表观遗传学
表观遗传学(共20张PPT)
• 近几年来RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科 学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔 除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及 恶性肿瘤的基因治疗领域。
表观遗传学 EPIGENETICS
什么是表观遗传学?
表观遗传学是研究除DNA序列 变化外的其他机制引起的细胞表 型和基因表达的可遗传的改变。 表观遗传学调控真核基因表达, 与人类重大疾病,如肿瘤、神经 退行性疾病、自身免疫性疾病等 密切相关。
举两个例子~
在胚胎发育过程中,果蝇存在很多体节。对 Hox 基因来 说,在有些体节中表达,有些中不表达。一开始,这种表 达或不表达经不在了,由原来不 表达(Hox 基因)的细胞衍生的后代呢,这些基因仍然不 表达;表达那些 Hox 基因的细胞衍生的细胞,仍然表达。
• 最常见的DNA甲基化形式是将甲基加到胞嘧啶环的 5‘位置上,形成5’-甲基胞嘧啶。哺乳动物中大约有 5%的胞嘧啶被甲基化,而甲基化与否,基因的转录活 性相差了上百万倍。
• DNA甲基化的作用主要体现于抑制基因转录活性,而具 体的抑制机制还尚未明确
• MeCP1所结合的DNA序列常需要有10个以上的甲基化CpG, 这一蛋白广泛存在于许多组织。
工蜂和蜂王都由同种受精卵发育而来,如 果能吃到蜂王浆,就变成蜂后;吃不到就 变成工蜂。
与工蜂相比,蜂王的成熟期短平均在半
个月左右,而工蜂则需要二十天以上;
寿命长蜂王可以活几年,而工蜂则只有
几十天的寿命;有生殖能力蜂王每天可
蜂王
工蜂
以产下几百枚卵,而工蜂一般终生都不
表观遗传学
表观遗传学
❖ 经典遗传学以研究基因序列影响生物学功能为核心相比, ❖ 表观遗传学主要研究这些“表观遗传现象”的建立和维持
的机制。
多少年来,基因一直被认为是生物有机体一代代相传的一个 并且仅有的一个遗传载体。越来越多的生物学家发现了一 个被称为表观遗传的现象------生物有机体后天获得的非遗 传变异有时可以被遗传下去。有详细记录的100个关于代 间表观遗传的例子,提示非基因遗传要比科学家们以前想 象的多得多。
其他例子 Rats whose agouti gene is unmethylated (i.e., expressed) have a yellow-ish coat color and are
表观遗传学 (epigenetics)
3、遗传印记(迹)或基因印记(迹)
基因印迹是指二倍体细胞的一对基因(父本和母本) 只有一个可以表达,另一个因甲基化而沉默。 哺乳动物中相当数量的印迹基因与胎儿的生长发育 和胎盘的功能密切相关的。
4、染色质重塑
• 组成核小体的组蛋白可以被多种化学复合物所 修饰,如磷酸化、乙酰化和甲基化等,组蛋白 的这类结构修饰可使染色质的构型发生改变, 称为染色质构型重塑。 • X染色质出现与表观遗传修饰相关
4、神经精神疾病
精神分裂症和情绪障碍与DNMT基因相关。基因 高甲基化抑制脑组织中Reelin蛋白的表达,Reelin 蛋白是维持正常神经传递、大脑信息存储和突触可 塑性所必需的蛋白 。
小
结
• 掌握表观遗传学的概念 • 掌握表观遗传的主要现象
• 了解DNA甲基化与去甲基化、组蛋白乙酰 化和非乙酰化对基因的调控作用
表观遗的概念:是指DNA序列不发生变
化,但基因功能却发生了可遗传的改变。这种 改变是细胞内除了遗传信息以外的其他可遗传 物质发生的改变,且这种改变在发育和细胞增 殖过程中能稳定传递。
• 表观遗传(epigenetic inheritance)概 念:通过有丝分裂或减数分裂来传递非DNA序
列信息的现象。
二、表观遗传现象或表观遗传修 饰机制
1、DNA甲基化
DNA甲基化是指在DNA甲基转移酶(DNMTs)的作 用下,以S-腺苷甲硫氨酸(SAM)为甲基供体, 将甲基基团转移到胞嘧啶和鸟嘌呤(CpG)二核 苷酸的胞嘧啶。
DNMT1 SAM
胞嘧啶
5-甲基胞嘧啶
胞嘧啶甲基化反应
基因调控元件(如启动子)所含CpG岛中的5-mC会 阻碍转录因子复合体与DNA的结合.
