小学奥数 5-5-6 中国剩余定理及余数性质拓展.教师版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 系统学习中国剩余定理和新中国剩余定理

2. 掌握中国剩余定理的核心思想,并灵活运用

一、中国剩余定理——中国古代趣题

(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。”

此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?

首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二

我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩

二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:

“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”

这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:

三人同行七十稀,是说除以3所得的余数用70乘.

五树梅花廿一枝,是说除以5所得的余数用21乘.

七子团圆正月半,是说除以7所得的余数用15乘.

除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.

此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的

余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=

为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?

先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5

与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是知识点拨

教学目标

5-5-4.中国剩余定理

及余数性质拓展

被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.

了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.

二、核心思想和方法

对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:

今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?

题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

先由5735⨯=,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数35270⨯=是否可以,很显然70除以3余1

类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。

最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算: 270321245[3,5,7]233[3,5,7]k k ⨯+⨯+⨯±=-,其中k 是自然数。

也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。

例如对上面的问题加上限制条件“满足上面条件最小的自然数”,

那么我们可以计算2703212452[3,5,7]23⨯+⨯+⨯-⨯=得到所求

如果加上限制条件“满足上面条件最小的三位自然数”,

我们只要对最小的23加上[3,5,7]即可,即23+105=128。

模块一、余数性质综合

【例 1】 一个数除以3的余数是2,除以5的余数是1,则这个数除以15的余数是 。

【考点】余数性质综合 【难度】1星 【题型】填空

【关键词】希望杯,4年级,初赛,8题

【解析】 除以3余2的数有:2、5、8、11、14

除以5余1的数有:1、6、11、16、21观察得到符合条件的答案是11

【答案】11

【例 2】 有一群猴子正要分56个桃子.每只猴子可以分到同样个数的桃子。这时.又窜来4只猴子。只好

重新分配,但要使每只猴子分到同样个数的桃子,必须扔掉一个桃子.则最后每只猴子分到桃子___

个。

【考点】余数性质综合 【难度】2星 【题型】填空

【关键词】希望杯,六年级,初赛,第19题,6分

【解析】 56的约数有:1、2、4、7、8、14、28、56,

55的约数有:1、5、11、55,

其中只有11=7+4,所以原来有7只猴,后来有11只猴,每只猴子分到55÷11=5个.

【答案】5

【巩固】 一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到 个桃子。

【考点】余数性质综合 【难度】2星 【题型】填空

例题精讲

相关文档
最新文档