江苏省2014年高考数学(文)二轮复习专题提升训练:16 立体几何中的向量方法
江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题16 立体几何中的向量方法
![江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题16 立体几何中的向量方法](https://img.taocdn.com/s3/m/0a29d942852458fb760b560c.png)
• 4 . 空间向量求角时考生易忽视向量的夹 角与所求角之间的关系 • (1)求线面角时,得到的是直线方向向量 和平面法向量的夹角的余弦,而不是线面 角的余弦; • (2)求二面角时,两法向量的夹角有可能 是二面角的补角,要注意从图中分析.
热点与突破
• 热点一 向量法证明平行与垂直 • 【例1】 如图,在直三棱柱ABC-A1B1C1 中, • △ ABC 为 等 腰 直 角 三 角 形 , ∠ BAC = 90°, • 且 AB = AA1 , D , E , F 分 别 为 B1A , C 1C , • BC的中点.求证: • (1)DE∥平面ABC;
• [规律方法] 证明平行、垂直关系时,若用 传统的几何法,难以找出问题与条件的关 系时,可采用向量法,但向量法要求计算 必须准确无误,利用向量法的关键是正确 求平面的法向量.
• • • • • •
【 训练 1】 如图,在直三棱柱 ADE-BCF 中, 面ABFE和面ABCD都是正方形且互相 垂直,M为AB的中点,O为DF的中点. 求证: (1)OM∥平面BCF; (2)平面MDF⊥平面EFCD.
→ → (2)易知AA1=(0,2 2,0),A1C1=(- 2,- 2, 5). 设平面 AA1C1 的法向量 m=(x,y,z), → m· A1C1=0, 则 → AA1=0, m·
- 2x- 即 2 2y=0.
2y+ 5z=0,
不妨令 x= 5,可得 m=( 5,0, 2). 同样地,设平面 A1B1C1 的法向量 n=(x1,y1,z1),
(1)证明
→ → → 以 A 为原点,AB,AD,AA1的方向分别为 x 轴、y 轴、z
轴的正方向建立空间直角坐标系(如图).设 AB=a,则 A(0,0,0),
2014年高考立体几何(解析版)
![2014年高考立体几何(解析版)](https://img.taocdn.com/s3/m/89f923e8941ea76e58fa0415.png)
2014年高考真题立体几何汇编解析版16.(2014江苏)(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴13DE PA == ∵E F ,为AC AB ,中点 ∴142EF BC == ∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵AC EF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(2014山东)(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60,DAB ∠=22AB CD ==,M 是线段AB 的中点.(I )求证:111//C M A ADD 平面;B 1C 1D 1A 1DCBMA(II )若1CD 垂直于平面ABCD且1CD 平面11C D M 和平面ABCD 所成的角(锐角)的余弦值. 解:(Ⅰ)连接1AD1111D C B A ABCD - 为四棱柱,11//D C CD ∴ 11D C CD =又M 为AB 的中点,1=∴AM AM CD //∴,AM CD =11//D C AM ∴,11D C AM =11D AMC ∴为平行四边形 11//MC AD ∴又111ADD A M C 平面⊄ 111A D D A AD 平面⊂111//ADD A AD 平面∴(Ⅱ)方法一:11//B A AB 1111//D C B A共面与面1111D ABC M C D ∴作AB CN ⊥,连接N D 1 则NC D 1∠即为所求二面角在ABCD 中, 60,2,1=∠==DAB AB DC 23=∴CN 在CN D Rt 1∆中,31=CD ,23=CN 2151=∴N D 方法二:作AB CP ⊥于p 点以C 为原点,CD 为x 轴,CP 为y 轴,1CD 为z 轴建立空间坐标系,)0,23,21(),3,0,0(),3,0,1(11M D C -∴)3,23,21(),0,0,1(111-==∴M D D C设平面M D C 11的法向量为),,(111z y x =⎪⎩⎪⎨⎧=-+=∴03232101111z y x x )1,2,0(1=∴n 显然平面ABCD 的法向量为)0,0,1(2=n5551,cos 21==<∴n n 显然二面角为锐角,所以平面M D C 11和平面ABCD 所成角的余弦值为555515321523cos 11====∠∴N D NC CN D18.三棱锥A BCD -及其侧视图、俯视图如图所示。
