数列题型及解题方法归纳总结2推荐文档
完整版数列题型及解题方法归纳总结
完整版数列题型及解题方法归纳总结标题:数列题型及解题方法综述摘要:本文总结了完整版数列题型及解题方法,为了方便学生理解和应用。
首先,我们介绍数列的基本概念和常见数列类型,包括等差数列、等比数列、等差数列与等比数列的混合题型等。
接着,我们详细描述了每种题型的解题方法和技巧,并通过实例进行解析和演示。
最后,我们总结了数列题目中容易出错的地方,并提供了避免错误的建议和注意事项。
第一节:引言数列是数学中的重要概念,广泛应用于各个领域。
掌握数列的概念和解题方法对学生在数学学习中具有重要意义。
本文将以完整版数列题目为基础,介绍数列的基本概念和解题方法,帮助读者更好地理解和应用数列知识。
第二节:数列的基本概念1.1 数列的定义数列是按一定顺序排列的一组数,其中每个数称为数列的项。
1.2 数列的表示方法数列可以使用通项公式、递推公式或者递归定义来表示。
1.3 数列的性质数列可以有有限项或无限项,可以是有序的或无序的。
1.4 数列的常见类型(1)等差数列:相邻两项之差相等的数列,通项公式为an=a1+(n-1)d。
(2)等比数列:相邻两项之比相等的数列,通项公式为an=a1*r^(n-1)。
(3)等差数列与等比数列的混合题型:数列中既有等差数列又有等比数列的题型。
第三节:等差数列的解题方法2.1 确定公式通过观察数列的前几项,确定数列的公式an=a1+(n-1)d。
2.2 确定项数根据公式an=a1+(n-1)d中的已知量,确定要求的项数n。
2.3 求和公式根据等差数列求和公式Sn=n/2[a1+an],计算数列的和。
2.4 实例分析通过实例分析,详细说明等差数列的解题思路和步骤。
第四节:等比数列的解题方法3.1 确定公式通过观察数列的前几项,确定数列的公式an=a1*r^(n-1)。
3.2 确定项数根据公式an=a1*r^(n-1)中的已知量,确定要求的项数n。
3.3 求和公式根据等比数列求和公式S=n(a1-an*r)/(1-r),计算数列的和。
数列知识点总结和题型归纳总结-精选.pdf
高三总复习----数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ;数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作n a 。
例:判断下列各组元素能否构成数列(1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如:①: 1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n 7,n N ),数列②的通项公式是n a =1n(n N )。
说明:①n a 表示数列,n a 表示数列中的第n 项,n a = f n 表示数列的通项公式;②同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n=1,21()1,2n k kZ n k;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示:序号:1 2 3 4 5 6 项:4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N (或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替f n ,其图象是一群孤立点。
例:画出数列12n a n的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列?(1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, …(3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…(5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)nnn S n a S S n ≥例:已知数列}{n a 的前n 项和322ns n,求数列}{n a 的通项公式练习:1.根据数列前4项,写出它的通项公式:(1)1,3,5,7……;(2)2212,2313,2414,2515;(3)11*2,12*3,13*4,14*5。
完整版数列题型及解题方法归纳总结
完整版数列题型及解题方法归纳总结2篇数列是数学中的重要概念之一,它是一组按照一定规律排列的数的集合。
数列题型在中小学数学教学中经常出现,涉及对数列的性质、求特定项的值、判断数列的增减性等问题。
接下来,我们将对数列题型及解题方法进行归纳总结。
数列题型可分为以下几类:一、公式法公式法是指利用数列的通项公式来进行求解。
通项公式是指数列中第n 项与n的关系式,可以通过观察数列规律或根据已知条件推导得到。
在使用公式法解题时,首先要观察数列的前几项,并找出数列的规律。
根据规律,可以列出数列的通项公式。
然后,根据题目给出的条件,求出所需要求解的特定项的值。
例如,对于一个等差数列求特定项的值,可以利用等差数列的通项公式:an = a1 + (n-1)d其中,an表示第n项的值,a1表示首项的值,d表示公差,n表示项数。
二、递推法递推法是指通过数列中前一项或前几项的值来求解后一项的值。
递推法常用于求数列的递推关系和递推公式。
在使用递推法解题时,首先要观察数列的前几项,并找出数列的递推关系。
根据递推关系,可以列出数列的递推公式。
然后,通过初始项的值和递推关系,依次求出所需要求解的特定项的值。
例如,对于一个斐波那契数列求特定项的值,可以利用递推关系和递推公式:an = an-1 + an-2其中,an表示第n项的值,an-1表示第n-1项的值,an-2表示第n-2项的值。
根据递推公式和初始项的值,可以逐步求出所需的特定项的值。
三、和与差法和与差法是指通过对数列的前n项进行求和或求差的方式来求解特定项的值。
在使用和与差法解题时,首先要根据数列的规律,找出数列的前n项和或前n项差的公式。
然后,根据题目给出的条件,求出所需的特定项的值。
例如,对于一个等差数列求特定项的值,可以利用等差数列的前n项和公式:Sn = (a1 + an) * n / 2其中,Sn表示前n项和,a1表示首项的值,an表示第n项的值,n表示项数。
根据前n项和公式和题目给出的条件,可以求出所需的特定项的值。
数列知识点总结和题型归纳
数列知识点总结和题型归纳一、数列的定义和性质数列是由一系列有序的数按照一定规律排列而成的序列。
数列中的每个数叫做数列的项,用an表示第n个项。
1. 等差数列等差数列是指一个数列中相邻两项之差都是相等的。
公差d是等差数列中相邻两项的差值。
2. 等比数列等比数列是指一个数列中相邻两项之比都是相等的。
公比q是等比数列中相邻两项的比值。
二、数列的通项公式和前n项和公式1. 等差数列的通项公式设等差数列的首项为a1,公差为d,则该等差数列的通项公式为an = a1 + (n-1)d。
2. 等差数列的前n项和公式设等差数列的首项为a1,公差为d,前n项和为Sn,则该等差数列的前n项和公式为Sn = n(a1 + an)/2。
3. 等比数列的通项公式设等比数列的首项为a1,公比为q,则该等比数列的通项公式为an = a1 * q^(n-1)。
4. 等比数列的前n项和公式设等比数列的首项为a1,公比为q,前n项和为Sn,则该等比数列的前n项和公式为Sn = a1 * (1 - q^n)/(1 - q)。
三、数列的常见题型1. 求等差数列的第n项已知等差数列的首项a1和公差d,求该等差数列的第n项an,则可以利用等差数列的通项公式an = a1 + (n-1)d进行计算。
2. 求等差数列的前n项和已知等差数列的首项a1、公差d和项数n,求该等差数列的前n项和Sn,则可以利用等差数列的前n项和公式Sn = n(a1 + an)/2进行计算。
3. 求等比数列的第n项已知等比数列的首项a1和公比q,求该等比数列的第n项an,则可以利用等比数列的通项公式an = a1 * q^(n-1)进行计算。
4. 求等比数列的前n项和已知等比数列的首项a1、公比q和项数n,求该等比数列的前n项和Sn,则可以利用等比数列的前n项和公式Sn = a1 * (1 - q^n)/(1 - q)进行计算。
四、数列的应用数列在数学中有广泛的应用,特别是在数学建模和实际问题的解决中常常用到。
数列题型及解题方法归纳总结
知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数)例1、? 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解? ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1例2、已知{}n a 满足112n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a .解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)★ 说明 ?只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
(3)递推式为a n+1=pa n +q (p ,q 为常数)例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。
两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2? ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得:∴an=2·3n-1-1(4)递推式为a n+1=p a n +q n (p ,q 为常数))(3211-+-=-n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n nn n b a )31(2)21(32-==(5)递推式为21n n n a pa qa ++=+思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。
(完整版)数列题型及解题方法归纳总结
(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
(word完整版)数列全部题型归纳(非常全面,经典),推荐文档
数列百通通项公式求法 (一)转化为等差与等比1、已知数列{}n a 满足11a =,211n n a a -=+(,n N *∈2≤n ≤8),则它的通项公式n a 什么2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4、已知数列{}n a 中,10a =,112n na a +=-,*N n ∈.求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 满足,2(2)8n n a S +=则,数列n a3)若数列{}n a 的前n 项和n S 满足,111,0,4n n n n a S S a a -=-≠=则,数列na4)12323...(1)(2)n a a a na n n n +++=++求数列n a(三) 累加与累乘(1)如果数列{}n a 中111,2nn n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式(3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式.(4)若数列{}n a 的前n 项和n S 满足,211,2n n S n a a ==则,数列n a(四)一次函数的递推形式1. 若数列{}n a 满足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 满足1111,22n n n a a a -==+ (2)n ≥,数列n a(五)分类讨论(1)2123(3),1,7n n a a n a a -=+≥==,求数列n a(2)1222,(3)1,3nn a n a a a -=≥==,求数列n a(六)求周期16 (1) 121,41nn na a a a ++==-,求数列2004a(2)如果已知数列11n n n a a a +-=-,122,6a a ==,求2010a拓展1:有关等和与等积(1)数列{n a }满足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }满足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列{a n }的通项公式.拓展2 综合实例分析1已知数列{a n }的前n 项和为n S ,且对任意自然数n ,总有()1,0,1n n S p a p p =-≠≠(1)求此数列{a n }的通项公式(2)如果数列{}n b 中,11222,,n b n q a b a b =+=<,求实数p 的取值范围2已知整数列{a n }满足31223341 (3)n n n n a a a a a a a a --+++=,求所有可能的n a3已知{}n a 是首项为1的正项数列,并且2211(1)0(1,2,3,)n n n n n a na a a n +++-+==L ,则它的通项公式n a 是什么4已知{}n a 是首项为1的数列,并且134n n n a a a +=+,则它的通项公式n a 是什么5、数列{}n a 和{}n b 中,1,,+n n n a b a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且11=a ,21=b ,设nn n b a c =,求数列{}n c 的通项公式。
数列题型及解题方法归纳总结
数列题型及解题方法归纳总结一、等差数列等差数列是指数列中的相邻项之差都相等的数列。
下面对等差数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等差数列的首项为a,公差为d,第n项的值为an,则有公式:an = a + (n-1)d2. 求前n项和设等差数列的首项为a,公差为d,前n项和为Sn,则有公式:Sn = (n/2)(2a + (n-1)d)3. 求公差已知等差数列的首项为a,第m项与第n项的和为s,则公差d的值可以通过以下公式计算得出:d = (sm - sn)/(m - n)4. 求项数已知等差数列的首项为a,公差为d,第n项的值为an,可以通过以下公式求解项数n:n = (an - a)/d + 15. 应用题解题思路在解等差数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
二、等比数列等比数列是指数列中的相邻项之比都相等的数列。
下面对等比数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等比数列的首项为a,公比为q,第n项的值为an,则有公式:an = a * q^(n-1)2. 求前n项和(当公比q不等于1时)设等比数列的首项为a,公比为q,前n项和为Sn,则有公式:Sn = a * (q^n - 1) / (q - 1)3. 求前n项和(当公比q等于1时)当公比q等于1时,等比数列的前n项和为n * a。
4. 求公比已知等比数列的首项为a,第m项与第n项的比为r,则公比q的值可以通过以下公式计算得出:q = (an / am)^(1/(n-m))5. 求项数已知等比数列的首项为a,公比为q,第n项的值为an,可以通过以下公式求解项数n:n = log(an/a) / log(q)6. 应用题解题思路在解等比数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
三、斐波那契数列斐波那契数列是指数列中第一、第二项为1,后续项为前两项之和的数列。
数列常见题型及解题技巧
数列常见题型及解题技巧
数列常见题型及解题技巧
一、等差数列
1、求首项:求出首项a1可用公式:a1=Sn−n(d+a2)
2、求末项:求出末项an可用公式:an=Sn−n(d+a1)
3、求和:求出数列前n项和可用公式:Sn=n(a1+an)2
4、求通项公式:求出通项公式可用公式:an=a1+(n-1)d
5、求某项:求出第k项可用公式:ak=a1+(k-1)d
二、等比数列
1、求首项:求出首项a1可用公式:a1=Sn(qn−1)
2、求末项:求出末项an可用公式:an=a1qn−1
3、求和:求出数列前n项和可用公式:
Sn=a1(1−qn)1−q
4、求通项公式:求出通项公式可用公式:an=a1qn−1
5、求某项:求出第k项可用公式:ak=a1qk−1
三、复合数列
1、求和:求出数列前n项和可用公式:
Sn=a1+a2+…+an
2、求某项:求出第k项可用公式:ak=ak−1+ak
解题技巧:
1、利用性质转化:根据所给的条件,尝试将原数列转换成更简单的形式,如等差数列、等比数列或者复合数列。
2、利用关系性:通过对数列中一些特殊项的求出,可以确定整个数列的情况,比如求出第一项和最后一项,就可以确定数列的前n项和。
3、利用规律性:数列中的每一项都有一定的规律性,依靠这一点可以得到数列的通项公式,进而求出数列的其他项。
数列全部题型归纳(非常全面,经典!)(精编文档).doc
【最新整理,下载后即可编辑】数列百通 通项公式求法 (一)转化为等差与等比1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4、已知数列{}n a 中,10a =,112n na a +=-,*N n ∈.求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列;并求数列{}n a 的通项公式;5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 满足,2(2)8n n a S +=则,数列n a3)若数列{}n a 的前n 项和n S 满足,111,0,4n n n n a S S a a -=-≠=则,数列n a4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a(三) 累加与累乘(1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式 (3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式.(4)若数列{}n a 的前n 项和n S 满足,211,2n n S n a a ==则,数列n a(四)一次函数的递推形式1. 若数列{}n a 满足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 满足1111,22n n n a a a -==+(2)n ≥,数列n a(五)分类讨论(1)2123(3),1,7n n a a n a a -=+≥==,求数列n a(2)1222,(3)1,3nn a n a a a -=≥==,求数列n a(六)求周期 16 (1)121,41nn na a a a ++==-,求数列2004a(2)如果已知数列11n n n a a a +-=-,122,6a a ==,求2010a拓展1:有关等和与等积(1)数列{n a }满足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }满足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列{a n }的通项公式.拓展2 综合实例分析1已知数列{a n }的前n 项和为n S ,且对任意自然数n ,总有()1,0,1n n S p a p p =-≠≠ (1)求此数列{a n }的通项公式(2)如果数列{}n b 中,11222,,n b n q a b a b =+=<,求实数p 的取值范围 2已知整数列{a n }满足31223341 (3)n n n na a a a a a a a --+++=,求所有可能的n a3已知{}n a 是首项为1的正项数列,并且2211(1)0(1,2,3,)n n n n n a na a a n +++-+==,则它的通项公式n a 是什么4已知{}n a 是首项为1的数列,并且134nn n a a a +=+,则它的通项公式n a 是什么5、数列{}n a 和{}n b 中,1,,+n n n a b a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且11=a ,21=b ,设nnn b a c =,求数列{}n c 的通项公式。
(完整)数列题型及解题方法归纳总结(2),推荐文档
知识框架
式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,
建议收藏下载本文,以便随时学习!
数列的分类
数列 的概念
数列的通项公式函数角度理解 数列的递推关系
就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。
的通项相乘构成,那么常选用错位相减法(这也是等比数列前 n 和公式的推
导方法).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分
裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:
①
1 n(n
1)
1 n
n
1
1
;
②
1 n(n
k
)
1 (1 kn
n
1
k
)
;
(n 1时,a1 S1,n 2时,a n Sn Sn1)
等差数列前 n 项和的最值问题:
⑷若 an1 an f (n) 求 an 用累加法:
1、若等差数列an的首项 a1 0 ,公差 d 0 ,则前 n 项和 Sn 有最大值。
an (an an1) (an1 an2 ) (a2 a1) a1 (n 2) 。
(ⅰ)若已知通项 an ,则 Sn 最大 aann100 ;
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
∴
a
n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
数列解题技巧归纳总结 好(5份)
数列解题技巧归纳总结好(5份)一、典型题的技巧解法1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为an+1=an+d及an+1=qan(d,q为常数)例1、已知{an}满足an+1=an+2,而且a1=1。
求an。
例1、解∵an+1-an=2为常数∴{an}是首项为1,公差为2的等差数列∴an=1+2(n-1)即an=2n-1例2、已知满足,而,求=?(2)递推式为an+1=an+f(n)例3、已知中,,求、解:由已知可知令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+…+(an-an-1)★ 说明只要和f (1)+f(2)+…+f(n-1)是可求的,就可以由an+1=an+f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求an。
(3)递推式为an+1=pan+q(p,q为常数)例4、中,,对于n>1(n∈N)有,求、解法一:由已知递推式得an+1=3an+2,an=3an-1+2。
两式相减:an+1-an=3(an-an-1)因此数列{an+1-an}是公比为3的等比数列,其首项为a2-a1=(31+2)-1=4∴an+1-an=43n-1 ∵an+1=3an+2∴3an+2-an=43n-1 即 an=23n-1-1解法二:上法得{an+1-an}是公比为3的等比数列,于是有:a2-a1=4,a3-a2=43,a4-a3=432,…,an-an-1=43n-2,把n-1个等式累加得:∴an=23n-1-1(4)递推式为an+1=p an+q n(p,q为常数)由上题的解法,得:∴ (5)递推式为思路:设,可以变形为:,想于是{an+1-αan}是公比为β的等比数列,就转化为前面的类型。
求。
(6)递推式为Sn与an的关系式关系;(2)试用n表示an。
(完整)数列题型及解题方法归纳总结,推荐文档
1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
数列常见题型总结计划经典超级经典
一、数列的定义与性质1.数列的定义:数列是由一系列按照一定顺序排列的数构成的序列。
2.数列的性质:(1)有限数列:数列中的项数是有限的。
(2)无限数列:数列中的项数是无限的。
(3)严格递增数列:数列中的每一项都小于它后面的项。
(4)严格递减数列:数列中的每一项都大于它后面的项。
(5)等差数列:数列中相邻两项的差是常数。
(6)等比数列:数列中相邻两项的比是常数。
二、数列的通项公式与求和公式1.数列的通项公式:数列的第n项与序号n之间的关系式。
2.数列的求和公式:数列前n项的和与序号n之间的关系式。
(1)等差数列的求和公式:$S_n=\frac{n}{2}[2a+(n-1)d]$ (2)等比数列的求和公式:$S_n=\frac{a_1(1q^n)}{1q}$三、数列的常见题型及解题方法1.求数列的通项公式(1)等差数列:已知前几项或公差,求通项公式。
(2)等比数列:已知前几项或公比,求通项公式。
(3)其他数列:根据题意,找出数列的规律,求通项公式。
2.求数列的前n项和(1)等差数列:利用求和公式求解。
(2)等比数列:利用求和公式求解。
(3)其他数列:根据题意,找出数列的规律,求和。
3.数列的单调性(1)判断数列的单调递增或单调递减。
(2)证明数列的单调性。
4.数列的周期性(1)判断数列的周期性。
(2)求数列的周期。
5.数列的极限(1)求数列的极限。
(2)判断数列的收敛性。
6.数列的错位相减法(1)应用错位相减法求数列的和。
(2)证明错位相减法的正确性。
四、经典题目解析1.题目:已知数列$\{a_n\}$是等差数列,且$a_1=2,a_6=10$,求数列的通项公式。
解析:根据等差数列的性质,可知$a_6=a_1+5d$,代入已知条件,解得$d=2$,进而求得通项公式$a_n=2n$。
2.题目:已知数列$\{b_n\}$是等比数列,且$b_1=2,b_3=8$,求数列的通项公式。
解析:根据等比数列的性质,可知$b_3=b_1\cdotq^2$,代入已知条件,解得$q=2$,进而求得通项公式$b_n=2^n$。
数列解题技巧归纳总结 打印
等差数列前n 项和的最值问题:1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。
(ⅰ)若已知通项n a ,则n S 最大⇔10n n a a +≥⎧⎨≤⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值 (ⅰ)若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅(2)n ≥。
⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。
特别地,(1)形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以nk 得到一个等差数列后,再求n a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识框架数列的概念数列的分类数列的通项公式数列的递推关系函数角度理解求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法数列两个基本数列等差数列的定义a n等差数列的通项公式等差数列等差数列的求和公式等差数列的性质a n等比数列的定义3na na n 1a nS na mq(nd(na1 (nn /2(a12)1)da n) na ia p a q (mn(n 1)d2q)2)等比数列的通项公式等比数列等比数列的求和公式a nS n等比数列的性质公式法分组求和错位相减求和裂项求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用一八其他数列求和岂a n q1a i(1q n a1(q a n a m a p a q(m nn、q )/(q1 q1)p q)1)1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a+d及a n+1=qa n(d,q为常数)例1、已知{a n}满足a n+1=a n+2,而且a1=1。
求a n。
例1、解■/a n+1-a n=2为常数••• {a n}是首项为1,公差为2的等差数列--a n=1+2 (n-1 )即a n=2n-11例2、已知{a n}满足a n 1— a n,而a1 2,求a. =?2解V 是常数••七J是以2为首项.公比为扌的等匕嗷列5 -2 • L z --^―(2)递推式为a n+1=a n+f (n)1例3、已知{a n}中a1,a n 1解:由已知可知a n 1 a nan14n2 1求a n.1 丄(_匚(2n 1)(2n 1) 2(2n 112n1)令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a2-a 1)+ (a3-a2)+… +(a n-a n-1 )掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、1(1 亠 32 2n 1 4n 2★ 说明只要和f (1) +f (2) +…+f ( n-1 )是可求的,就可以由a”i=a n+f (n)以n=1, 2,…,(n-1)代入,可得n-1个等式累加而求a n⑶递推式为a n+1=p@+q (p, q为常数)例4、{a n}中,a1 1,对于n> 1 (n € N)有a n 3a n 1 2,求a..解法一:由已知递推式得a n+1=3a n+2, a n=3a n-1+2。
两式相减:a n+1-a n=3 (a n-a n-1)因此数列{a n+1-a n}是公比为3的等比数列,其首项为a2-a1= (3X 1+2) -1=4n-1 n-1 厂“n-1 …a n+1 -a n =4 • 3 - a n+1=3a n+2 …3a n+2-a n=4 • 3 即 a n=2 • 3 -1 解法二:上法得{a n+1-a n}是公比为3的等比数列,于是有:a2-a 1=4, a3-a 2=4 -3,2 n-2a4-a 3 =4 • 3,…, a n-a n-1 =4 • 3 ,把n-1 个.等—一■式- -- :累一•十加——得'J _:—/• an=2 • 3n-1-1 --★说明对于递推式亦二叽■+扌,可两边除以q田,得毛^-*与+丄"引辅助数列(b n)P Cb a= —) , = -b^ + -后用q q q % q q(5)递推式为a n 2 pa n 1 qa n思路:设a n 2 pa n 1 qa n,可以变形为:a n 2 a n 1 (a n 1 a n),「CL + 0 = p 就是也=2 +时则可从门农卩解得4 P,(d • p = -q想于是{a n+1- a a n}是公比为B的等比数列,就转化为前面的类型。
⑷递推式为a n+1=p a n+q n (p, q为常数)【例亦己知心中.術岭论二羸+ G)叫求%略解在如弓%十心的两边乘以円得2羽'* E〔泸社)+ 1 '令亠=2则»妁=彳5+1,于是可得J 2 2b n 1 b n (b n g 1) 由上题的解法,得:g 3 2(-广3 3_ _ ■) 1【例己知数列中,a} =1, a2= 2,亦=詐+严詐・求an。
CL=卩:L+J23a tvfrl2a + 0 = —3[卜a • p =-3n两边减去3廿丄,得b n3(1)n/■ - a n )是公比为首项为a 2 -Qi = 1的等比数列。
⑹递推式为S 与an 的关系式SjCn = 1J1【例门 设d }前口项的和片=4■片-乔 试用n表示a此类型可利用g一 •一 ■ '■I | ■'1 :关系;(2) 数列求和的常用方法:1、 拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数 列求和。
2、 错项相减法:适用于差比数列(如果 a n 等差,b n 等比,那么 a n b n叫做差比数列)即把每一项都乘以 0的公比q ,向后错一项,再对应同次 项相减,转化为等比数列求和。
3、 裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几 项,可求和。
解 Cl)由S1_ S _ 2卄1S n 1 S n1 1 (a na n 1) ( n2 n 1丿2n1…a n 1anan 1n2n1 1a n 1 -a n n22n 。
上式两边同乘以2n+1得2n+1a n+i =2n a n +2则{2 5}是公差为2的等差数列。
1.',a n . a n 1适用于数列1a n an 1可裂项为1 a n a n 1(其中a n 等差)••• 2n a n = 2+ (n-1)• 2=2n" …- 7^=1等差数列前n 项和的最值问题:1、若等差数列 a n的首项a 10 ,公差d0,则前n 项和S n 有最大值。
(i )若已知通项a na n,则S n 取大0 ;an 1(ii )若已知S n2pn qn ,则当 n 取最靠近q 的非零自然数时S n 最2p大;2、若等差数列 a n 的首项a 10 , 公差d0, 则前 n 项和S n 有最小值(i )若已知通项 a n ,则S n 最小a n0 . ;an 1(ii )若已知S n 2 pn qn , 则当 n 取最靠近 q 的非零自然数时S n 最2pan(a n a n 1 ) (a n 1 an 2) L (a 2 a l)a i (n 2)。
⑸已知a n 1f (n )求a n ,用累乘法a n a n 1a nan 1an 2⑹已知递推关系求 a n ,用构造法(构造等差、等比数列)特别地,(1)形如a n ka n 1 b 、a n 推数列都可以用待定系数法转化为公比为如a nka n 1 k n 的递推数列都可以除以小; 数列通项的求法:⑵已知S n(即a 1 a 2 L a n f (n ))求a n ,用作差法 S 1,( n 1) 1 S n S n 1, ( n。
2)已知 a 1ga 2gL ga n f (n)求 a n ,用作商法 f(1),(n 1):a nf(n) (n 2) 。
―小(n 2) f (n 1)⑶已知条件中既有 S n 还有an ,有时先求 S n ,再求a n .有时也可直接求a n 。
⑷ 若a n 1 a n f(n) 求a n用 累力口 法⑴公式法:①等差数列通项公式;②等比数列通项公式。
a 2 a 1a 1 (n 2)。
ka n 1 b n ( k,b 为常数)的递 k 的等比数列后,再求a n ;形 k n 得到一个等差数列后,再求an 。
a(2) 形如a n口 的递推数列都可以用倒数法求通项。
ka n 1 bk(3) 形如a n 1 a n 的递推数列都可以用对数法求通项。
(7) (理科)数学归纳法。
a(8) 当遇到a n 1 a n 1 d 或亠 q 时,分奇数项偶数项讨论,结果可an 1能是分段形式。
数列求和的常用方法:(1) 公式法:①等差数列求和公式;②等比数列求和公式。
(2) 分组求和法:在直接运用公式法求和有困难时, 常将“和式”中“同类项” 先合并在一起,再运用公式法求和。
3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与 组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是2等差数列前n 和公式的推导方法)•(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的1 1n 2时,一a 12 a 2 ••…2 2 112 得:右 a . 2 •- a n2n ①111;②11(11 )n(n 1) nn 1 n(n k) k 'n n k 丿1 1 1 11 ③ F k 21 12 (k 1k 7 1 1 1 1 1 11 ;k k 1 (k 1)k k 2(k 1)k k 1 ; k通项相乘构成,那么常选用错位相减法(这也是等比数列前 n 和公式的推导方 法). (5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂 后相关联,那么常选用裂项相消法求和 .常用裂项形式有:⑤•- a n14 (n 1)n 12 (n 2)④— n(n 1)(n 2) 1)1(n 1)(n 2) n (n 1)! 丄 1 n! (n1)![练习]5数列 a n 满足 S n S n 1 - a n 1,a 1 4,求 a n3 ⑥2(、百 ,n ) 20 n一百)(注意到a n 1 S n 1 S n 代入得:Sn 14S n、解题方法:求数列通项公式的常用方法:1、 公式法2、 由S n 求a n (n 1 时,a 1 S 1? n 2时,a n S n S n 1)3、求差(商)法 女口: a n 满足丄a r -2 a 2 2 22 2n 5 1解:n 1 时,一a 12 1 5,二 a 114n 2时,a n SnSn 13n 1・44、叠乘法例如:数列 a n中, a 13,an 1n ,求a na nn 1 解:a2 • a3••…a n1 2n 1. a n 1 5 * * a 2an 12 3n a 1 n又a 13,二 a n3n5、等差型递推公式又S 1 4,二S n 是等比数列,S n 4n由a n a n 1 f (n ), a i a °,求,用迭加法•- a nn 2时,a 2 a i f(2)a 1a 3a ?f(3)两边相加,得:•- a na1c n 1a n a n 1 f(n) [练习]a n a i f (2) f (3)……f(n ) 数列 a n 满足a 1 9, 3a n 1 a n 4, 求a n••• a n a 0 f (2) f (3)……f(n ) [练习] 数列 a n ,a i 1,a n 3n 1 a “ i n 2,求a “ (a n — 3 1 )26、等比型递推公式 a n ca n 1 d c 、d 为常数,c 0, c 1,d 0 可转化为等比数列,设 a n x c a n 1 x (a n1)7、倒数法例如:a 1由已知得:a n 1a n ca n 1令(c 1)x d ,「. xa n1,an2a n a n 求a na n 1 a n 22a na na n — 是首项为a 1c 1c 为公比的等比数列a n1 a n 2为等差数列,1,公差为2 .数列求和问题的方法(1)、应用公式法等差、等比数列可直接利用等差、等比数列的前下公式对求和来说是有益的。