标准人口构成及标化率计算
医学统计学-3-定性资料统计描述

解决办法
分层比较 率的标准化法 多元统计分析方法
相对数比较时应注意其可比性(二)
在同一地区不同时期资料的相对数比较时,还 应注意其条件有无变化。 例如,不同时期的发病率比较时,应注意不同 时期疾病的登记制度、诊断水平以及平均人口 数的变化。
5、样本率或构成比进行比较时应作假设检验 由于样本率或构成比是样本指标,同样存 在着抽样误差。 在实际工作中,不能根据样本率或构成比 等相对数的数值大小轻易作出结论,应进 行样本率或构成比差异比较的假设检验。
一、相对数的概念
Question:
通过调查得到某年甲地区的小学生中流脑 发病63例,乙地区的小学生中流脑发病35 例。能否认为甲地流脑的发病严重程度高 于乙地? 绝对数63例和35例表示甲地发病比乙地多 28例,能否说明两地发病的严重程度呢?
假设甲地有小学生50051人,乙地有小学生 14338人,求出两地的发病率: 甲地发病率: 63/50051=1.26‰ 乙地发病率: 35/14388=2.44‰ 乙地区的发病率是甲地区的两倍多。 以上两个发病率为通过绝对数求得的相对 数,用来表示事物出现的频率或强度,便 于比较。
分类资料的统计描述
用率、构成比和相对比等指标来对分类资 料进行统计描述。 由两个有联系的指标之比组成,统称为相 对数。 常用相对数包括率、构成比和相对比。
二、常用相对数
1、率(rate)
又称频率指标。 某现象实际发生数与可能发生总数之比。 说明某现象发生的频率与强度:
某时期内实际发生某现象的观察单位数 率= ×比例基数(K) 同时期可能发生该现象的观察单位总数
三、标准组的选择
标准组应选择有代表性的、较稳定的、来自数 量较大的人群的指标作为标准。
例如世界的、全国的、全省的、本地区的或本 单位历年累计的数据等;
流行病部分实验指导1

流行病学实习一疾病频率测量一、目的与要求掌握流行病学常用疾病频率测量指标的概念、应用条件和具体计算方法。
二、内容(一)发病率和患病率课题一某地1995年年初人口为2528人,1995~1998年某病三年间发病情况见图3-1,期间无死亡、迁走或拒绝检查者。
问题1:1995年1月1日、1996年1月1日、1997年1月1日患病率。
问题2:三年平均的年患病率。
问题3:三年期间患病率。
课题二 1998年某镇新诊断200名糖尿病人,该镇年初人口数为9500人,年末人口数为10500人,在年初该镇有800名糖尿病患者,在这一年中有40人死于糖尿病。
问题1:1998年该镇糖尿病的发病率。
问题2:1998年1月1日该镇糖尿病的患病率。
问题3:1998年该镇糖尿病的期间患病率。
(二)死亡率和病死率课题三某城市1998年1月1日至1998年12月31日采用抽样调查城市及郊区人口脑卒中死亡情况,共调查2018724人,其中城市为1050292人,郊区为968432人,资料见表3-1。
问题:请计算城市和郊区人群脑卒中、死亡率、病死率,将结果填入表中相应栏内,并进行比较。
(三)引入率、续发率和感染率课题四某地调查不同年龄人群与甲型肝炎引入率关系见表3-2。
(引自:上医等,流行病学,1981)问题:请计算引人率并进行分析。
课题五某防疫部门对城乡急性细菌性痢疾续发率进行了调查,对每个研究病例接诊后及时作家庭访视,并定期随访,对家庭密切接触者观察有无发病并留粪便做志贺菌分离,分析家庭中续发情况,资料见表3-3(引自:流行病学,连志浩主编,1994)问题:请计算城乡家庭急性细菌性痢疾续发率,填入表中并进行比较。
课题六为加强对HBV母婴传播的研究,作者对某单位孕妇HBV感染情况进行连续4年的监测,结果见表3-4、3-5。
表3-4 不同年份孕妇HBV标志物检出情况表3-5 不同年份孕妇HBV标志物阳性情况问题:请计算不同年份HBV感染(填入表3-4)及HBV不同标志的阳性率(填入表3-5)。
标准化率