2014高考真题-立体几何大题(含解析)
![2014高考真题-立体几何大题(含解析)](https://img.taocdn.com/s3/m/e981402dbcd126fff7050b18.png)
解答题1. [2014·安徽卷19] 如图1-5所示,四棱锥P - ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .图1-5(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.解: (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC . 同理可证EF ∥BC ,因此GH ∥EF .2.[2014·重庆卷20] 如图1-4所示四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD =π3,M 为BC 上一点,且BM =12.(1)证明:BC ⊥平面POM ;(2)若图解:(1)证明:如图所示,因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π6=1.又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM =12+⎝⎛⎭⎫122-2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故OM ⊥BM .又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .3.[2014·陕西卷17] 四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.解:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.4.[2014·湖南卷18] 如图1-3所示,已知二面角α-MN -β的大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN 上,∠BAD =60°,E 是(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.解:(1)证明:如图,因为DO ⊥α,AB ⊂α,所以DO ⊥AB .连接BD ,由题设知,△ABD 是正三角形,又E 是AB 的中点,所以DE ⊥AB .而DO ∩DE =D ,故AB ⊥平面ODE .5.[2014·北京卷17] 如图1-5,在三棱柱ABC A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.图1-5(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.解:(1)证明:在三棱柱ABC -A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1,所以平面ABE⊥平面B1BCC1.6.[2014·湖北卷20] 如图1-5,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.证明:(1)连接AD1,由ABCD -A1B1C1D1是正方体,知AD1∥BC1.因为F,P分别是AD,DD1的中点,所以FP∥AD1,从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.7.[2014·江苏卷16] 如图1-4所示,在三棱锥P -ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.图1-4解:(1)∵D E,为PC AC,中点∴DE∥P A∵PA⊄平面DEF,DE⊂平面DEF∴P A∥平面DEF8.[2014·福建卷19] 如图1-6所示,三棱锥ABCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.图1-6解:方法一:(1)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD.又∵CD⊥BD,AB∩BD=B,AB⊂平面ABD,BD⊂平面ABD,∴CD⊥平面ABD.9.[2014·新课标全国卷Ⅱ18] 如图1-3,四棱锥P -ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P -ABD的体积V=34,求A到平面PBC的距离.图1-3解:(1)证明:设BD与AC的交点为O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB,EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.10.