中考数学-圆知识点考点回顾与思考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学
圆知识点考点回顾与思考
教学目标
(一)教学知识点1.掌握本章的知识结构图.
2.探索圆及其相关结论.
3.掌握并理解垂径定理.
4.认识圆心角、弧、弦之间相等关系的定理.5.掌握圆心角和圆周角的关系定理.
(二)能力训练要求1.通过探索圆及其相关结论的过程,发展学生的数学思考能力.
2.用折叠、旋转的方法探索圆的对称性,以及圆心角、弧、弦之间关系的定理,发展学生的动手操作能力.3.用推理证明的方法研究圆周角和圆心角的关系,发展学生的推理能力.4.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.(三)情感与价值观要求
通过学生自己归纳总结本章内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.
教学重点掌握圆的定义,圆的对称性,垂径定理,圆心角、弧、弦之间的关系,圆心角和圆周角的关系.对这些内容不仅仅是知道结论,要注重它们的推导过程和运用.
教学难点
上面这些内容的推导及应用.
教学方法
教师引导学生自己归纳总结法.
教具准备
投影片三张:
第一张:(记作A)
第二张:(记作D
第三张:(记作C)
教学过程
I •回顾本章内容
[师]本章的内容已全部学完,大家能总结一下我们都学过哪些内容吗?
[生]首先,我们学习了圆的定义;知道圆既是轴对称图形,又是中心对称图形,并且有旋转不变性的 特
点;利用轴对称变换的方法探索出垂径定理及逆定理;用旋转变换的方法探索圆心角、弧、弦之间相等 关系的定理;用推理证明的方法研究了圆心角和圆周角的关系;又研究了确定圆的条件;点和圆、直线和 圆、圆和圆的位置关系;圆的切线的性质和判断;探究了圆弧长和扇形面积公式,圆锥的侧面积.
[师]很好,大家对所学知识掌握得不错•本章的内容可归纳为三大部分,第一部分由圆引出了圆的概 念、
对称性,圆周角与圆心角的关系,弧长、扇形面积,圆锥的侧面积,在对称性方面又学习了垂径定理, 圆心角、孤、弦之间的关系定理;第二部分讨论直线与圆的位置关系,其中包括切线的性质与判定,切线 的作图;第三部分是圆和圆的位置关系•这三部分构成了全章内容,结构如下:
n.具体内容巩固
[师]上面我们大致梳理了一下本章内容,现在我们具体地进行回顾.
一、圆的有关概念及性质
[生]圆是平面上到定点的距离等于定长的所有点组成的图形•定点为圆心,定长为半径.
圆既是轴对称图形,又是中心对称图形,对称轴是任意一条过圆心的直线,对称中心是圆心,圆还具 有旋转不变性.
[师]圆的这些性质在日常生活中有哪些应用呢?你能举出例子吗?
[生]车轮做成圆形的就是利用了圆的旋转不变性.车轮在平坦的地面上行驶时,它与地面线相切,当 它向前滚动时,轮
子的中心与地面的距离总是不变的,这个距离就是半径•把车厢装在过轮子中心的车轴 上,则车辆在平坦的公路上行驶时,人坐在车厢里会感觉非常平稳•如果车轮不是圆形,坐在车上的人会
切
變的性质
(投影片A )
觉得非常颠.
二、垂径定理及其逆定理
[生]垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
[师]这两个定理大家一定要弄清楚、不能混淆,所以我们应先对他们进行区分•每个定理都是一个命
题,每个命题都有条件和结论•在垂径定理中,条件是:一条直径垂直于一条弦,结论是:这条直径平分
这条弦,且平分弦所对的弧(有两对弧相等)•在逆定理中,条件是:一条直径平分一条弦(不是直径),结论是:这条直径垂直于这条弦,并且平分弦所对的弧(也有两对弧相等)•从上面的分析可知,垂径定理中
的条件是逆定理中的结论,垂径定理中的一个结论是逆定理中的条件,在具体的运用中,是根据已知条件
提供的信息来决定用垂径定理还是其逆定理,若已知直径垂直于弦,则用垂径定理;若已知直径平分弦,
则用逆定理.下面我们就用一些具体例子来区别它们.
(投影片B)
1如图(1),在O 0中,AB AC为互相垂直的两条相等的弦,ODLAB OEL AC, D E为垂足,则四边
形ADO是正方形吗?请说明理由.
2. 如图(2),在O 0中,半径为50mm有长50mm的弦AB C为AB的中点,贝U 0C垂直于AB吗?0C
的长度是多少?
[师]在上面的两个题中,大家能分析一下应该用垂径定理呢,还是用逆定理呢?
[生]在第1题中,OD 0E都是过圆心的,又OD L AB OEL AC所以已知条件是直径垂直于弦,应用垂径定理;在第2题中,C是弦AB的中点,因此已知条件是平分弦(不是直径)的直径,应用逆定理.
[师]很好,在家能用这两个定理完成这两个题吗?
[生]1.解:T OD L AB OEL AC, AE L AC
•••四边形ADO是矩形.
•/ AC= AB, • AE= AD
•四边形ADO是正方形.
2.解:t C 为AB 的中点,
•••OCL AB
1
在 Rt △ OAC 中, AC= — AB= 25mm OA= 50mm
2
•由勾股定理得 OO . OA 2—AC 2 502—252 25 3(mm).
三、圆心角、弧、弦之间关系定理
[师]大家先回忆一下本部分内容.
[生]在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所 对应的其余各组量都分别相等.
[师]下面我们进行有关练习 (投影片C)
1
1.
如图在O O 中,弦AB 所对的劣弧为圆的 ,圆的半径为2cm,求AB
的长.
•••/ AOB= 120°
作OC X AB 垂足为C 则 / AOO 60°, AO BC 在 Rt △ ABC 中,
AC= O£in60 ° = 2X sin60
•- AB= 2AC = 2 3 (cm).
四、圆心角与圆周角的关系
[生]一条弧所对的圆周角等于它所对的圆心角的一半.
在同圆或等圆中,同弧或等弧所对的圆周角相等.
[生]解:由题意可知
A B 的度数为