(﹁P∧ Q∧﹁R)∨(﹁P∧ Q∧R)∨(P∧﹁ Q∧R).
={(a,a),(a,b)};
R1·R2·R3= {(a,a),(b,a),(c,a)};
(R1·R2·R3)-1= {(a,a),(a,b),(a,c)};
3.解:
(﹁P∧(﹁Q∧R))∨(Q∧R)∨(P∧R)
=(﹁P∧(﹁Q∧R))∨((Q∨P)∧R)
=((﹁P∧﹁Q)∧R))∨((Q∨P)∧R)
(1)A∪(C∩D)(2)A∩(B∪(C∩D))
(3)B-(A∩C)(4)(~A∩B)∪D
2.(6分)设集合A={a,b,c},A上二元关系R1,R2,R3分别为:R1=A×A,
R2={(a,a),(b,b)},R3={(a,a)},试分别用
定义和矩阵运算求R1·R2, ,R1·R2·R3,(R1·R2·R3)-1。
2.{a,b,c,d,e};{a};{b,c};φ
3.{3};{{3},{1,3},{2,3},{1,2,3}}
4 .
5.PQ ,1
二、单项选择题
1.C2.B3.C4.B
三、计算题
1.(1)A;(2){1};(3)B;(4){2,4,8,9,16,32}
2.R1·R2=={(a,a),(a,b),(b,a),(b,b),(c,a),(c,b)};
2.证明下面的等价式:( 8分)
(1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)=R
(2)(P∧(Q∧S))∨(P∧(Q∧S))=(Q∧S)
(3)P(QR)=(P∧Q)R
(4)(P Q)=(P∧Q)∨(P∧Q)
《离散数学》模拟试题3参考答案
一、填空题
1.{φ,{φ},{1},{φ,1},{φ,2},{1,2},A}
=((P∨Q)∨(Q∨P))∧R
=1∧R
=R
(2)(P∧(Q∧S))∨(P∧(Q∧S))
=((Q∧S)∧P)∨((Q∧S)∧P)
=(Q∧S)∧(P∨P)
=(Q∧S)∧1
=Q∧S
(3)P(QR)
=P∨(Q∨R)
=(P∨Q)∨R
=(P∧Q)∨R
=(P∧Q)R
(4)(P Q)
=((PQ)∧(QP))
=((P∨Q)∧(Q∨P))
1.设A、B是两个集合,A={1,3,4},B={1,2},则A-B为( ).
A.{1} B. {1, 3} C. {3,4} D. {1,2}
2.下列式子中正确的有()。
A.φ=0 B.φ∈{φ}
C.φ∈{a,b} D.φ∈φ
3.设集合X={x,y},则ρ(X)=()。
A.{{x},{y}} B.{φ,{x},{y}}
试叙述如何根据真值表求G的
主析取范式和主合取范式,并
写出G的主析取范式和主合取范式.
6.(8分) 设解释I为:
(1) 定义域D={-2,3,6};
(2) F(x): x≤3
G(x): x>5
在解释I下求公式x(F(x)∨G(x))的真值.
7.(6分) 试用克鲁斯卡尔算法求下图所示权图中的最优支撑树.要求画出
(1∨0) ∨(1∨0) ∨(0∨1)
1
7. 解:
下图的粗线条为该权图的最优支撑树,5条边.
权和为2+2+3+3+5=15.
四、证明题
1.(1)
左边=(A-B)∩~C=A∩~B∩~C
右边=(A∩~C)∩~(B∩~C)
=(A∩~C)∩(~B∪C)
=(A∩~C∩~B)∪(A∩~C∩C)
=(A∩~B∩~C)∪0
相关文档
最新文档