[2014·广东卷18] 如图1-2所示,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2,作如图1-3折叠:折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M - CDE 的体积.图1-2 图1-300:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅=====∴=⋅==11.[2014·山东卷18] 如图1-4所示,四棱锥P ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点.图1-4(1)求证:AP ∥平面BEF ;(2)求证:BE ⊥平面P AC .证明:(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC ,所以AE ∥BC ,AE =AB =BC ,所以O 为AC 的中点.又在△P AC 中,F 为PC 的中点,所以AP ∥OF ,又OF ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .12.[2014·江西卷19] 如图1-1所示,三棱柱ABC - A 1B 1C 1中,AA 1⊥BC ,A 1B ⊥BB 1.(1)求证:A 1C ⊥CC 1;(2)若AB =2,AC =3,BC =7,问AA 1为何值时,三棱柱ABC - A 1B 1C 1体积最大,并求此最大值.解:(1)证明:由AA 1⊥BC 知BB 1⊥BC .又BB 1⊥A 1B ,故BB 1⊥平面BCA 1,所以BB 1⊥A 1C .又BB 1∥CC 1,所以A 1C ⊥CC 1.13.[2014·辽宁卷19] 如图1-4所示,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F ,G 分别为AC ,(1)求证:EF ⊥平面BCG ;(2)求三棱锥D -BCG 的体积.附:锥体的体积公式V =13Sh ,其中S 为底面面积,h 为高.解:(1)证明:由已知得△ABC ≌△DBC ,因此AC =DC .又G 为AD 的中点,所以CG ⊥AD ,同理BG ⊥AD .又BG ∩CG =G ,所以AD ⊥平面BGC .又EF ∥AD ,所以EF ⊥平面BCG .14.[2014·全国新课标卷Ⅰ19] 如图1-4,111侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.图1-4(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC -A1B1C1的高.解:(1)证明:连接BC1,则O为B1C与BC1的交点.因为侧面BB1C1C为菱形,所以B1C⊥BC1.又AO⊥平面BB1C1C,所以B1C⊥AO,由于BC1∩AO=O,故B1C⊥平面ABO.由于AB⊂平面ABO,故B1C⊥AB.15.[2014·四川卷18] 在如图1-4所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1.(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.解:(1)证明:因为四边形ABB1A1和ACC1A1都是矩形,所以AA1⊥AB,AA1⊥AC.因为AB,AC为平面ABC内的两条相交直线,所以AA1⊥平面ABC.因为直线BC⊂平面ABC,所以AA1⊥BC.又由已知,AC⊥BC,AA1,AC为平面ACC1A1内的两条相交直线,所以BC ⊥平面ACC 1A 1.16.[2014·天津卷17] 如图1-4所示,四棱锥P - ABCD 的底面ABCD 是平行四边形,BA =BD =2,AD =2,P A =PD =5,E ,F 分别是棱AD ,PC 的中点.(1)证明:EF ∥平面P AB ; .解:(1)证明:如图所示,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB . 17.[2014·浙江卷20] 如图15,在四棱锥A BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.图1-5(1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值.解:(1)证明:连接BD ,在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE .18.[2014·重庆卷20] 如图1-4所示四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD =π3,M 为BC 上一点,且BM =12.(1)证明:BC ⊥平面POM ;(2)若MP ⊥AP ,求四棱锥P -ABMO 的体积.图 解:(1)证明:如图所示,因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π6=1.又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM =12+⎝⎛⎭⎫122-2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故OM ⊥BM .又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .19.[2014·全国卷19] 如图1-1所示,三棱柱ABC - A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B ;(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1 AB C 的大小.图1-1解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,平面AA 1C 1C ∩平面ABC =AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C .由三垂线定理得AC1⊥A1B.。
高考数学二轮:5.3《立体几何中的向量方法》试题(含答案)
![高考数学二轮:5.3《立体几何中的向量方法》试题(含答案)](https://img.taocdn.com/s3/m/cd40d8d34b73f242326c5f3c.png)
第 3 讲立体几何中的向量方法1. (2014课·标全国Ⅱ )直三棱柱 ABC- A1B1C1中,∠ BCA= 90°,M ,N 分别是 A1B1, A1C1的中点, BC= CA= CC1,则 BM 与 AN 所成角的余弦值为 ()12302A. 10B.5C. 10D. 22. (2015安·徽 ) 如图所示,在多面体A1B1D1DCBA 中,四边形AA1B1B,ADD 1A1, ABCD 均为正方形, E 为 B1D 1的中点,过A1,D ,E 的平面交CD1于 F.(1)证明: EF∥ B1C;(2)求二面角E-A1D- B1的余弦值.以空间几何体为载体考查空间角是高考命题的重点,与空间线面关系的证明相结合,热点为二面角的求解,均以解答的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上 .热点一利用向量证明平行与垂直设直线 l 的方向向量为a=(a1,b1,c1),平面α、β的法向量分别为μ=( a2,b2,c2),v=(a3,b3, c3)则有:(1)线面平行l∥ α? a⊥ μ? a·μ= 0? a1a2+ b1b2+ c1c2= 0.(2)线面垂直l⊥ α? a∥ μ? a= kμ? a1=ka2, b1= kb2, c1= kc2.(3)面面平行α∥ β? μ∥v? μ=λv? a2=λa, b =λb, c =λc32323.(4)面面垂直α⊥ β? μ⊥v? μ·v= 0? a2a3+ b2b3+c2c3= 0.例 1 如图,在直三棱柱 ADE— BCF 中,面 ABFE 和面 ABCD 都是正方形且互相垂直, M 为 AB 的中点, O 为 DF 的中点.运用向量方法证明:(1)OM ∥平面 BCF ;(2)平面 MDF ⊥平面 EFCD .思维升华用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥ b,只需证明向量a=λb(λ∈ R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.跟踪演练1如图所示,已知直三棱柱ABC— A1B1C1中,△ ABC 为等腰直角三角形,∠BAC= 90°,且 AB= AA1, D、 E、 F 分别为 B1A、 C1C、BC 的中点.求证:(1)DE ∥平面 ABC;(2)B1F ⊥平面 AEF .热点二利用空间向量求空间角设直线 l ,m 的方向向量分别为a=( a1,b1,c1),b=(a2,b2,c2).平面α,β的法向量分别为μ= (a3, b3, c3),v= (a4, b4, c4)(以下相同 ) .(1)线线夹角π设 l , m 的夹角为θ(0≤θ≤2),则|a·b|=|a1a2+ b1b2+ c1c2 |cosθ=|a||b|a12+ b12+ c12a22+ b22+ c22.(2)线面夹角π设直线 l 与平面α的夹角为θ(0≤θ≤2),则 sin θ=|a·μ|=|cos〈a,μ〉 |. |a||μ|(3)面面夹角设平面α、β的夹角为θ(0≤θ<π),则 |cos θ|=|μ·v|= |cos〈μ,v〉 |. |μ||v|例 2 (2015 ·江苏 )如图,在四棱锥P-ABCD 中,已知PA⊥平面 ABCD ,πABCD 为直角梯形,∠ ABC=∠ BAD=, PA= AD = 2, AB= BC2=1.(1)求平面 PAB 与平面 PCD 所成二面角的余弦值;(2)点 Q 是线段 BP 上的动点,当直线CQ 与 DP 所成的角最小时,求线段BQ 的长.思维升华(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cosα=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.③直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.跟踪演练 2 (2014 ·福建 )在平面四边形ABCD中, AB=BD=CD=1,AB⊥ BD,CD ⊥BD.将△ABD沿BD折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证: AB⊥ CD ;(2)若 M 为 AD 中点,求直线AD 与平面 MBC 所成角的正弦值.热点三利用空间向量求解探索性问题存在探索性问题的基本特征是要判断在某些确定条件下的某一数学对象(数值、图形、函数等 )是否存在或某一结论是否成立.解决这类问题的基本策略是先假设题中的数学对象存在(或结论成立 )或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论.例 3 如图,在直三棱柱 ABC- A1B1C1中,AB= BC= 2AA1,∠ ABC=90°,D 是 BC 的中点.(1)求证: A1 B∥平面 ADC 1;(2)求二面角C1- AD- C 的余弦值;(3)试问线段A1B1上是否存在点E,使 AE 与 DC 1成 60°角?若存在,确定 E 点位置;若不存在,说明理由.思维升华空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.跟踪演练3如图所示,四边形ABCD 是边长为 1 的正方形, MD ⊥平面 ABCD ,NB⊥平面 ABCD ,且 MD =NB =1, E 为 BC 的中点.(1)求异面直线NE 与 AM 所成角的余弦值;(2)在线段 AN 上是否存在点 S,使得 ES⊥平面 AMN ?若存在,求线段AS 的长;若不存在,请说明理由.如图,五面体中,四边形ABCD 是矩形, AB∥EF , AD⊥平面 ABEF ,1且 AD =1, AB=2EF= 22, AF= BE= 2,P、 Q 分别为 AE 、BD 的中点.(1)求证: PQ∥平面 BCE;(2)求二面角A- DF -E 的余弦值.提醒:完成作业专题五第3讲二轮专题强化练专题五第 3 讲立体几何中的向量方法A 组专题通关1.已知平面 ABC,点 M 是空间任意一点,点→3→1→1→M 满足条件 OM= OA+OB+ OC,则直线488AM()A .与平面ABC 平行B .是平面ABC 的斜线C.是平面ABC 的垂线D.在平面ABC 内2.如图,点P 是单位正方体ABCD - A1B1C1D1中异于 A 的一个顶点,→ →则 AP·AB的值为 ()A . 0B.1C.0或1D.任意实数3.如图所示,正方体ABCD -A1B1C1D1的棱长为a, M、 N 分别为A1B和 AC 上的点, A1M= AN=23a,则 MN 与平面 BB1C1C 的位置关系是()A .相交B.平行C.垂直D.不能确定4.如图,三棱锥 A- BCD 的棱长全相等, E 为 AD 的中点,则直线 CE 与 BD 所成角的余弦值为 ()33A.6B. 2331C.6D. 25.已知正三棱柱 ABC-A1B1C1的侧棱长与底面边长相等,则 AB1与侧面 ACC 1A1所成角的正弦值等于 ()610A.4B. 423C. 2D. 26.在棱长为 1 的正方体ABCD - A1B1C1D1中,M,N 分别为 A1B1,BB1的中点,那么直线 AM 与 CN 所成角的余弦值为 ________.7.在一直角坐标系中,已知A(-1,6), B(3,- 8),现沿 x 轴将坐标平面折成60°的二面角,则折叠后 A、B 两点间的距离为 ________.→→→ 2→ 2→→→8.已知 ABCD -A1B1C1D1为正方体,① (A1A+ A1D 1+ A1B1) =3A1B1;②A1C·(A1B1- A1 A)= 0;→→→ → →③向量 AD 1与向量 A1B的夹角是 60°;④正方体ABCD - A1B1C1D 1的体积为 |AB ·AA 1·AD |.其中正确命题的序号是________.9.如图,在底面是矩形的四棱锥P— ABCD 中, PA⊥底面 ABCD,E,F 分别是 PC, PD 的中点, PA= AB= 1, BC= 2.(1)求证: EF∥平面 PAB;(2)求证:平面PAD ⊥平面 PDC .10.(2015 ·庆重 )如图,三棱锥 P-ABC 中,PC⊥平面 ABC,PC= 3,∠ ACB π=2.D, E 分别为线段AB, BC 上的点,且CD=DE =2, CE= 2EB=2.(1)证明: DE⊥平面 PCD;(2)求二面角APDC 的余弦值.B 组 能力提高11. (2014 ·川四 )如图,在正方体 ABCD -A 1B 1C 1D 1 中,点 O 为线段 BD 的中点.设点 P 在线段 CC 1 上,直线 OP 与平面 A 1BD 所成的角为 α,则 sin α的取值范围是 ()3,1]B . [6, 1]A .[ 33 62 2 2 2, 1]C .[3,3]D .[ 312.如图, 在正方体 ABCD - A 1B 1C 1D 1 中,点 P 在直线 BC 1 上运动时,有下列三个命题:①三棱锥 A - D 1PC 的体积不变;②直线 AP 与平面ACD 1 所成角的大小不变;③二面角 P - AD 1- C 的大小不变.其中真命题的序号是 ________.13.已知正方体 ABCD - A 1 B 1 C 1D 1 的棱长为 1, E 、 F 分别为 BB 1、 CD 的中点,则点 F 到平面 A 1D 1E 的距离为 ______________.14.如图, 在三棱锥 P —ABC 中, AC = BC =2,∠ ACB =90°,AP = BP =AB ,PC ⊥ AC ,点 D 为 BC 的中点.(1)求二面角A— PD —B 的余弦值;1(2)在直线 AB 上是否存在点M,使得 PM 与平面 PAD 所成角的正弦值为6,若存在,求出点M的位置;若不存在,说明理由.学生用书答案精析第 3 讲 立体几何中的向量方法高考真题体验1. C [方法一补成正方体,利用向量的方法求异面直线所成的角.由于∠ BCA = 90°,三棱柱为直三棱柱,且 BC = CA = CC 1,可将三棱柱补成正方体.建立如图 (1)所示空间直角坐标系.设正方体棱长为 2,则可得 A(0,0,0) ,B(2,2,0) , M(1,1,2) , N(0,1,2) ,→∴ BM = (-1,- 1,2),→.AN = (0,1,2)→ → → →BM ·AN∴ cos 〈BM , AN 〉= → →|BM||AN|- 1+ 4=-2+- 2+ 22× 02+ 12+ 22330=6×5=10.方法二 通过平行关系找出两异面直线的夹角,再根据余弦定理求解.如图 (2) ,取 BC 的中点 D ,连接 MN ,ND ,AD ,由于 MN 綊1 B 1C 1 綊 BD ,因此有 ND 綊 BM ,2则 ND 与 NA 所成的角即为异面直线BM 与 AN 所成的角.设 BC = 2,则 BM = ND = 6, AN= 5, AD = 5,因此 cos ∠ AND = ND 2+ NA 2- AD 230 2ND ·NA=10.]2. (1)证明由正方形的性质可知A 1B 1∥ AB ∥ DC ,且 A 1B 1= AB = DC ,所以四边形A 1B 1CD为平行四边形,从而 B 1 C ∥ A 1D ,又 A 1D ? 面 A 1DE , B 1 C?面 A 1DE ,于是 B 1C ∥面 A 1DE.又B 1C? 面 B 1 CD 1.面 A 1DE ∩面 B 1CD 1= EF ,所以 EF ∥ B 1C.(2)解 因为四边形 AA 1B 1B ,ADD 1A 1, ABCD 均为正方形,所以 AA 1⊥ AB , AA 1⊥AD , AB ⊥ AD 且AA 1 =AB =AD .以 A 为原点,分别以 → → →AB , AD ,AA 1为 x 轴, y 轴和 z 轴 单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0) ,B(1,0,0) ,D(0,1,0) ,A 1(0,0,1) , B 1(1,0,1) ,D 1 (0,1,1) ,而 E 点为 B 1D 1 的11中点,所以 E 点的坐标为, , 1 .设面 A 1DE 的法向量n 1= (r 1, s 1, t 1),而该面上向量→1 1 →A 1E = , , 0, A 1D = (0,1,- 1),由2 2→n 1⊥A 1E ,→11r 1+ s 1= 0,n 1⊥ A 1D 得 r 1, s 1, t 1 应满足的方程组2 2s 1- t 1= 0,(- 1,1,1)为其一组解,所以可取 n 1= (- 1,1,1).设面 A 1B 1CD 的法向量 n 2= (r 2,s 2,t 2),而该面上向量 →→A 1B 1= (1,0,0) ,A 1 D = (0,1,- 1),由此同理可得 n 2= (0,1,1) .所以结合图形知二面角E-A 1D -B 1 的余弦值为 |n 1·n 2| = 2 = 6.|n 1| ·|n 2| 3× 2 3热点分类突破例1 证明 方法一由题意,得 AB , AD ,AE 两两垂直,以 A 为原点建立如图所示的空间直角坐标系.设正方形边长为 1,则 A(0,0,0) , B(1,0,0), C(1,1,0) ,D (0,1,0) ,11 1 1 F(1,0,1),M 2, 0, 0 , O 2, 2,2 .→ 1 1 →1,0,0) , (1)OM = 0,-,- , BA = (- 2 2→ → → →∴OM ·BA =0, ∴OM ