高等数学 第七章
高等数学-第七章-微分方程

在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
高等数学第七章无穷级数.ppt

推论 (比较审敛法) 设
是两个正项级数,
且存在
对一切
有
则有
(1) 若强级数 收敛 , 则弱级数
(常数 k > 0 ), 也收敛 ;
(2) 若弱级数 发散 , 则强级数 也发散 .
例1.
讨论
p
级数1
1 2p
1 3p
1 np
(常数
p
>
0)
的敛散性.
解: 1) 若 p 1, 因为对一切
1 n
而调和级数
知存在 N Z , 当n N 时, un1 1
un
收敛 , 由比较审敛法可知 un 收敛.
(2) 当 1 或 时,必存在 N Z , uN 0,当n N
时
从而
un1 un un1 uN
因此
lim
n
un
uN
0,
所以级数发散.
说明: 当 lim un1 1 时,级数可能收敛也可能发散.
不存在 , 因此级数发散.
由定义, 讨论 级数敛散性的方法 1. 先求部分和; 2. 求部分和的极限.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
利用此结论,可以直接判别某此级数的敛散性。例如:
例如:
公比 q 1 ,
2
q 1,
n1
(1) n1 2n1
3.按基本性质.
第三节 正项级数
第七章
一、正项级数收敛的基本定理 二、比较审敛法 三、比值审敛法 四、根值审敛法
一、正项级数收敛的基本定理
若 un 0, 则称 un 为正项级数 . n1
分析特点:部分和序列 单调递增。
当
《高等数学》同济第六版 第7章答案

1 3
1 (5)此级数为等比级数且公比 q = − ,所以该级数收敛,且收敛于 3
(6)此级数为等比级数且公比 q =
1 1 1 − (− ) 3
=
3 ; 4
7 > 1, ,所以该级数发散。. 6
6.将循环小数 0.25252525 " 写成无穷级数形式并用分数表示. 解: 0.25252525 " = 0.25 + 0.0025 + 0.000025 + "
∞ 1 1 1 (−1) n −1 = 1− + − +" = ∑ 3 5 7 n =1 2n − 1
级数
∞ ∞ 1 1 nπ (−1) 2 n −1 发散而级数 收敛,所以级数 条件收敛. sin ∑ ∑ ∑ 2 n =1 2n − 1 n =1 n n =1 2n − 1 ∞
(4) lim
n →∞
∑ (−1)
n+2 6n + 1
解: (1) lim
n →∞
∞ ∞ un 1 1 (2n − 1) 2 1 = lim = ,而级数 ∑ 2 收敛,所以级数 ∑ 收敛; 2 1 1 n →∞ 4 n =1 n n =1 (2n − 1) n2 n2
从而级数
∑ (−1)
n =1
∞
n −1
1 绝对收敛; (2n − 1) 2
2n + 2 (1) ∑ 2n n =1
∞
n! (2) ∑ n n =1 3
∞
(3)
∑n
n =1
∞
3
sin
π
2n
2n ⋅ n ! (4) ∑ nn n =1
∞
2n + 4 ∞ n +1 2n + 2 a n +1 1 解: (1) lim = lim 2 = < 1 ,所以级数 收敛; n →∞ 2n + 2 n→∞ a 2 2n n n =1 2n
高等数学-第七章-微分方程

制动时
常微分方程
偏微分方程
含未知函数及其导数的方程叫做微分方程 .
方程中所含未知函数导数的最高阶数叫做微分方程
(本章内容)
( n 阶显式微分方程)
微分方程的基本概念
一般地 , n 阶常微分方程的形式是
的阶.
分类
或
— 使方程成为恒等式的函数.
通解
— 解中所含独立的任意常数的个数与方程
于是方程化为
(齐次方程)
顶到底的距离为 h ,
说明:
则将
这时旋转曲面方程为
若已知反射镜面的底面直径为 d ,
代入通解表达式得
一阶线性微分方程
第四节
一、一阶线性微分方程
*二、伯努利方程
第七章
一、一阶线性微分方程
一阶线性微分方程标准形式:
若 Q(x) 0,
若 Q(x) 0,
称为非齐次方程 .
第七章
一、齐次方程
形如
的方程叫做齐次方程 .
令
代入原方程得
两边积分, 得
积分后再用
代替 u,
便得原方程的通解.
解法:
分离变量:
例1. 解微分方程
解:
代入原方程得
分离变量
两边积分
得
故原方程的通解为
( 当 C = 0 时, y = 0 也是方程的解)
( C 为任意常数 )
此处
例2. 解微分方程
例4
例5
例6
思考与练习
求下列方程的通解 :
提示:
(1) 分离变量
(2) 方程变形为
作业
P 298 5(1); 6 P 304 1 (1) , (10); 2 (3), (4) ; 4 ; 6
《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p
4(3i 5 j 8k ) 3(2i 4 j 7k )
(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,
高等数学上册第七章课件.ppt

y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程
例
解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
高数第七章

高数第七章是学习高等数学的重要一环,该章节主要涉及到数列和级数,是数学基础中的重要内容。
在高数课程中,第七章可以说是学习难度较大的一章,需要学生掌握很多的基本概念和重要定理,同时需要进行大量的练习才能够熟练分析各种数列和级数的性质。
首先,我们来了解一下数列的基本概念。
数列就是按照一定规律排列起来的一系列数,这些数一般编号为n,n的取值范围为自然数集。
当我们知道了一个数列的规律,我们就能够计算这个数列的第n项,也就是利用通项公式计算,那么我们就能够得到任意项的值。
在数列中,有一种特殊的数列叫做等差数列。
等差数列是指一个数列中,相邻的两项之间的差值相等的数列。
这个相邻项之间的差值就叫做公差,用d表示。
我们可以通过两个已知项,或者已知项和项数的方法得到一个等差数列的通项公式,这个公式就是: an=a1+(n-1)d。
而等比数列则是指相邻两项的比值相等的数列,这个比值叫做公比,用q表示。
等比数列的通项公式为: an=a1*q^(n-1)。
熟悉了这些基本概念,我们就能够大致了解数列的性质和计算方法了。
接下来,我们来研究一下级数的概念和计算方法。
级数是指一个数列中各项之和,记作S。
如果一个数列收敛,那么我们就能够求出这个级数的和,如果这个数列发散,那么这个级数就没有和。
级数的重要性在于它解决了无穷大和无穷小的概念,从而把数学的范畴扩展到了无穷,进一步拓展了数学的思维。
在级数中,我们可以通过递推公式进行求解,也可以通过求和公式进行求解。
求和公式是一个级数的和的表达式,可以通过它快速的计算出一个级数的和。
序列的求和公式有很多,主要分为以下几种情况:等差数列求和公式:S=n*[a1+an]/2等比数列求和公式:S=a1*[1-q^n]/[1-q]调和级数求和公式:S=1+1/2+1/3+1/4+...+1/n=ln(n)+γ(其中γ是欧拉常数)随着数学领域的不断拓展和进步,数列和级数逐渐成为了很多工科和理科学科的重要研究内容。
(完整版)高等数学第七章向量

第七章 空间解析几何与向量代数§7.1 空间直角坐标系§7.2 向量及其加减法、向量与数的乘法一、判断题。
1. 点(-1,-2,-3)是在第八卦限。
( ) 2. 任何向量都有确定的方向。
( ) 3. 任二向量b a ,=.则a =b 同向。
( ) 4. 若二向量b a ,+,则b a ,同向。
( )5. 若二向量b a ,满足关系b a -=a +b,则b a ,反向。
( )6. 若ca b a +=+,则c b =( ) 7. 向量ba ,满足=,则ba ,同向。
( ) 二、填空题。
1. 点(2,1,-3)关于坐标原点对称的点是2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。
4. 设向量a 与b 有共同的始点,则与b a ,共面且平分a 与b 的夹角的向量为 5. 已知向量a 与b 方向相反,且||2||a b =,则b 由a 表示为b = 。
6.设b a ,有共同的始点,则以b a ,为邻边的平行四边形的两条对角线的向量分别为 。
三、选择题。
1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B )225)3(+-(C )22)3(4-+ (D )2254+ 2.已知梯形OABC 、CB //OA 且21a ,OC =b ,则AB = (A )21b a - (B )b a 21- (C )a b -21 (D )a b 21-3.设有非零向量b a ,,若a ⊥ b ,则必有(A+(B+-(C+<-(D+>-三、试证明以三点A(4,1,9)、B(10,-1,6)、C(2,4,3)为顶点的三角形为等腰直角三角形。
四、在yoz平面上求与三个已知点A(3,1,2)、B(4,-2,-2)、C(0,5,1)等距离的点D。
六、用向量方法证明:三角形两边中点的连线平行与第三边,且长度为第三边的一半。
高等数学第七章 向量代数与空间解析几何

第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
《高等数学》第7章空间向量与空间解析几何

d 2 M1M2 2
M1Q2QM 22
(△M1QM2 是直角三角形) M 1P2P2 Q Q2 M 2
z1 M1
P
(△M1PQ都是直角三角形)
x1
M 1 P 2P M 2 2Q2 M 2 x2
标式来表示向量M1M 2 与 2M1M2 .
2.已知 O A 4,1,5与O B 1,8,0,求向量AB
与 OAOB的坐标.
7.2 向量的数量积与向量积
掌握向量的数量积和向量积的定 义,能够灵活运用运算规律,并 熟训练使用判断向量平行或垂直 的条件.
7.2.1 向量的数量积
引例 设一物体在常力F 作用下沿直线从点M1移动 到点M2,以S 表示位移M1M 2,则力F 所做的功
C (2, 4, 7), 求 AB 的 C面积.
解:
根据向量积的定义,可
知 ABC 的面积为
S ABC
1 AB 2
AC sin A 1 AB AC . 2
由于 AB 2,2,2,AC 1,2,4,所以
i jk
AB AC 2 2 2 4 i 6 j 2 k
124
于是 S ABC
Oxyz ,点O 叫做坐标原点(或原点).
八封限
每两个坐标轴确定的平面称为坐标
平面,简称为坐标面.x 轴与y 轴所 确定的坐标面称为xOy面,类似地, 有yOz面,zOx面.
z
Ⅲ
Ⅱ
Ⅳ
Ⅰ
O
Ⅶx
Ⅴ
Ⅷ
Ⅵy
这些坐标面把空间分成八个部分,每一个部分称
为一个卦限.x、y、z 轴的正半轴的卦限称为第
《高等数学》第七章-数量积-向量积-混合积

首页
上页
返回
下页
结束
3. 运算律
(1) 交换律 (2) 结合律
b a
a ( b)
( a ) ( b) a ( b)
(ab)
(3) 分配律
(a b) c
Pr jc a Pr jc b Pr jc ( a b)
事实上, 当 c 0 时, 显然成立 ; 当c 0时
a b c c Pr jc a b c Prjc a Prjc b
c Pr jc a c Pr jc b a c b c
首页
上页
返回
下页
结束
例1. 证明三角形余弦定理
c2 a2 b2 2abcos
证: 如图 . 设
i j jk ki 0
a b axbx ayby azbz
两向量的夹角公式 当 为非零向量时, 由于
a b cos , 得
cos
axbx ayby azbz
ab
a
2 x
a
2 y
az2
bx2 by2 bz2
首页
上页Biblioteka 返回下页结束
例2. 已知三点 M (1,1,1), A( 2, 2,1), B( 2,1, 2), 求
叉积:
i jk ab ax ay az
bx by bz
首页
上页
返回
下页
结束
ax ay az
混合积: a b c ( a b ) c bx by bz
2. 向量关系:
cx cy cz
ab 0
bx by bz ax ay az
《高等数学》 第七章

C
;
第三步,求积分的通解: G( y) F(x) C .
其中 G( y) , F (x) 分别是 1 , f (x) 一个原函数. g ( y)
第二节 一阶微分方程
例 1 求微分方程 dy y sin x 0 的通解. dx
解 将方程分离变量,得到 dy sin xdx , y
两边积分,即得
(*)
例如,以上六个方程中,(1)、(2)、(5)、(6)是一阶常微分方程,(3)是二阶
常微分方程,(4)是二阶偏微分方程.
定义 3 如果微分方程中含的未知函数及其所有导数都是一次多项式,则称该方
程为线性方程,否则称为非线性方程.
一般说来,n 阶线性方程具有如下形状:
a0(x) y(n) a1(x) y(n1) an1(x) y an (x) y (x) .
第二节 一阶微分方程
例 3 求方程 dy y 1 的解. dx x 1
为方便起见,以后在解微分方程的过程中,如果积分后出现对数,理应都需作
类似下述的处理,其结果是一样的.以例 3 为例叙述如下:
分离变量后得
1 dy 1 dx , y 1 x 1
两边积分得
ln | y 1| ln | x 1| ln C ,
再分离变量,得 du 1 dx ; f (u) u x
第三步,两端分别积分后得
du f (u) u
ln | x | C1
.
求出积分后,再用 y 代替 u ,便可得到方程关于 x 的通解. x
第二节 一阶微分方程
例 4 求微分方程 xy y(1 ln y ln x) 的通解.
解
将方程化为齐次方程的形式
dy dx
y x
1
高等数学-第七章--定积分的应用

第七章 定积分的应用一、本章提要1. 基本概念微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数. 2. 基本公式 平面曲线弧微元分式. 3. 基本方法(1) 用定积分的微元法求平面图形的面积, (2) 求平行截面面积已知的立体的体积, (3) 求曲线的弧长, (4) 求变力所作的功, (5) 求液体的侧压力, (6) 求转动惯量,(7) 求连续函数f (x )在[]b a ,区间上的平均值, (8) 求平面薄片的质心,也称重心.二、要点解析问题1 什么样的量可以考虑用定积分求解?应用微元法解决这些问题的具体步骤如何?解析 具有可加性的几何量或物理量可以考虑用定分求解,即所求量Q 必须满足条件:〔1〕Q 与变量x 和x 的变化区间[]b a ,以及定义在该区间上某一函数f (x )有关;〔2〕Q 在[]b a ,上具有可加性,微元法是“从分割取近似,求和取极限”的定积分基本思想方法中概括出来的,具体步骤如下:〔1〕选变量定区间:根据实际问题的具体情况先作草图,然后选取适当的坐标系及适当的变量〔如x 〕,并确定积分变量的变化区间[]b a ,;〔2〕取近似找微分:在[]b a ,内任取一代表性区间[]x x x d ,+,当x d 很小时运用“以 直代曲,以不变代变”的辩证思想,获取微元表达式d =()d Q f x x ≈Q ∆〔Q ∆为量Q 在小区间[]x x x d ,+上所分布的部分量的近似值〕;〔3〕对微元进行积分得 =d ()d b baaQ Q f x x =⎰⎰.下面举例说明.例1 用定积分求半径为R 的圆的面积.解一 选取如下列图的坐标系,取x 为积分变量,其变化区间为[]R R ,-,分割区间[]R R ,-成假设干个小区间,其代表性小区间[]x x x d ,+所对应的面积微元x x R x x R x R A d 2d ))((d 222222-=----=,于是⎰⎰---==RRR Rx x R A A d 2d 22=2πR .解二 选取如下列图的坐标系,取θ 为积分变量,其变化区间为[]π2,0.分割区间[]π2,0成假设干个小区间,其代表性小区间[]θθθd ,+所对应的面积微元θd 21d 2R A =,于是22π202π20ππ221d 21d R R R A A =⋅===⎰⎰θ.解三 选取r 为积分变量, 其变化区间为[]R ,0,如图,分割[]R ,0成假设干个小区间,其代表性小区间[]r r r d ,+所对应的面积微元r r A d π2d =,于是202π2π2d π2R r r r A RR =⋅==⎰.问题2 如何理解连续函数f (x ) 在闭区间[]b a ,上的平均值⎰-=b a x x f ab u d )(1是有限个数的算术平均值的推广.解析 首先,我们知道几个数 y y y n 12,,,⋅⋅⋅的算术平均值为y y y y n n y n k k n=++⋅⋅⋅+==∑()/1211,对于函数)(x f ,我们把区间[]b a , n 等分,设分点为a =x x x b n 01<<⋅⋅⋅<=.区间的长度(1,2,,)i b ax i n n-∆==⋅⋅⋅,各分点i x 所对应的函数值为12(),(),f x f x ,⋅⋅⋅()n f x ,其算术平均值 ∑=ni i x f n 1)(1可近似地表达函数)(x f 在[]b a ,上取得一切值的平均值.显然,n 越大,分点越多,这个平均值就越接近函数)(x f 在[]b a ,上取得一切值的平均值. 因此,称极限lim n →∞11n f x i i n()=∑为函数)(x f 在闭区间[]b a ,上的平均值,记为[]b a y ,.下面用定积分表示函数)(x f 在[]b a ,上的平均值[]b a y ,.在定积分定义中,假设取ξi i x =,∆x b ani =-,则∑∑⎰=∞→=→-=∆=ni i n n i i i b anab x f x f x x f 11)(lim )(lim d )(ξλ, 这里{}12max ,,,n b ax x x nλ-=∆∆∆=. 因此n ab x f a b x f n ni i n n i i n --=∑∑=∞→=∞→11)(lim 1)(1lim11lim ()ni i n i f x x b a →∞==∆-∑ ⎰-=b a x x f ab d )(1, 即 ⎰-=b a b a x x f ab y d )(1],[. 在生产实践和科学研究中,有许多连续量的平均值需要计算,如平均电流强度、平均电压、平均功率等等.例2 求从0到T 这段时间内自由落体运动的平均速度. 解 因为自由落体运动的速度gt v =,所以2001111d 022TT v gt t gt gT T T ⎛⎫===⎪-⎝⎭⎰. 三、例题精解例3 求纯电阻电路中正弦电流 t I t i m ωsin )(=在一个周期上的平均功率〔其中mI 及ω均为常数〕.解 设电阻为R 〔R 为常数〕,则电路中的电压t RI iR u m ωsin ==,而功率 2)sin (t I R iu p m ω==,因此p 在2π0,ω⎡⎤⎢⎥⎣⎦上的平均功率〔功率的平均值〕2π2π2222π0011cos 2sin d d 02π2m m RI tp R t t t I ωωωωωω-==-⎰⎰2π22011(1cos )d()()4π22m mm m m m I R t t I R I U U I R ωωω=-===⎰,这说明纯电阻电路中正弦电流的平均功率等于电流、电压的峰值之积的一半.对一般的周期为T 的交变电流)(t i ,它在R 上消耗的功率为R t i t i t u p )()()(2==,在[]T ,0上的平均功率为Tt R t i p T ⎰=2d )(.通常交流电器上标明的功率就是平均功率.例4 当交变电流)(t i 在其一个周期内在负载电阻R 上消耗的平均功率等于取固定值电流I 的直流电在R 上消耗的功率时,称I 为)(t i 的有效值,即电流)(t i 的有效值为I ,试求)(t i 的有效值.解 固定值为I 的电流在电阻R 上消耗的功率为2I R .对于交变电流)(t i 在其一个周期内在负载电阻R 上消耗的平均功率为 ⎰⎰==T T t t i T R t R t i T p 0202d )(d )(1, 于是 ⎰=T t t i TR R I 022d )(, 得 ⎰=T t t i TI 02d )(1为交变电流)(t i 的有效值.通常在交流电的电器上所标明的电流即为交变电流的有效值.一般地,把⎰-b a t t f ab d )(12称为连续函数)(x f 在[]b a ,上的均方根.因此,周期性电流)(t i 的有效值就是它的一个周期上的均方根.例5 由力学知道,位于平面上点),(i i y x 处的质量为),,2,1(n i m i ⋅⋅⋅=的几个质点所构成的质点系的质心〔也叫质点系的重心〕坐标),(y x 计算公式为mM x y =,mM y x=, 其中∑==ni imm 1(质点系中全部质点的质量之和),∑==ni ii y x m M 1〔质点系中,各质点关于y轴的静力矩m i x i 之和m xiii n=∑1,称其为质点系对y 轴的静力矩〕,∑==ni i i x y m M 1〔质点系对x 轴的静力矩〕.由此可见,质点系m i 〔 i n =⋅⋅⋅12,,,〕的质心坐标〔x y ,〕满足:质量为m mii n==∑1,坐标为〔x y ,〕的质点M 关于y 轴和x 轴的静力矩分别与质点系关于y 轴和x 轴的静力矩相等.按上述关于质点系之质心的概念,用定积分的微元法讨论均匀薄片的质心. 解 设均匀薄片由曲线)()((x f x f y =≥)0,直线x =a ,x =b 及x 轴所围成,其面密度μ为常数,其质心坐标〔x y ,〕.为研究该薄片的质心,首先要将该薄片分成假设干个小部分,每一小部分近似看成一个质点,于是该薄片就可近似看成质点系.具体做法如下:将[]b a ,区间分成假设干个小区间,代表性小区间[]x x x d ,+所对应的窄长条薄片的质量微元 x x f x y m d )(d d μμ==,由于d x 很小,这小窄条的质量可近似看作均匀分布在窄条的左面一条边上,由于质量是均匀分布的,故该窄条薄片又可看作质量集中在点⎪⎭⎫⎝⎛)(21,x f x 处且质量为d m 的质点,所以这窄条薄片关于x 轴及y 轴的静力矩微元x M d 与y M d 分别为x x f x x f x f M x d )(21d )()(21d 2μμ==, x x f x M y d )(d μ=,把它们分别在[]b a ,上作定积分,便得到静力矩 x x f M b ax d )(22⎰=μ,⎰=bay x x xf M d )(μ,又因为均匀薄片的总质量 ⎰⎰==bab ax x f m m d )(d μ,所以该薄片的质心坐标为⎰⎰==b aba y xx f x x xf mM x d )(d )(, 21()d 2()d b a x baf x x M y mf x x==⎰⎰. 上面关于质心〔y x ,〕的计算公式适用于求均匀薄片的质心,有关非均匀薄片质心的计算将在二重积分应用中予以介绍.例6 求密度均匀,半径为R 的半圆形薄片的质心. 解 如下列图建立坐标系,上半圆周方程22x R y -=,由对称性知,质心在y 轴上,即0=x ,利用例5中的质心计算公式得32202112()d 423,13ππ2R R R x R x x R y R -⨯-===故所求质心为4(0,)3πR. 四. 练习题判断正误(1) 由x 轴,y 轴及2)1(-=x y 所围平面图形的面积为定积分x x d )1(12⎰-;〔√ 〕解析 x 轴、y 轴及2)1(-=x y 所围成的曲边三角形位于x 轴的上方,由定积分的几何意义可知,其面积正是x x d )1(12⎰-.〔2〕闭区间[]b a ,上的连续函数)(x f 在该区间上的平均值为f x b a()- ; 〔 × 〕解析 由定积分中值定理可知,闭区间],[b a 上的连续函数)(x f 在该区间上的平均值为1()d b af x x b a -⎰.〔3〕由曲边梯形D :a ≤x ≤b ,0≤y ≤)(x f 绕x 轴旋转一周所产生的旋转体的体积 2π()d b aV f x x =⎰; 〔 √ 〕解析 如图,对任意的],[b a x ∈,旋转体的截面积)(x A =2π()f x .由平行截面物体的2)1体积得 V =()d b aA x x ⎰=2π()d b af x x ⎰.〔4〕假设变量y 关于x 的变化率为23x ,则 3x y =. 〔 × 〕解析 y 关于x 的变化率为23x ,则2d 3d yx x=,积分得 y =23d x x ⎰=3x C +.2.填空题(1) 设一平面曲线方程为)(x f y =,其中)(x f 在[]b a ,上具有一阶连续导数,则此曲线对应于a x =到b x =的弧长L=ax ⎰;假设曲线的参数方程为{(),(),x x t y y t ==〔a ≤t ≤β〕,)(),(t y t x 在[]αβ,上有连续导数,则此曲线弧长L=t βα⎰ ;(2) 设一平面图形由b x a x x g y x f y ====,),(),(所围成))()((x f x g >,其中)(x f ,)(x g 在[]b a ,上连续,则该平面图形的面积S =[()()]d b ag x f x x -⎰;解 如图,因为)()(x f x g >, 取x 为积分变量,于是得 d [()()]d A g x f x x =-,故平面图形的面积 A =[()()]d b ag x f x x -⎰.(3) 周期为T 的矩形脉冲电流 {,0(),(0)0,a t c i t a c t T≤≤=><≤的有效值为 Tca; 解)(x f 在],[b a 上的均方根.周期性电流)(t i 的有效值就是它的一个周期上的均方根, 则2()d T i t t ⎰=20d c a t ⎰+0d Tct ⎰=c a 2,所以此脉冲电流的有效值 ITca 2=T c a .(4) 假设某产品的总产量的变化率为210)(t t t f -=,那么t 从40=t 到81=t 这段时间内的总产量为3272. 解 设总产量为)(t Q , 则 )()(t f t Q ='=210t t -,积分得 Q =824(10)d t t t -⎰=8432)35(t t -=3272.3. 解答题〔1〕抛物线x y 22=把图形822=+y x 分成两部分,求这两部分面积之比; 解 曲线围成的区域如图中阴影部分.y联立方程 2222,8,y x x y ⎧=⎨+=⎩ ⇒ {2,2,x y ==或 {2,2,x y ==-得到两条曲线相交的交点为 〔2,2〕,〔2,2-〕.从而2S =222)d 2y y -⎰=2(2200d 2y y y -⎰⎰), 其中y⎰y t=π404)t t ⋅⎰=π2408cos d t t ⎰=π404(1cos 2)d t t +⎰=π40π2sin 2t +=2+π,220d 2y y ⎰=20361y =34, 所以 2S =2〔2+4π3-〕=2π+34, 而1S +2S =2π=8π,于是 =1S 48π(2π)3-+=46π3-, 所以,两部分面积比为 1S :2S =〔9π-2〕:〔3π+2〕.〔2〕计算e xy -=与直线0=y 之间位于第一象限内的平面图形绕x 轴旋转一周所得的旋转体的体积;解 如图,当+∞→x 时,y =e0x-→,我们可以把未封闭的区域看作当+∞→x 时的闭区域,则其绕 x 轴旋转一周的体积V =2π()d f x x +∞⎰=20πe d x x +∞-⎰=20πe 2x-+∞-=π2, 所以,所得旋转体体积为π2. 〔3〕一密度均匀的薄片,其边界由抛物线ax y =2与直线a x =围成,求此薄片的质心坐标;解 如图,由对称性知,质心在x 轴上,即y =0,利用质心计算公式,有x =222()d d a a a a y ya y ya --⎰⎰=3252352a a a a ⋅⋅=a 53, 所以,薄片的质心坐标为(a 53,0).〔4〕半径为r m 的半球形水池灌满了水,要把池内的水全部抽出需作多少功; 解 如图,设水池的上边缘为y 轴,原点在半球形水池的圆心位置,x 轴竖直向下.球面方程为y =22x r -±,则水深x 处所对应的截面半径为22x r -,截面面积22()π()S x r x =-.将x 到d x x +这层水抽出需克服的重力为d G =d g V ρ=g ρ()d S x x =22π()d g r x x ρ-,因为 W =22π()d r g r x x ρ-⎰=222201π()d()2r g r x r x ρ---⎰=2221π()40r g r x ρ--=41π4g r ρ(J ),所以,把水全部抽出需做功41π4g r ρ(J ). 〔5〕一直径为6m 的半圆形闸门,铅直地浸入水内,其直径恰位于水外表〔水的密度为 103 kg/m 3 〕,求闸门一侧受到水的压力;解 如图,设水面为y 轴,原点在圆心位置,x 轴竖直向下.半圆形闸门的方程为922=+y x ,则x 到d x x +这层闸门的截面面积d ()S x =2x ,所受到的压强P =gx ρ,压力d F =d ()P S x =gxx ρ,闸门所受到的压力F =302x ρ⎰=20)g x ρ--⎰=30232)9(32x g --ρ=41.810g ⨯ (N ),所以,闸门的一侧受到水的压力为41.810g ⨯ (N ).〔6〕某石油公司经营的一块油田的边际收入和边际成本分别为 )/(31)(,)/()(3131年百万元年百万元tt C tq t R +='-=',求该油田的最正确经营时间,以及在经营终止时获得的总利润〔已知固定成本为4百万元,q 为实数〕; 解 由最大利润原理,令 )()(t C t R '=',则 313131t t q +=-,得 t =64)1(3-q ,总利润 L =3(1)640[()()]d 4q R t C t t -''--⎰=311(1)33640(13)d 4q q t t t -----⎰=31(1)3640(14)d 4q q t t ----⎰=[34(1)3640(1)3]4q q t t ----=4256)1(4--q 〔百万元〕, 所以,油田的最正确经营时间为 64)1(3-q 年,经营终止时获得的总利润为4256)1(4--q 百万元.〔7〕有一弹簧,用5N 的力可以把它拉长0. 01m ,求把它拉长0. 1m ,力所作的功; 解 已知 kx F =, 5)01.0(=F , 所以 k 01.05=, 即 500=k , x F 500=, 所以 W =0.10500d x x ⎰=2501.002x =2.5(J )所以,力所做的功为2.5(J ).〔8〕求心形线)cos 1(θ+=a r 〔a 为常数〕的全长. 解一 将极坐标转换为直角坐标,有{cos (1cos )cos ,sin (1cos )sin ,x r a y r a θθθθθθ==+==+于是 d [(sin )cos (1cos )(sin )]d x a a θθθθθ=-++-=[(sin sin 2)]d a θθθ-+,d [(sin )sin (1cos )cos ]d y a a θθθθθ=-++=[(cos cos 2)]d a θθθ+,弧长微元 d sθθθθ=2cosd 2a θ,所以,心形线的全长 s=θ=π08cos d 22a θθ⎰=π8sin2a θ=8a .解二 将极坐标转换为直角坐标,有{cos (1cos )cos ,sin (1cos )sin ,x r a y r a θθθθθθ==+==+ 则 d d d cos d sin d ,d d d sin d cos d ,x x x r r r r y y y r r r r θθθθθθθθθθ∂∂⎧=+=-⎪∂∂⎨∂∂⎪=+=+∂∂⎩弧长微元d sθ, 心形线的全长s=02⎰θ =2π02cos d 2a θθ⎰=π08sin2a θ=8a ,所以,心形线的全长为8a .。
高等数学教材第七章答案

高等数学教材第七章答案第七章:多元函数微分学1. 习题一答案:1.1 题目:求函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数$\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$。
解答:首先计算 $\frac{\partial z}{\partial x}$。
根据偏导数的定义,我们将 $y$ 视为常数,对 $z$ 对 $x$ 进行求偏导数:$$\frac{\partial z}{\partial x} = 6x^2 - 6y$$接下来计算 $\frac{\partial z}{\partial y}$。
同样,我们将 $x$ 视为常数,对 $z$ 对 $y$ 进行求偏导数:$$\frac{\partial z}{\partial y} = 6y - 6x$$所以,函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数为$\frac{\partial z}{\partial x} = 6x^2 - 6y$ 和 $\frac{\partial z}{\partial y} = 6y - 6x$。
1.2 题目:计算函数 $f(x, y) = x^3 + y^3$ 在点 $(1, 1)$ 处的全微分。
解答:根据全微分的定义,我们有:$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$首先计算 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$。
对 $f(x, y) = x^3 + y^3$ 分别对 $x$ 和 $y$ 求偏导数:$$\frac{\partial f}{\partial x} = 3x^2, \quad \frac{\partial f}{\partial y} =3y^2$$代入点 $(1, 1)$,得到 $\frac{\partial f}{\partial x} = 3$ 和$\frac{\partial f}{\partial y} = 3$。
高等数学第七章.ppt

规
划
a11x1+a12x2+…+a1nxn=b1
(1)
的
a21x1+a22x2+…+a2nxn=b2
(2)
标
准
……
型
am1x1+am2x2+…+amnxn=bm
(m)
x1 ,x2 ,…xn≥0
第三节 单纯形法
其简缩形式为
一
max Z c1x1 c2 x2 cn xn
线 性
n
aij x j bi
ZA=300 ZB=175 ZC=110 ZD=150
x2 15 A
3x1+x2=15
可行域
10
B
x1+x2=10
5
C
O
5
10
A(0,15) B(2.5,7.5) C(9,1) D (15,0)
x1+6x2=15
D
15
x1
10x1+20x2=0
第三节 单纯形法
单纯形方法是一种较为完善的、步骤 化的线性规划问题求解方法。它的原理涉 及到较多的数学理论上的推导和证明,我 们在此仅介绍这种方法的具体操作步骤及 每一步的经济上的含义。为更好地说明问 题,我们仍结合实例介绍这种方法
第
一
节
线
《经济大词典》定义线性规划:一种
性
具有确定目标,而实现目标的手段又有
规
一定限制,且目标和手段之间的函数关
划 模 型
系是线性的条件下,从所有可供选择的 方案中求解出最优方案的数学方法。
的
基
本
原
理
二、线性规划三要素
第
高等数学第7章 向量代数与空间解析几何

30
31
32
7.2.4 向量线性运算的坐标表示
33
34
35
36
7.2.5 向量数量积的坐标表达式 设有两个向量
37
38
39
40
41
42
43
44
习题7.2 A组 1.在空间直角坐标系中,指出下列各点在哪个卦 限.A(1,-2,3),B(2,3,-4),C(2,-3,-4), D( -2,-3,1)。 2.求点p( -3,2,-1)关于坐标面与坐标轴对称点 的坐标。 3.求点A( -4,3,5)在坐标面与坐标轴上的投影 点的坐标。
21
22
23
7.2 空间直角坐标系与向量的坐标表示
7.2.1 空间直角坐标系 在空间中任意选定一点O,过O点作三条相互垂直 且具有相同单位长度的数轴,分别称为x轴、y轴和z轴.x 轴、y轴和z轴要满足右手定则,即右手握住z轴,大拇 指指向z轴的正向,其余四个手指从x轴的正方向。
24
25
7.2.2 向量的坐标表示 设x轴、y轴、z轴正向的单位向量依次为i,j,k,如 图7.17所示。
第7章 向量代数与空间解析几何
空间解析几何是通过点与坐标的对应,把抽象的数 与空间的点统一起来,从而使得人们可以用代数的方法 研究几何问题,也可以用几何的方法解决代数问题.本章 首先介绍向量及其代数运算,然后以向量为工具研究空 间的直线与平面,最后讨论空间曲面与曲线的一般方程 和特点.
1
7.1 向量及其运算
12
13
(6)向量的数量积 1)数量积的概念在物理学中,如果物体受到恒力F 的作用,沿直线发生的位移s,设力F 与位移s的夹角为 θ,则力F对物体所做的功为 W =|F|·|s|·cosθ
高等数学第七章课件.ppt

a
(2) 三角形法则
b
向量的加法符合下列运算规律:
((12))交结换合律律::aa
b b
cb
(aa.
b)
c
a
a a
(b
b
c ).
多个向量相加,可以按照三角形法则.
负向量:大小相a 等但方向a相反的向量.
减法:a b a (b)
ab
b
a
ab
特例:a
(a)
0.
b
α φ1 = φ
=λ|α|cosφ
λα φ1=π- φ
=λPrjlα
λ<0
当λ<0时 φ1=π-φ
λα
Prj(λα)=|λ|.|α|cos(φ1) =-λ|α|(-cosφ)
λ >0 α
=λPrjlα; 当λ=0时
λα
φ1 = φ φ1=π- φ
Prj(λα)= 0 =λPrjlα;
λ<0
(二) 向量的坐标表示
单位向量:模长为1的向量. a0
或
M1 M 20
零向量:模长为0的向量. 0
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
a
向量平行 方向相反或者方向b 相同的向量a
a//b
零向量和任何向量都平行.
三、向量的线性运算
(一) 向量的加 减法
加法:a b c
(1) 平行四边形法则
b c
a
b
c
a
(b )
ab
(向(二((123量))))aa向与000,,,量实aaa与数与 与数aa0的2同 的反a乘向乘向法,积,|| 记aa作|||a||12,a规a||a定 | a是一个向量.
高等数学_第7章___常微分方程

第7章 微分方程一、本章提要1. 基本概念微分方程,常微分方程(未知函数为一元函数),偏微分方程(未知函数为多元函数),微分方程的阶数(填空题).齐次方程 :()dy y dxx ϕ=或者()dxxdy yϕ=(计算) 一阶线性微分方程:()()y P x y Q x '+=或者()()x P y x Q y '+=通解公式()d ()d ()e d e P x x P x x y Q x x C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 或者用常数变异法求解.(计算或者填空) 线性相关,线性无关(选择) 可降解(不显含x 或y )的(计算)齐次常系数线性微分方程:特征根法(填空)非齐次常系数线性微分方程:特接用待定系数法. (计算) 微分方程解的结构定理(选择或填空). 换元法也是求解微分方程的重要方法之一. 二、要点解析问题1 常微分方程有通用的解法吗?对本章的学习应特别注意些什么?解析 常微分方程没有通用的求解方法.每一种方法一般只适用于某类方程.在本章 我们只学习了常微分方程的几种常用方法.因此,学习本章时应特别注意每一种求解方法所适用的微分方程的类型.当然,有时一个方程可能有几种求解方法,在求解时,要选取最简单的那种方法以提高求解效率.要特别注意:并不是每一个微分方程都能求出其解析解,大多数方程只能求其数值解.例1 求微分方程 '+=y y 0 的通解.解一 因为 0y y '+= 所对应的特征方程为10r +=,特征根1r =-,所以e xy C -=(C 为任意常数)为所求通解.解二 因为0=+'y y ,所以)0(d d ≠-=y y xy ,分离变量x y y d d -=,两边积分⎰⎰-=x yy d d ,1ln ln y x C =-+, 所以exy C -= (C 为任意常数)三、例题精解例3 求''=y y 4满足初始条件01,2x x yy =='== 的特解.解一 令'=y p ,则d d d d d d d d p p y py pxy x y''==⋅=.将其代入原方程''=y y 4得 y yp p4d d =,分离变量 y y p p d 4d =, 两边积分⎰⎰=y y p p d 4d ,22111422p y C =⋅+, 2224p y C =+,因为001,2x x yp y =='===,所以222241C =⨯+,可得C 2=0.故224p y =,即 p y =±2.这里'=-y y 2 应舍去,因为此时'y 与y 异号,不能够满足初始条件.将2y y '=分离变量便得其解y =23exC +.再由y x ==01,得30C =,于是所求解为2e xy =.上面解法中,由于及时地利用初始条件确定出了任意常数C 1的值,使得后续步骤变得简单,这种技巧经常用到.解二 因为''=y y 4,所以40y y ''-=,特征方程 240r -=, 特征根 122,2r r =-=, 于是其通解为2212e e x x y C C -=+, 由初始条件可得C 1=0 ,C 2=1 ,所求特解为 2e x y =.例4 求方程''+=y y x sin 的通解.解一 该方程为二阶常系数非齐次线性方程,其对应的齐次方程为 ''+=y y 0, 特征方程为 210r +=, 特征根12i,=i r r =-,齐次方程的通解为12cos sin Y C x C x =+,由于方程0sin e sin y y x x ''+==,i i αβ+=(其中0,1αβ==) 恰是特征单根,故设特解为(c o s s i n y x a xb x *=+,代入原方程,可得1,02a b =-= 所以1cos 2y x x *=-,于是所求通解为y C x C x x x =+-1212c o ss i n c o s .上述解法一般表述为:若二阶线性常系数非齐次微分方程 ''+'+=y py qy f x ()中的非齐次项[]()e()c o s ()s i nxnh f x P x x P xx αββ=+,那么该微分方程的特解可设为[]e()c o s ()s i n kxp mm y x P x x Q xx αββ=+,其中(), ()m m P x Q x 均为 m 次待定多项式 {}m h n =m ax ,.如果非齐次项中的αβ,使i αβ±不是特征方程的根,则设0k =;如果i αβ±是特征方程的单根,则取1k =. 例5 求解微分方程x xe y y y 42=+'-''。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为 OM OM1 OM2 ,M M OM3 ,所以
OM OM1 OM2 OM3
图7-4
再由数乘向量的定义,知
பைடு நூலகம்于是有
OM1 a1i, OM2 a2 j, OM3 a3k
OM a1i a2 j a3k
可以看出上式中三个系数(a1,a2,a3)正好是点M的坐标, 点M的坐标叫做向量a的坐标,记作a={a1,a2, a3}.
向量a的坐标表示式有两种写法: a=a1i+a2j+a3k={a1,a2,a3}
三、 向量的模与方向余弦 向量已由它的坐标表示出来了,怎样用向量的坐标来表 示它的长度和方向呢?任给一个向量a={a1,a2,a3},从图 7-4可以看出它的长度是
于是
a OM OM1 2 OM2 2 OM3 2 a OM a12 a22 a32
(7-1)
即向量的模等于其坐标平方和的算术平方根. 例1 设a=2i-2j+k, 求|a|. 解 a 22 (2)2 12 9 3
下面讨论如何用坐标表示向量的方向. 设向量a与x轴、y 轴、z轴正向的夹角称为向量a的方向角,分别记为为α,β,γ, 显然0≤α,β, γ≤π. 当三个方向角确定后,向量的方向也就确 定了(图7-5).
图 7-1
图7-2
可见,在空间直角坐标系中,空间中的点与三个有序实 数是一一对应的. 显然,坐标原点的坐标为(0,0,0),x轴上 点的坐标为(x,0,0),yOz平面上的点为(0,y,z)等. 对于一 般的点,如(2,3,-1),可如图7-3确定其位置.
图7-3
二、 向量的坐标 我们在中学学习了平面向量的坐标表示与运算. 如果将平 面向量推广到空间中,即得空间向量的坐标表示与运算. 在空间直角坐标系中,以原点为始点,而终点分别为点 (1,0,0),(0,1,0),(0,0,1)的三个单位向量,相应地记 作i,j,k,称为该坐标系的基本单位向量. 对于任一向量a,把a的始点置于原点,设此时a的终点为 M(a1,a2,a3),即a=O→M, 如图7-4所示,根据向量加法
a
a
a
由此得
cos2α+cos2β+cos2γ=1
(7-2)
图7-5
因此,向量a0={cosα,cosβ,cosγ}是与a同方向的单位向量. 例2 设向量a={1,2,-3},求a的方向余弦及a0. 解 a的模为
所以
a 12 22 (3)2 14
cos 1 , cos 2 , cos 3
3a 9i 3j 12k a b 22 (3)2 (2)2 17
与平面上两点间的距离公式类似,同样可得空间中两点 间的距离公式.
已知两点M1(x1,y1,z1)、M2(x2,y2,z2),M1和M2间的距 离|M1M2|就是向量 M1M 2 的模,所以
M1M 2 (x2 x1 )2 ( y2 y1 )2 ( z2 z1 )2
第七章 向量代数与空间解析几何
7.1 空间直角坐标系与向量 7.2 向量的数量积与向量积 7.3 平面方程 7.4 空间直线方程 7.5 曲面与空间曲线
7.1 空间直角坐标系与向量
一、 空间直角坐标系 将平面直角坐标系所在的平面置于空间中,并过点O作 一垂直于此平面的数轴Oz(图7-1),这样Ox,Oy,Oz就构成一 空间直角坐标系. 点O仍称为坐标原点,Ox,Oy,Oz分别称 为x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称为坐标轴. 它们的 指向符合右手法则,即用右手握住z轴,四指由x轴正向转到y 轴正向时,大拇指的指向规定为z轴的正向. 三个坐标轴两两决定的三个平面xOy,yOz,zOx,称为 坐标平面. 三个坐标平面将空间分成八个部分,称为八个卦限.
向量a的方向角α,β,γ的余弦cosα,cosβ,cosγ称为a的 方向余弦. 由0≤α,β,γ≤π知,当方向余弦确定时,方向角也 被惟一确定,所以可以用方向余弦来表示向量的方向.
由图7-5可知,对于向量a=a1i+a2j+a3k,其方向余弦为
cos a1 , cos a2 , cos a3
设M是空间的任意一点,如图7-2所示. 从点M作xOy平面 的垂线与xOy平面交于点M′,M′称为点M在xOy面上的投影. 设M′在平面直角坐标系xOy中的坐标为(x,y), 再过点M作z 轴的垂直平面与z轴相交,设此交点在Oz轴上的坐标为z,这 样,点M惟一确定了三个有序实数(x,y,z). 反之,任给三个 有序实数(x,y,z),先以(x,y)为坐标在xOy平面上确定一点 M′,再过M′作xOy平面的垂直线段M′M,其长度为|z|,当z>0 时, M在xOy平面的上方;当z<0时,M在xOy平面的下方; 当z=0时,M即为M′. 这样,三个有序实数(x,y,z)惟一确定 了空间的一个点M,(x,y,z)称为点M的空间直角坐标.
14
14
14
a0 { 1 , 2 , 3 } 14 14 14
四、 向量的代数运算 与平面的向量代数运算类似,将平面的向量运算推广到 空间向量中,有如下结论. 设a=a1i+a2j+a3k,b=b1i+b2j+b3k, 则
a±b=(a1±b1)i+(a2±b2)j+(a3±b3)k λa=(λa1)i+(λa2)j+(λa3)k 由向量的数乘运算可知,向量a={a1,a2,a3}与向量b={b1, b2,b3}平行的充要条件是
a1 a2 a3 (当分母为零时,分子也是零) b1 b2 b2
例3 设a=3i+j-4k,b=-i-4j+2k,求a+b,a-b,-3a, |a+b|.
解 a b (3 1)i (1 4) j (4 2)k 2i 3j 2k
a b (3 1)i (1 4) j (4 2)k 4i 5j 6k
例4 设点A(1,-1,0),B(5,1,4),求|AB|. 解
AB (5 1)2 (11)2 (4 0)2 6
7.2 向量的数量积与向量积
一、 向量的数量积
在物理中,我们已经知道, 若力F作用在物体上,使其