重 合计
型
100
100
暴发型
… …
240
… …
48.0
300
100
… …
25
… …
25.0
500
500
225
45.0
流行病与卫生统计学系 王静 制作
45.0
25.0 45.0
暴发型
甲医院各型传染病治愈率均低于乙医院,但合计的传染病 治愈率甲医院却高于乙院,为什么?应该怎样做?
流行病与卫生统计学系 王静 制作
原因:两家医院该传染病病人的病情构成有差别 解决措施:(1)分层比较; (2)采用标准化法。 标准化法的基本思想:选定一个统一“标准” 构 成,然后按选定“标准”计算各组的标准化率, 使之具备可比性,以消除内部构成的影响。
甲医院的标准化率就是原来的48%,只需计算乙医 院的标准化率为53%,结论为:甲医院的某传染病 治愈率低于乙医院。
流行病与卫生统计学系 王静 制作
间接法的适用情况:仅了解各组的合计率,而某组 或某几组各层的率有缺失。
将两家医院各层治愈率换为统一标准(该标准必须 从大人群中获取),结合原有各组的各类型病情人 口构成,算出两家医院的标准化率。
流行病与卫生统计学系 王静 制作
率的标准化,标准的选择应该是:数量较大、稳 定、代表性好的人口。选用不同的标准,计算出 的标准化指标也不一样,但一般不会影响比较双 方的相对水平。 标准化率仅用于率的比较,反映的是相对水平, 不代表实际水平。 标准化率的计算方法:直接法、间接法
流行病与卫生统计学系 王静 制作
流行病与卫生统计学系 王静 制作
预防医学考研资料

19.85 12.65
20
总患病率=147/1162×100%=12.65%
5、相对数比较时应有可比性。
(1)观察对象是否同质:即除了观察因素外,影
响相对数大小的其他因素,应尽量相同,才属于同 质,才有可比性。如比较甲乙两种方法的治愈率时, 除了两种方法不同外,影响治愈率大小的因素有年 龄、病因、病型、病情严重程度等因素应尽量相同。 (2)观察对象内部构成是否相同,如不同,应进行 率的标准化。
这一定义是从防止死亡角度来考虑的。只 是原则之一。
如:某人患慢性支气管炎30年,肺气肿10
年,肺心病3年,心力衰竭死亡。
a、肺心病
3年
b、肺气肿
10年
c、慢性支气管炎 30年
整理课件
35
3、疾病统计指标
发病率:表示某时期内某一定人群中 新发生某病的频度。
发病率 同某期时平期均新人发口 病 1年 数例 K数
女性:136人 为54% 男性:116人 为46%
居住地不同缺铁性贫血患病率
居住地 住院总人数 缺铁贫血数 患病率(%)
河南平原 贵州山区
20611 31860
53 137
0.26 0.43
整理课件
18
3、不能用构成比的动态分析代替率的动态 分析。
表 某市1980年和1990年5种传染病情况
疾病
1980年
-
380
乙疗法
原治愈率
预期治 愈数
65.0 260
41.7 -
167 427
整理课件
42
按照上述公式计算标准化率:
p甲 ' 380800100%47.5% p乙 ' 427800100%53.4% 可以认为,乙疗法化的治标愈率高于甲疗法
计算标准化死亡率

两个比较指标可以是绝对数、相对数或平均数等
❖ 计算公式:
相对比
甲指标 乙指标
(或 100%)
常用相对比指标
• 对比指标 • 关系指标 • 计划完成指标
对比指标
❖ 定义:指两个同类事物某种指标的比,说明 一个 数为另一个数的几倍或百分之几,两指标 可是绝对数、相对数或平均数。
143000
574
38.5
401.4
60-
30250
242
16.2
800.0
------------------------------------------------------------------------------------------
合 计 1750250
1492
100.0
85.2
2.某县原计划对城区居民1500名易感人群接种乙肝疫苗,而实际 上之接种了1350人。计划完成指标=(1350÷1500) ×100%=90.5%,即完成了原计划的90.5%。
4.动态数列(dynamic series)
指一系列按时间顺序排列起来的统计指标(包 括绝对数、相对数和平均数),用以说明事物在时 间上的变化和发展趋势。常用的分析指标有:
2.标准化率的计算
第一步:选择方法
直接法或间接法
直接法的使用条件是已经有被观察的人群中各年龄组的患 病率(或发病率、死亡率等)资料。
若缺乏各年龄组的患病率资料,仅有各年龄组的观察单位 数和总的患病率,则选择间接法
计算公式
直接法
❖已知标准组年龄别人口数时
标准化率
预期病人数(死亡数) 标准组总人数
求甲乙两种疗法的标准化治愈率

原治愈率 期望治愈数
(pi) (5)
(Nipi) (6) = (2)(5)
400
60.0
240
65.0
260
400
35.0
140
41.7
167
800N( )
—
380∑Nipi
—
427∑Nipi
(2)用标准人口构成比计算
例5-5 仍对表5-4资料,求甲、乙两种疗法的标准化 治愈率。其步骤如下:
1)本例已知甲、乙两种疗法各病型的治愈率 pi, 宜采用直接法 。
人死于五种疾病的人数见表5-1。1990年因五 种疾病死亡的人数共190人,其中死于恶性 肿瘤者58人,恶性肿瘤死亡人数占五种疾病 死亡人数的构成比为58/190×100%=30.53% 。 同理可分别计算出1990年和1998年循环系统 疾病、呼吸系统疾病等死亡占五种疾病死亡 人数的构成比,结果见下表。
? p?? Ni pi
N
? 以年龄别人口构成比作标准时,
? p??
? ??
Ni N
? ??
pi
Ni为标准年龄别人口数, pi 为实际年龄别死亡率,
? N为标准人口总数, Ni pi 是期望死亡数。
r ? ni Pi 为标准化死亡比( standard mortality ratio ,SMR )。
标准总死亡率 P 与 SMR 的乘积即得间接法的标准化死亡率。
放环情况 放环人数 失败人数 失败人数比(%) 失败率(%)
(1)
(2)
(3)
(4)
(5)
人工流产后 255
78
61.9
30.6
月经后
87
39
31.0
44.8
自-卫生统计学复习题及参考答案

二、单项选择题:1.观察单位为研究中的( )。
A.样本B.全部对象 C .影响因素 D.个体 2.总体是由( )。
A.个体组成 B.研究对象组成 C .同质个体组成 D.研究指标组成 3.抽样的目的是( )。
A.研究样本统计量 B .由样本统计量推断总体参数 C.研究典型案例研究误差 D.研究总体统计量 4.参数是指( )。
A.参与个体数B.总体的统计指标C.样本的统计指标D.样本的总和 5.关于随机抽样,下列那一项说法是正确的( )。
A.抽样时应使得总体中的每一个个体都有同等的机会被抽取 B.研究者在抽样时应精心挑选个体,以使样本更能代表总体 C.随机抽样即随意抽取个体D .为确保样本具有更好的代表性,样本量应越大越好 6.各观察值均加(或减)同一数后( )。
A.均数不变,标准差改变B.均数改变,标准差不变C.两者均不变 D.两者均改变 7.比较身高和体重两组数据变异度大小宜采用( )。
A .变异系数 B.方差 C.极差 D.标准差 8.以下指标中( )可用来描述计量资料的离散程度。
( )A.算术均数 B.几何均数 C.中位数 D.标准差 9.血清学滴度资料最常用来表示其平均水平的指标是( )。
A.算术平均数 B.中位数 C.几何均数 D.平均数 10.两样本均数的比较,可用( )。
A.方差分析 B .t 检验 C.两者均可 D.方差齐性检验 11.配伍组设计的方差分析中,ν配伍等于( )。
A.ν总-ν误差 B.ν总-ν处理 C .ν总-ν处理+ν误差 D.ν总-ν处理-ν误差 12.在均数为μ,标准差为σ的正态总体中随机抽样,≥-||μX ()的概率为5%。
( )A.1.96σ B.1.96X σ C.0.052,t s ν D.0.052,X t S ν13.完全随机设计方差分析的检验假设是( )。
A.各处理组样本均数相等 B.各处理组总体均数相等C .各处理组样本均数不相等 D.各处理组总体均数不全相等14.已知男性的钩虫感染率高于女性。
标准化死亡率

标准化死亡率标准化死亡率是指经过一定统计方法处理后的死亡率,它可以消除不同人口结构带来的影响,使不同地区、不同年份的死亡率具有可比性。
标准化死亡率是衡量一个地区或一个国家死亡水平的重要指标,对于评估人口健康状况、制定公共卫生政策具有重要意义。
标准化死亡率的计算方法通常采用直接标准化和间接标准化两种方法。
直接标准化是指根据标准人口的死亡率和实际人口的年龄构成,计算出标准化死亡率。
而间接标准化则是通过间接标准化比率来计算标准化死亡率,间接标准化比率是实际死亡率与期望死亡率的比值。
两种方法各有优劣,需要根据具体情况选择合适的方法进行计算。
标准化死亡率的意义在于消除人口结构差异对死亡率的影响,使得不同地区、不同年份的死亡率具有可比性。
这样可以更准确地评估不同地区、不同年份的死亡水平,为公共卫生政策的制定提供科学依据。
同时,标准化死亡率还可以帮助人们更好地了解人口健康状况,及时发现人口健康问题,采取有效措施加以解决。
在实际应用中,标准化死亡率常常被用于比较不同地区、不同国家的死亡水平。
通过标准化死亡率的计算,可以发现不同地区、不同国家的死亡率差异,从而找出存在的问题并加以解决。
这对于改善人口健康状况,提高整体生活水平具有积极的意义。
总之,标准化死亡率是一项重要的统计指标,它可以消除人口结构差异对死亡率的影响,使得不同地区、不同年份的死亡率具有可比性。
通过标准化死亡率的计算,可以更准确地评估人口健康状况,为公共卫生政策的制定提供科学依据。
同时,标准化死亡率还可以帮助人们发现人口健康问题,及时采取有效措施加以解决。
因此,我们应该重视标准化死亡率这一重要指标,加强其在实际应用中的研究和运用,为改善人口健康状况、提高整体生活水平做出更大的贡献。
人口统计学中的死亡率计算方法

人口统计学中的死亡率计算方法人口统计学是研究人口数量、结构和变动的一门学科,其中包括了许多重要的指标和计算方法,其中之一便是死亡率的计算。
死亡率是一个国家或地区人口发展状况的重要指标之一,它反映了人口的健康状况以及医疗水平的高低。
本文将重点探讨人口统计学中的死亡率计算方法。
一. 简介人口统计学中的死亡率是指在一定时间内,特定年龄群体中死亡人数与该群体总人口之比。
它可以按照不同的方式进行计算,如粗死亡率、年龄特定死亡率和标化死亡率等。
二. 粗死亡率粗死亡率是最基本的死亡率指标,它反映了全年整体人口的死亡水平。
它的计算公式为:粗死亡率 = (年内死亡人口数 / 年末总人口数) × 1000其中,年内死亡人口数指特定年份内的死亡人口数量,年末总人口数指该年末的总人口数量。
通过计算粗死亡率,我们可以了解到一个地区在某一年内的总体死亡情况。
三. 年龄特定死亡率年龄特定死亡率是指在特定年龄组内,每年死亡人数与该年龄组总人口之比。
它的计算公式为:年龄特定死亡率 = (年内特定年龄组死亡人口数 / 特定年龄组年末总人口数) × 1000通过计算年龄特定死亡率,我们可以得知某一特定年龄组在一定时间内的死亡状况,从而了解该年龄段人口的健康状况,并为制定相关政策提供数据支持。
四. 标化死亡率标化死亡率是为了比较不同地区或不同时间段之间死亡率的差异而计算的一种死亡率指标。
它的计算公式为:标化死亡率 = (年内特定地区(或年份)死亡人口数 / 年内标准人口数) ×标准人口死亡率标化死亡率的计算需要引入一个标准人口,以便消除不同地区或不同时间段人口结构的影响。
通过计算标化死亡率,我们可以更准确地比较不同地区或不同时间段的死亡率水平,进一步了解人口发展状况的差异。
五. 总结人口统计学中的死亡率计算方法包括粗死亡率、年龄特定死亡率和标化死亡率等。
这些计算方法能够提供重要的人口健康信息,反映出不同年龄段和不同地区的死亡水平。
人口生育率计算公式

人口生育率计算公式人口生育率是指一个国家或地区特定时间段内平均每位育龄妇女生育的孩子数量。
它是衡量人口自然增长情况的重要指标之一,并与人口结构、社会经济发展等因素密切相关。
人口生育率的计算方法有多种,常见的有总和生育率(Total Fertility Rate,TFR)和标准化总和生育率(Standardized Total Fertility Rate,STFR)两种。
总和生育率(TFR)是指一个国家或地区特定时间段内平均每位育龄妇女生育的孩子数量。
其计算公式如下:TFR = Σ(CR * ASFR * 5),其中,TFR表示总和生育率,Σ表示求和,CR表示特定年龄组的女性生育比例(通常取特定年龄组的出生人口除以相应年龄组的总人口),ASFR表示特定年龄组的女性生育率(通常取特定年龄组的出生人口除以相应年龄组的女性人口),5表示年龄组跨度(通常取5岁)。
标准化总和生育率(STFR)是为了比较不同国家或地区的生育率而进行的标准化处理。
计算公式如下:STFR = Σ(CR * ASFR * P),其中,STFR表示标准化总和生育率,Σ表示求和,CR表示特定年龄组的女性生育比例,ASFR表示特定年龄组的女性生育率,P表示标准人口(通常取每个5岁年龄组的标准人口)。
标准人口是根据某个特定的人口结构标准而确定的,它的作用是消除由于不同人口结构导致的生育率比较的误差。
人口生育率的计算需要相应的数据支持,包括特定年龄组的女性人口、出生人口、标准人口等。
这些数据可以通过人口普查、统计年鉴、调查等途径获取。
为了确保数据的准确性和可比性,在计算人口生育率时,还需要注意以下几个问题:1. 选择适当的时间段:计算人口生育率需要选择一个特定的时间段,通常是一年。
选择合适的时间段可以更好地反映实际的生育情况。
2. 准确统计数据:需要确保特定年龄组的女性人口和出生人口数据的准确性,这需要对数据来源进行验证,并且避免重复计算。
流行病学 标准化法

的 肝癌死亡率高于甲县。
• 用直接法计算标化需有: 标准年龄别人口数或者标准人口年龄构成; 实际人口中年龄别死亡率。
• 标准人口应选择有代表性的、较稳定的、数量 较大的人群。如以全世界的、全国的、全省的 人口为标准人口,时间最好与被标化资料一致 或接近。
表1 甲、乙两县男性肝癌死亡率(1/10万)
年龄 组 (岁)
0-
30-
标准化法
用途:消除年龄构成的差别对死亡率的影响,用 标准化法计算调整死亡率。
中心思想:利用某一指定的标准人口构成,消除 不同地区在人口构成指标(年龄、性别等)方面 的差别,即计算按标准人口构成校正后的总率, 此率称为标准化率。常用的计算方法有直接法和 间接法。
直接法
• 直接法是利用标准人口构成和实际年龄别死亡 率计算求得死亡率。
50- 285.2 0.071 20.3 291.7 0.071 20.7
60- 323.9 0.043 13.9 333.3 0.043 14.3
70- 165.6 0.013 2.6 198.0 0.016
3.2
80- 214.3 0.003 0.6 400.0 0.003
1.2
合计 79.2 1.000 82.3 68.2 1.000 83.2
人口 (千) 323.6
56.8
甲县
人口构 死亡 成(%) 数
65.5
24
11.5
75
死亡 率
7.4
人口 364.5
乙县
人口构 死亡 成(%) 数
68.8 22
计算标准化率

15
三、率的标准化
(二) 标准化率的计算
把原率资料按影响因素的标准构成调整后算得的率, 称为标准化率(standerdized rate)亦称为调整率。
计算标准化率的步骤:
1.方法选择:直接法和间接法 2.标准选择:① 选取包含比较各组的大范围人口构成; ② 两组合并的人口构成; ③ 其中任一组的人口构成。
2.计算u值 u
0.3 0.26 1.713 0.3(1 0.3)
385
3.确定P值,判断结果
本例u=1.713<1.96,P>0.05,按=0.05的水准不拒绝
H0,差异无统计学意义。
39
四、两样本率比较的u检验
(二)两样本率的比较
条件:n1p1、n1(1-p1) 、n2p2、n2(1-p2)均大于5
5.41
4.39
44.14
医学统计学-分类变量的统计描述

高血压 172665
40
23.2
冠心病 172665
11
6.4
脑卒中 172665
253
146.5
风心病 172665
38
22.0
例:某医院部分科室院内感染情况
科室
调查 感染 感染 感染人数 病人数 人数 率% 构成比
呼吸内科 100 10
心血管内科 100 8
泌尿外科 40 6
胸外科
42 2
普外科
定基比发展速度: 环比发展速度 定基比增长速度 环比增长速度
相对比的应用:某事物不同时间的动态分析
表5-9 某医院1991-1993年门诊量动态分析
门诊 发展速度% 增长速度%
年份 人数 定基比 环比 定基比 环比
1991 1200
100
100
—
—
1992 1500
125
125
25
ቤተ መጻሕፍቲ ባይዱ25
1993 1600
无变化
样本率或构成比的比较应进行假设检验
第二节 标准化法
什么是标准化? 为什么要进行标(准)化?
内部结构不同的两组对象进行比较:例如A组病情严 重者多,B组病情较轻的多,但要比较两种不同方法的治 疗效果,结果会怎样?
表1 两种疗法疗效比较
旧疗法
治疗
分组
治疗 人数
痊愈 人数
治愈 率%
成人组 100
绝对数:即各分类事物的合计数,绝对数反映某事物 实际发生的规模大小。
相对数:是两个有联系的(数值)指标之比。
相对数的意义: 1.消除基数影响,便于事物间的比较。 2.给出事物发生频率(强度)的估计。 3.相对数是工作决策的依据。
计算标准化率

11
实例分析
表10-1 2001年某地中小学学生HBsAg 检出率及构成比
学生 小学生 初中生 高中生 合计
检查人数 660 1115
1563 3338
阳性人数 6 49 56 111
检出率(%) 阳性构成比(%)
0.91
表10-2 某地2003-2005年新生儿性别比
新生儿数
90 919 109 671 125 513
男性
48 636 58 908 66 814
女性
42 283 50 763 58 699
性别比
1.15 1.16 1.15
9
二 、应用相对数时的注意事项
1.计算相对数的分母一般不宜过小; 2.分析时不能以构成比代替率; 3.观察单位数不等的几个率,不能直接相加求其平均率;
15
三、率的标准化
(二) 标准化率的计算
把原率资料按影响因素的标准构成调整后算得的率, 称为标准化率(standerdized rate)亦称为调整率。
计算标准化率的步骤:
1.方法选择:直接法和间接法 2.标准选择:① 选取包含比较各组的大范围人口构成; ② 两组合并的人口构成; ③ 其中任一组的人口构成。
年龄 20~
标准人口 Ni
1539
实际患病率 pi1
10.86
甲社区 预期患病数
Nipi1
167
乙社区 实际患病率 预期患病数
pi2
Nipi2
11.76
181
35~ 50~ 65~ 合计
1665 1584 1675 6463
21.48 34.69 53.44 ―
标准化法

表1 甲、乙两县男性肝癌死亡率(1/10万)
年龄 组 (岁) 0304050607080合计 甲县 乙县
人口 (千)
323.6 56.8 42.4 30.5 21.3 16.3 2.8 493.7
人口构 成(%)
65.5 11.5 8.6 6.2 4.3 3.3 0.6 100.0
死亡 数
24 75 103 87 69 27 6 391
死亡 率
7.4 132.0 242.9 285.2 323.9 165.6 214.3 79.2
人口
364.5 64.3 45.1 28.8 16.2 10.1 0.5 529.5
人口构 成(%)
68.8 12.1 8.5 5.5 3.1 1.9 0.1 100.0
死亡 数
22 75 104 84 54 20 2 361
030400.10 0.50 6.53 323.6 56.8 42.4 0.32 0.28 2.77
乙县 人口数 (千)Pi
364.5 64.3 45.1
预期死亡率 Pi*Ri
0.36 0.32 2.95
50607080合计
17.41 35.94
71.85 65.56 6.55
30.5 21.3
16.3 2.8 493.7
12.7 9.6 7.1 4.3 1.6 0.3 100.0
表3 甲、乙两县男性肝癌调整死亡率(直接法)
年龄组 (岁) 04050607080合计 甲县 乙县
死亡 标准人 预期死 死亡 标准人口 预期死 率(1) 口构成(2) 亡数 率(1) 构成(2) 亡数 7.4 0.644 4.8 6.0 0.644 3.9 242.9 285.2 323.9 165.6 214.3 79.2 0.096 0.071 0.043 0.013 0.003 1.000 23.3 20.3 13.9 2.6 0.6 82.3 259.4 291.7 333.3 198.0 400.0 68.2 0.096 0.071 0.043 0.016 0.003 1.000 24.9 20.7 14.3 3.2 1.2 83.2
流行病学常用指标

发病率( 发病率(incidence rate) )
是指一定时间内某人群中发生某病新病例 的频率。是衡量疾病发生危险性的指标。 的频率。是衡量疾病发生危险性的指标。 基本公式
某时期某人群中发生某病的新病例数 ×K 发病率 = 同期该人群平均人口数
观察时间可为年、 观察时间可为年、季、月,一般为年。 一般为年。
表 1 甲、乙两地死亡率 的比较 年龄组(岁 年龄组 岁) 20~ 40~ 60 及以上 合计 甲 地 人口数 死亡数 死亡率(‰ 死亡率 ) 1,500 1,000 500 3,000 6 6 5 17 4.00 6.00 10.00 5.67 乙 地 人口数 死亡数 死亡率(‰ 死亡率 ) 500 1,000 1,500 3,000 2 4 12 18 4.00 4.00 8.00 6.00
年龄组 (岁) 20~ 40~ 60 及以上 合计
*甲乙两地人口之和
直接标化法
3.
计算标化死亡率
期望死亡数 ×K 标化死亡率 = 标准人口总数 40 ×1000‰ = 6.67 000 甲地标化死亡率 = 6000 32 ×1000‰ = 5.33000 乙地标化死亡率 = 6000
间接标化法
1. 2.
相对危险度(RR)、归因危险度(AR) 相对危险度( )、归因危险度( ) )、归因危险度 等
统计学常用的相对数计量方法
率(rate) ) 用来测量一定时期内, 用来测量一定时期内,某人群特定事件 发生的频率或强度。 发生的频率或强度。 rate=a/(a+b)
率是一个动态指标, 率是一个动态指标,在观察期内看特定人 群某事件的变化。 群某事件的变化。 率有时间单位——观察时间影响率的大小。 观察时间影响率的大小。 率有时间单位 观察时间影响率的大小