DNA的去甲基化基因可重新激活。
表观遗传学
磷酸化-- 发生与 Ser 残基,一般与基因活化相关。
泛素化-- 一般是C端Lys修饰,启动基因表达。 SUMO(一种类泛素蛋白)化-- 可稳定异染色质。
其他修饰
非编码的RNA
无论DNA修饰还是组蛋白修饰,都是基因活性调节的中 间参与者;而真正诱导基因活性改变的最大可能者是功能 性非编码RNA。 非编码RNA在调节基因表达、基因转录、调整染色质结构 、表观遗传记忆、RNA选择性剪接以及蛋白质翻译中都发 挥重要的作用。 不仅如此,RNA在保护机体免受外来核酸的侵扰中也扮演 着重要的作用,被认为是最古老的免疫体系。
非编码的RNA
包括: siRNA miRNA
(以上两种是序列特异性转录后基因表达的调节因子)
siRNA
siRNA结构:21-23nt的双链结构,序列与靶mRNA有同 源性,双链两端各有2个突出非配对的3’碱基。
siRNA功能:是RNAi 作用的重要组分,是RNAi发生的中 介分子。内源性siRNA使细胞能够抵御转座子、转基因和 病毒的侵略。
1942年定义为生物学的分支,研究基因与决定表型的基 因产物之间的因果关系。 1975年,Hollidy R 对表观遗传学进行了较为准确的描述 。
表观遗传学的特点
可遗传的,即这类改变是通过有丝分裂或减数分裂,能在 细胞或个体世代内遗传
可逆性的基因表达调节
没有DNA序列的改变,或不能用DNA序列变化来解释
至核小体以外,会受到不同的化学修饰,这种修饰往往与
基因的表达调控密切相关。 被组蛋白覆盖的基因如果要表达,首先要改变组蛋白的修 饰状态,使其与DNA的结合由紧变松,这样靶基因才能与 转录复合物相互作用。因此,组蛋白是重要的染色体结构
维持单元和基因表达的负控制因子。
表观遗传学
表观遗传学Epigenetics1.达尔文“自然选择”:过度繁殖、生存竞争、遗传和变异、适者生存2.表观遗传学:没有DNA序列的变化,可发生生物体表现型的可遗传的改变。
表观遗传学是在以孟德尔式遗传为理论基石的经典遗传学和分子遗传学母体中孕育的、专门研究基因功能实现的一种特殊机制的遗传学分支学科。
表观遗传研究进一步促进了遗传学和基因组学的研究。
3.染色质DNA或蛋白质的各种修饰(染色质水平的基因表达调控)DNA修饰;组蛋白修饰;RNA干扰;基因组印迹;X染色体失活。
4.DNA甲基化(DNA methylation)甲基化位点:CpG中胞嘧啶第5位碳原子。
DNA甲基转移酶。
甲基来源:一碳单位;S-腺苷蛋氨酸;环境和饮食因素:叶酸、B121)基因组DNA CpG:70%~80%甲基化状态,CpG甲基化与基因组稳定性相关。
2)CpG岛:CpG双核苷酸局部聚集,形成GC含量较高、CpG双核苷酸相对集中的区域。
CpG岛CpG多为非甲基化状态;CpG岛CpG甲基化与基因表达抑制相关。
3)CpG岛分类:转录起始点附近的CpG岛(TSS–CGIs),正常组织是非甲基化的,肿瘤组织发生甲基化,与转录抑制相关。
转录起始点外的CpG岛(non-TSS CpG),正常组织:通常呈高度的甲基化。
肿瘤组织:甲基化程度降低,程度与患病程度相关。
4)CpG岛的分析:长度大于200 bp、GC含量大于50%、CpG含量与期望含量之比大于0.6的区域。
5)DNA甲基化转移酶DNMT:DNMT1:催化子链DNA半甲基化位点甲基化,维持复制过程中甲基化位点的遗传稳定性.DNMT3a和DNMT3b:催化从头甲基化,以非甲基化的DNA为模板,催化新的甲基化位点形成.6)甲基来源:S-腺苷蛋氨酸(胞嘧啶甲基化供体、蛋氨酸是必需氨基酸),一碳单位叶酸:参与一碳单位代谢,间接提供甲基。
补充S-腺苷蛋氨酸。
叶酸摄入不足时可导致DNA低甲基化。
7)DNA甲基化抑制基因转录的机制①直接抑制基因表达:启动子区CpG序列甲基化,影响转录激活因子与启动子识别结合。
表观遗传学的研究和应用
表观遗传学的研究和应用表观遗传学(epigenetics)指的是基因表达受影响的方式,并且这种影响是可逆转的。
表观遗传学是生态遗传学与发育生物学、生物化学和遗传学的结合,覆盖了一个复杂的、多层次的过程,包括高级生命体的分化发育、细胞信号与讯号传递以及对内外环境中化学、物理和机械刺激的反应。
表观遗传学的研究和应用有着广泛的领域,包括癌症、肥胖症、神经疾病等多种疾病治疗、食品安全以及植物种植等方面。
在本文中,我将探讨表观遗传学的研究和应用,以及它们对我们的生活和健康的影响。
一、表观遗传学理论的研究表观遗传学的研究在近年来得到了越来越多的关注。
科学家们发现表观遗传学对人类的健康和疾病的产生、发展和治疗中有关键的作用。
人们的基因组是由基因和非编码区域组成的,而表观遗传位点根据不同的生活经历、环境以及外在刺激的影响会发生变化,从而改变基因表达。
表观遗传位点在基因表达调控中发挥着关键的作用,而这种表观遗传位点的变化可以继承、槽位转移、可塑性或永久性。
表观遗传学对球形细胞的外形、大小和形态形成也起到了重大的影响。
二、表观遗传学的应用1. 它在生物医学中的应用表观遗传学在医学领域中应用广泛。
许多疾病的发生与基因的表达水平和DNA的甲基化有关。
例如,糖尿病、癌症、自闭症等疾病和衰老现象可以通过发掘表观遗传机制来研究。
同时,表观遗传学的响应也可作为恶性肿瘤和其他疾病的诊断和治疗的标志。
许多治疗方法都是通过改变表观遗传机制来开发。
例如,利用机械刺激改变细胞的表观遗传状态,以此激活一些潜在的治疗功能。
2. 它在植物学中的应用表观遗传学对植物生长和环境适应的影响同样重要。
表观遗传机制能够调节蛋白质的相互作用,并影响植物对外界环境的反应。
例如,干旱和高盐环境下,植物的DNA甲基化水平会发生变化,从而发挥出一些适应性特征。
表观遗传学的应用将有助于增强农作物的适应性,以缓解食品品质、生产和供应方面的问题。
三、表观遗传学对健康和生活的影响表观遗传学对于人类健康和生活有着深刻的影响。
表观遗传学(研究生课件)
染色质重塑的研究方法
• 研究染色质重塑的方法包括遗传学方法、生物化学方法以及显 微镜技术等。遗传学方法包括基因敲除和转基因技术等,可以 用于研究染色质重塑酶和组蛋白修饰酶的功能。生物化学方法 包括蛋白质纯化和结晶化技术、质谱分析和代谢组学技术等, 可以用于研究染色质重塑酶和组蛋白修饰酶的相互作用和生物 化学性质。显微镜技术则可以用于观察染色质结构和动态变化。
基因组学方法
通过基因组学技术,研究非编码RNA的基因组位置、 序列和结构等信息。
转录组学方法
通过转录组学技术,研究非编码RNA的表达水平和转 录本信息。
蛋白质组学方法
通过蛋白质组学技术,研究非编码RNA对蛋白质表达 和功能的影响。
05
表观遗传学与疾病
表观遗传学与肿瘤
肿瘤表观遗传学
研究肿瘤发生发展过程中表观遗传机 制的改变,包括DNA甲基化、组蛋白 修饰和非编码RNA等。
表观遗传学的研究内容
总结词
表观遗传学的研究内容包括表观遗传修饰的机制、表观遗传与疾病的关系以及表观遗传修饰的干预策 略。
详细描述
表观遗传学研究DNA甲基化、组蛋白修饰和非编码RNA调控等机制,探讨这些修饰如何影响基因表达 和细胞功能。同时,研究表观遗传学与各种疾病的关系,包括癌症、神经退行性疾病和代谢性疾病等 。此外,还研究如何通过干预表观遗传修饰来治疗疾病。
表观遗传学的重要性
总结词
表观遗传学在理解生物学过程、疾病机制和治疗策略方面具有重要意义。
详细描述ห้องสมุดไป่ตู้
表观遗传学在理解细胞分化、胚胎发育和衰老等生物学过程中发挥关键作用。同时,表观遗传学与许多疾病的发 生和发展密切相关,为疾病的诊断和治疗提供了新的视角。此外,表观遗传修饰的可逆性为疾病治疗提供了潜在 的干预策略,有助于开发新的治疗方法和药物。
2024年表观遗传学课件
表观遗传学课件一、引言表观遗传学是研究基因表达调控机制的一门学科,它涉及到基因序列不发生变化,但基因表达却发生了可遗传的改变。
这种调控机制对于生物体的生长发育、细胞分化、疾病发生等过程具有重要作用。
本文将对表观遗传学的基本概念、调控机制及其在疾病中的应用进行详细阐述。
二、表观遗传学的基本概念1.基因表达调控:基因表达调控是指生物体通过一系列机制,控制基因在特定时间和空间的表达水平。
基因表达调控是生物体生长发育、细胞分化、环境适应等生命现象的基础。
2.表观遗传修饰:表观遗传修饰是指在基因的DNA序列不发生改变的情况下,通过DNA甲基化、组蛋白修饰、染色质重塑等机制调控基因表达的过程。
3.表观遗传学的研究内容:表观遗传学主要研究基因表达调控的分子机制,包括DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA调控等。
三、表观遗传学的调控机制1.DNA甲基化:DNA甲基化是指在DNA甲基转移酶的催化下,将甲基基团转移至DNA分子的过程。
DNA甲基化通常发生在基因的启动子区域,抑制基因表达。
2.组蛋白修饰:组蛋白修饰是指在组蛋白分子上发生的一系列化学修饰,如乙酰化、磷酸化、甲基化等。
这些修饰可以改变组蛋白与DNA的结合状态,从而调控基因表达。
3.染色质重塑:染色质重塑是指染色质结构发生变化,使基因的表达状态发生改变的过程。
染色质重塑可以通过改变核小体结构、DNA甲基化、组蛋白修饰等方式实现。
4.非编码RNA调控:非编码RNA是指不具有编码蛋白质功能的RNA分子,包括miRNA、lncRNA、circRNA等。
这些RNA分子可以通过与mRNA结合、调控转录因子活性等方式调控基因表达。
四、表观遗传学在疾病中的应用1.癌症:表观遗传学在癌症研究中的应用主要涉及肿瘤发生、发展和治疗。
研究发现,癌细胞的表观遗传修饰模式发生改变,导致肿瘤相关基因的表达异常。
通过研究这些表观遗传修饰,可以为癌症的早期诊断、预后评估和治疗提供新靶点。
表观遗传学
CpG岛高甲基化(p16INK4a、p73和MGMT)、单乙酰化和组蛋白H4环丙烷形式的降低
CpG岛高甲基化(p16INK4a、p15INK4b、EXT1和ID4、E-eadherin)、组蛋白修饰易位(CBP、MOZ、MORF、MLL1、MLL3和 NSD1)
染色质重塑(remodeling)
染色质重塑是指染色质位置、结构的变化,主要包括紧缩的染 色质在核小体连接处发生松动造成染色质的解压缩,从而暴露了基 因转录启动子区中的顺式作用元件,为反式作用因子的结合提供了 可能。
染色质重塑复合物、组蛋白修饰酶的突变均与转录 调控、DNA甲基化、DNA重组、细胞周期、DNA复制 和修复的异常相关,这些异常可以引起生长发育畸形, 智力发育迟缓,甚至导致癌症。
表观遗传学补充了 / 中心法则 0忽略的两个问题, 即哪些因素决定了 基因的正常转录和翻译以及核酸并不是存储遗传信息的惟一载体。决定表 观遗传学过程的主要因素为 DNA修饰、组蛋白修饰以及非编码 RNA调控, 这 3个因素的相互关系以及它们如何共同来调节染色质结构还有待进一步 的研究。
原始性细胞
胚胎组织
CH
CH
3
3
CH
3
DNA
DNA
CH
3
CH
复制
3
酶
甲基 CH
3
转移
CH
3
酶
CH
3
甲基化抑制基因的 表达
DNA高甲基化:基因启动子区的CpG岛在正常状态下一 般是非甲基化的,当发生甲基化时,基因转录沉寂,使一 些重要基因如抑癌基因、DNA修复基因等丧失功能,从而 导致正常细胞的生长分化调控失常以及DNA损伤不能被及 时修复,这与多种肿瘤形成密切相关。
表观遗传学概论课件
03
表观遗传变异与疾病关系
肿瘤发生发展中表观遗传变异作用
DNA甲基化异常
抑癌基因高甲基化导致沉默,原癌基因低甲基化而活 化。
组蛋白修饰改变
组蛋白乙酰化、甲基化等修饰异常影响染色质结构和 基因表达。
非编码RNA调控
miRNA、lncRNA等通过调控靶基因表达参与肿瘤发 生发展。
神经系统疾病中表观遗传变异影响
脂肪代谢异常
表观遗传变异调控脂肪细胞分化和脂质代谢相 关基因表达,引发脂肪代谢异常。
糖尿病及其并发症
表观遗传变异在糖尿病及其并发症的发生发展中发挥重要作用。
其他类型疾病与表观遗传变异关系
自身免疫性疾病
表观遗传变异影响免疫细胞分化和功能,导 致自身免疫性疾病。
心血管疾病
表观遗传变异与高血压、动脉粥样硬化等心 血管疾病的发生发展有关。
表观遗传学特点
在不改变DNA序列的前提下,通 过DNA甲基化、组蛋白修饰等方 式调控基因表达。
表观遗传学与遗传学关系
表观遗传学与遗传学相互补充,共同揭示生物遗 传信息的传递和表达机制。
遗传学关注基因序列的遗传信息,而表观遗传学 关注基因表达的调控机制。
二者在生物发育、疾病发生发展等方面具有密切 联系。
组蛋白修饰
定义
组蛋白修饰是指对组蛋白 分子进行化学修饰的过程 ,包括乙酰化、甲基化、 磷酸化等。
机制
通过组蛋白修饰酶的催化 作用,对组蛋白的特定氨 基酸残基进行修饰,改变 组蛋白的电荷和构象。
功能
影响染色质的结构和功能 ,进而调控基因的表达。 与细胞分化、发育、记忆 等生物学过程密切相关。
非编码RNA调控
甲基化DNA免疫共沉淀技术
利用特异性抗体与甲基化DNA结合,通过免疫共 沉淀的方法富集甲基化DNA片段,再进行高通量 测序分析。
表观遗传学(epigenetics)
n. 均衡丟平静丟保持平衡的能力
2.染色质重构模型(Chromatin remodeling)
染色质重构模型主要涉及真 核生物基因的转录调控 真核生物的启动子可能出现 两种情况: (1)失活状态 核小体的存在 阻碍基本因子和RNA聚 合酶与启动子结合 (2)激活状态 基本转录装置 占据启动子,组蛋白八聚 体不能与其结合 在以上两种情况中染色体结 构是稳定的。
3.组蛋白修饰是关键 组蛋白的修饰 控制基因活性。
修饰发生在组蛋 白N-端末尾,特别是 H3和H4。 组蛋白N-端末尾 20个氨基酸组成, 其中有很多修饰位置
乙酰化 甲基化 磷酸化
在组蛋白修饰中 一般乙酰化与活性染色质相联系, 甲基化与失活染色质相联系
All the core histones can be acetylated. The major targets for acetylation are lysines in the N-terminal tails of histones H3 and H4. Acetylation occurs in two different circumstances: · during DNA replication; · and when genes are activated.
(1).甲基化:是指在DNA甲基化转移酶的作用下,将一个甲
基添加在DNA分子的碱基上: C
mC
5-甲基胞嘧啶是高诱导基因突变的自发突变位点,可以通 过自发脱氨,使CG TA,结果导致人类DNA的甲基化受体位点的 强烈抑制,因而造成基因沉默。 人类基因组70%的5-甲基胞嘧啶在CpG岛,但由于其发布散 在,所以CpG岛呈非甲基化。 CpG岛甲基化可直接导致相关基因的表观遗传学沉默。异常 CpG重新甲基化,被认为是人类癌症发生早期的一个特征。
表观遗传学
表观遗传学是与遗传学(genetic)相对应的概念。
遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。
所谓DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。
正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。
人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG 岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。
由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。
染色质重塑表观遗传学重塑依赖的染色质重塑与人类疾病染色质重塑复合物依靠水解A TP提供能量来完成染色质结构的改变,根据水解ATP的亚基不同,可将复合物分为SWI/SNF复合物、ISW复合物以及其它类型的复合物。
这些复合物及相关的蛋白均与转录的激活和抑制、DNA的甲基化、DNA修复以及细胞周期相关。
ATRX、ERCC6、SMARCAL1均编码与SWI/SNF复合物相关的ATP酶。
ATRX突变引起DNA甲基化异常导致数种遗传性的智力迟钝疾病如:X连锁α-地中海贫血综合征、Juberg-Marsidi综合征、Carpenter-Waziri综合征、Sutherland-Haan综合征和Smith-Fineman-Myers综合征,这些疾病与核小体重新定位的异常引起的基因表达抑制有关。
(2024年)表观遗传学完整版
表观遗传调控参与突触可塑性的形成和维持,影响学习记忆等认知 功能。
神经退行性疾病治疗
针对神经退行性疾病中的表观遗传调控异常,开发潜在的治疗策略 。
15
其他疾病中表观遗传影响
心血管疾病
表观遗传调控在心血管疾病如 动脉粥样硬化、高血压等的发
生发展中具有潜在作用。
2024/3/26
代谢性疾病
表观遗传变化与肥胖、糖尿病 等代谢性疾病的发生和发展密 切相关。
20
非编码RNA研究技术
2024/3/26
非编码RNA测序技术
通过对特定细胞或组织中的非编码RNA进行高通量测序,从而鉴定新的非编码RNA分子 并研究其表达模式和功能。
微小RNA(microRNA)靶基因预测和验证
利用生物信息学方法预测microRNA的靶基因,并通过实验手段验证其调控关系,从而揭 示microRNA在生物过程中的作用。
与疾病关联
非编码RNA异常表达与多种疾病相 关,如心血管疾病、代谢性疾病和 癌症等。
10
其他类型表观遗传变异
2024/3/26
染色质可及性
01
染色质结构的开放或关闭状态可以影响基因表达,这种变化可
以通过高通量测序技术进行检测和分析。
拷贝数变异
02
基因组中特定区域的拷贝数增加或减少也可以导致表观遗传变
DNA甲基化异常与多种疾 病的发生和发展密切相关 ,如癌症、神经退行性疾 病等。
8
组蛋白修饰与染色质重塑
组蛋白修饰类型
包括乙酰化、甲基化、磷 酸化等多种共价修饰方式 ,影响组蛋白与DNA的相 互作用。
2024/3/26
染色质重塑
通过改变核小体位置和组 蛋白修饰状态来调控染色 质结构和基因表达。
表观遗传学
所谓表观遗传就是不基于DNA差异的核酸遗传.即细胞 分裂过程中,DNA 序列不变的前提下,全基因组的基因 表达调控所决定的表型遗传,涉及染色质重编程、整体 的基因表达调控如隔离子,增强子,弱化子,DNA甲基化, 组蛋白修饰等功能 , 及基因型对表型的决定作用.
2023年/101/01月4 14日
Quiz, J. nature. 2006
表观遗传学机制
11
DDNNAA 甲甲基基化化
2
组蛋白修饰
3
染色质重塑
4
RNA 调 控
2023年/101/01月4 14日
20
一、DNA甲基化
DNA甲基化DNA methylation是研究得最清 楚、 也是最重要的表观遗传修饰形式,主要是基因 组 DNA上的胞嘧啶第5位碳原子和甲基间的共价 结 合 , 胞 嘧 啶 由 此 被 修 饰 为 5 甲 基 胞 嘧 啶 5methylcytosine,5mC.
❖ 由边界子所确定的染色质片断是基因组调节的基 本单位,其构成染色质的功能与或区室,这即是染色 质区室化.
2023/10/14
44
四、RNA调控
❖ 1995,RNAi现象首次在线虫中发现.
❖ 1998,RNAi概念的首次提出.
❖ 1999,RNAi作用机制模型的提出.在线虫、果蝇、 拟南芥及斑马鱼等多种生物内发现RNAi现象.
❖ 基因表达模式有表观遗传修饰决定.
2023/10/14
16
概述
❖表观遗传学的研究内容:
基因选择性转录表达 的调控
DNA甲基化 基因印记 组蛋白共价修饰 染色质重塑
基因转录后的调控
基因组中非编码RNA 微小RNAmiRNA 反义RNA 内含子、核糖开关等
表观遗传学简介
表观遗传学的重要性
表观遗传学在生物医学领域具有重要意义,因为它可以通过影响基因的 表达来影响生物体的表型,进而影响生物体的发育、疾病和进化等方面。
表观遗传学在生物医学领域的应用包括疾病诊断、药物研发和个性化医 疗等方面。例如,通过研究癌症的表观遗传学特征,可以开发出针对特 定癌症的个性化治疗方案。
去甲基化的意义
去甲基化在表观遗传学中具有重要意义,可以逆转甲基化引起的基因沉默,恢复基因的正 常表达。
组蛋白乙酰化与去乙酰化
组蛋白乙酰化
指组蛋白上的某些赖氨酸残基被乙酰 基修饰的过程。
组蛋白乙酰化的作用
组蛋白乙酰化可以调控基因的表达, 影响细胞的功能和发育。
组蛋白去乙酰化
指将乙酰基从组蛋白上移除的过程。
2
甲基化测序技术包括亚硫酸氢盐测序、酶解法、 质谱分析等,可对全基因组范围内的甲基化水平 进行高精度检测。
3
甲基化测序在研究肿瘤、发育生物学、神经科学 等领域具有重要应用价值,有助于深入了解表观 遗传学机制。
染色质免疫沉淀技术(ChIP)
ChIP是一种用于研究蛋白质与DNA相互作用的 实验技术。
通过ChIP实验,可以检测特定蛋白质与基因组 特定区域的结合情况,了解基因表达调控的机 制。
作用,共同调控基因的表达。
miRNA在表观遗传学中的作用
03
miRNA可以通过影响DNA甲基化和组蛋白修饰等表观遗传学过
程,调控基因的表达,影响细胞的功能和发育。
03
表观遗传学在生物体发育中的作用
胚胎发育过程中的表观遗传调控
基因表达的时空特异性
表观遗传学机制如DNA甲基化和组蛋 白修饰等,在胚胎发育过程中调控基 因的时空特异性表达,确保细胞分化 的正确进行。
表观遗传学
DNA的甲基化
5-甲基胞嘧啶 →
N6-甲基腺嘌呤→
7-甲基鸟嘌呤 →
DNA的甲基化
SAH, S-腺苷同型半胱氨酸; SAM, S-腺苷蛋氨酸
DNA的甲基化
DNA的甲基化
1.在全部的 CG 二核苷酸中,约 70%~80% 的胞嘧啶是呈甲基 化状态的,称为甲基化的 CpG 位点。 2.CpG岛:富含 CpG 区域,长度 300~3000bp,CpG 的含量可 以达到预计的平均值,甚至超过期望值的5倍以上。 非随机出现:超过 60% 的编码基因的 5’UTR区域(转录起 始区域)含有 CpG 岛。 CpG 的含量: (1)CG出现的期望值(百分比):1/16 = 6.25% (2)观察值:很少(小于1%) (3)原因:CG具有很高的突变率
五、表观遗传与胚胎发育
发育的早期与细胞分化相关的基因被暂时性的 表观沉默,维持细胞多分化潜能的基因表达;伴 随着发育的过程,与维持细胞多潜能性相关的基 因被表观沉默而分化相关的基因在特定的阶段表 达。这个动态的过程受到不同转录因子及表观遗 传因素共同的精细调控
Thank You!
组蛋白乙酰化修饰
组蛋白乙酰化与去乙酰化
组蛋白乙酰化修饰
中和赖氨酸的正电荷,C=O 具有一定的负电,能够 增加与 DNA 的斥力,使得 DNA 结构变得疏松,从而 导致基因的转录活化。
组蛋白乙酰化修饰
组蛋白去乙酰基酶家族分为3类(按蛋白质大小、 生活特性、催化结构域、亚细胞定位及活化方式): 1.HDAC1, HDAC2, HDAC3, HDAC8 (定位于细胞核) 2.HDAC4, HDAC5, HDAC6,HDAC7A, HDAC9, HDAC10 (能 够在细胞核与胞质间转运) 靠结合某些转录抑制因子发挥作用,如 Sin2、NCoR (核受体辅抑制因子)等。 3.Sir2(去乙酰化功能依赖NAD+,可被烟酰胺阻断)
表观遗传学
组蛋白修饰检测技术
染色质免疫沉淀技术
利用特异性抗体与组蛋白修饰结合,通过沉淀和洗脱步骤 富集特定修饰的组蛋白及其结合的DNA片段。
质谱分析技术
通过质谱仪对组蛋白修饰进行定性和定量分析,具有高灵 敏度和高分辨率的优点。
表观遗传学
目录
• 表观遗传学概述 • 表观遗传机制 • 表观遗传与基因表达调控 • 表观遗传在生物发育中作用 • 表观遗传在疾病发生发展中作用 • 表观遗传学技术应用与前景展望
01 表观遗传学概述
定义与发展历程
表观遗传学定义
研究基因表达或细胞表现型的变化, 这些变化在不改变基因序列的情况下, 可通过细胞分裂和增殖进行遗传。
03 表观遗传与基因 表达调控
基因转录水平调控
转录因子
通过与DNA特定序列结合,激活 或抑制基因转录。
染色质重塑
改变染色质结构,影响转录因子与 DNA的结合。
组蛋白修饰
通过乙酰化、甲基化等修饰,影响 基因转录活性。
mRNA稳定性及翻译水平调控
mRNA降解
通过特定酶降解mRNA,调节基因表达。
microRNA
利用特异性抗体或亲和层析等方法,分离和鉴定与非编码RNA结 合的蛋白质,揭示其调控机制。
未来发展趋势预测
多组学整合分析
将表观遗传学数据与基因组学、转录组学、蛋白质组学等多组学数据 进行整合分析,更全面地揭示生物过程的调控机制。
单细胞表观遗传学研究
利用单细胞测序等技术,研究单个细胞水平上的表观遗传学变异和动 态变化过程。
非编码RNA在发育、细胞分化、 代谢等过程中发挥重要作用,同 时也与疾病的发生和发展有关。
表观遗传学
Epigenetics, SXMU
Epigenetics comes of age
“The major problem, I think, is chromatin… you can inherit something beyond the DNA sequence. That’s where the real excitement of genetics is now” (Watson, 2003).
Epigenetics, SXMU
DNA甲基化的特点
不改变DNA的碱基配对特性
不改变DNA的编码属性
增加额外的信息
体细胞可遗传
Epigenetics, SXMU
DNA甲基化与肿瘤
1、DNA甲基化整体与局部的悖论
癌基因组整体甲基化水平降低 Global hypomethylation
1. 遗传的基本功能单位 2. 基因由DNA编码 3. 一个基因编码一条蛋白质 4. 基因序列的改变可能导致功能及表型的改变
基因型 (Genotype) -> 表型 (Phenotype)
Epigenetics, SXMU
获得性遗传( Inheritance of
acquired characteristics)
Epigenetics, SXMU
表观遗传(epigenetic inheritance): 通过有丝
分裂或减数分裂来传递非DNA序列信息的现象。
表观遗传学(epigenetics):则是研究不涉及
DNA序列改变的基因表达和调控的可遗传变化。
研究从基因演绎为表型的过程和机制的一门新兴
的遗传学分支。
2)靶向性DNA甲基化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尽管遗传学和表遗传学在许多方面存在着差异,但它们有
肿瘤发生中的表遗传因素
在基因组中除了DNA和RNA序列以外,还有许多调 控基因的信息,它们虽然本身不改变基因的序列,但 是可以通过基因修饰,蛋白质与蛋白质、DNA和其它 分子的相互作用,而影响和调节基因的功能和特性, 并且通过细胞分裂和增殖周期影响遗传。 表遗传学1939年由Waddington首先提出,目前认 为表遗传学是研究没有DNA序列变化,可遗传的基因 表达(活性)的改变。
3.免疫缺陷增加了肿瘤的发病率: 许多免疫缺陷疾患都有严重的或显著的免疫 抑制现象,从而增加了某些肿瘤的发病率。在 这类免疫缺陷疾患中,遗传因素通过影响致癌 因子的代谢,免疫反应的调节,干扰素的分泌 水平或对病毒感染的反应等诸方面去影响对癌 症的易感性。
4.单核苷酸多态与肿瘤易感性: 人类基因组计划研究结果证明,不同个体的 基因99.9%都是一样的,但在序列上有极小 (0.1%)的遗传差异,其中主要是单核苷酸 多态(SNP)。SNP是指特定的核苷酸突变在 人群中出现的频率大于或等于1%,存在于整 个基因组中,而小于1%称为种系突变 (germline mutation),多发生于编码区。
6.癌基因种系突变和抑癌基因种系突变: 通常情况下癌基因和抑癌基因处于动态平衡, 使细胞处于正常的发育生长和分化状态中,一 旦抑癌基因有遗传缺失,癌基因活性异常,细 胞过度生长则倾向肿瘤的发生。
肿瘤分子遗传学新进展
DNA水平的研究: 1. 定位克隆癌基因和抑癌基因 利用各种DNA多态性标记对癌基因或抑癌基因进 行染色体定位进而克隆该基因。 2. 比较基因组杂交(comparative genomic hybridization,CGH) 比较基因组杂交是将荧光素分别标记在去除了重复 序列的肿瘤及正常细胞基因组DNA上,然后分别与正 常染色体进行原位杂交,对该两种不同探针与各个染 色体杂交后的信号进行比较,以了解该肿瘤中细胞在 不同染色体上缺失或扩增的状态。
遗传易感性实际上是个体遗传变异对环境致癌 因素的敏感程度。遗传易感性是能够代代遗传 下去的。由于各种易感基因的功能不同构成了 不同的遗传因素,带有不同遗传因素的个体对 环境因子的易感性有所不同。有遗传易感性的 个体比不具有遗传易感性的个体,其肿瘤发病 率高10-100倍。
决定肿瘤遗传易感性的遗传因素
5.DNA修复缺陷和基因组不稳定性: 环境因素是肿瘤发生的始动因素,而个人的 遗传特征决定肿瘤的易感性。化学致癌物可以 致使细胞基因发生突变,但正常的细胞具有 DNA监控修复系统,保证细胞内基因的正确 修复和稳定。一旦这些修复系统有遗传缺陷, 则无法修复而导致突变的存在,所以DNA修 复能力缺陷或低下是化学致癌的重要机制之一。
3. 代表性差异分析(representional difference analysis,RDA) 可用于检测两种不同DNA群中所存在的序列上 的差异。
RNA水平的研究: 1.消减杂交(subtractive hybridization) 2.差异显示PCR (differential display PCR,DD-PCR) 3.cDNA代表性差异分析( cDNA-RDA ) 4.DNA芯片与探针微列阵
肿瘤的发生是一个多基因多途径的复杂多阶段 过程。 肿瘤的发生是遗传和环境因素相互作用的结果, 遗传决定了个体的遗传易感性,而环境因素决 定了什么样的易感个体患癌。
传统的由多途径多步骤的基因突变引起肿瘤 的观点日益受到挑战。约翰霍普金斯大学的研 究者认为,肿瘤最早的发生可能源自干细胞阶 段的表遗传学改变(epigenetic alterations)。
1.代谢酶系统: 体内致癌物代谢基因多态性与肿瘤易感性有 密切关系,如细胞色素P450酶、亚甲基四氢 叶酸还原酶(MTHFR)、丝氨酸羟甲基转移酶 (SHMT)等。
2.染色体不稳定、结构重排和癌基因的激活: 染色体的不稳定性使染色体易发生自发或诱 发的断裂与裂隙,染色体的脆性部位是一种随 机发生断裂的特殊点,预示着染色体的不稳定 性。在已定位的75个脆性位点中有16个是可 遗传的。脆性部位是肿瘤细胞染色体重排的易 感部位,是致癌因子敏感的位置,化学致癌原 及辐射照射都在脆性位点处使染色体断裂,染 色体缺失和重排也往往发生在这些脆性部位。
一些人类基因能继发的导致肿瘤发生,这些基 因遗传状态使某些组织发生生长调控异常,然 后这种组织再经历另一次突变而导致肿瘤发生。 如:神经纤维瘤、多发性结肠息肉症、甲状腺 髓样癌等。 有些罕见的隐性癌基因在纯合状态下导致染色 体不稳定性(如发生断裂等),致使宿主具有 肿瘤发生易感性。
肿瘤的遗传易感性
肿瘤发生中的遗传因素
遗传是指亲代将一种性状经遗传物质传递给下 一代的过程,是研究生物遗传和变异的科学。
变异指的是遗传变异;也就是一种性状受遗传 影响而产生变异的可能值范围。
现有的一些资料或证据不仅在细胞水平上 而且在群体及家系水平上支持肿瘤的发生与遗 传有关。
在人群中常可观察到一些癌家族或某种癌有家 族聚集特征,提示某种癌的显性遗传。 许多遗传性免疫缺陷的个体中肿瘤发生率明显 升高,可能与遗传因子有关。
领导此项研究的Andrew Feinberg教授说, 我们并非反驳肿瘤发生发展中发生了基因改变 的观点,但我们认为,表遗传学上亦发生了改 变而且来的更早些。Feinberg教授更提出了包 含表遗传学改变的肿瘤发生的三个过程,在传 统的二次打击理论之前加上了表遗传学改变这 一重要步骤。许多尚未发现基因突变的细胞却 往往有了肿瘤细胞的特性,而现在的研究发现 这些原代细胞经常带有表遗传学的改变。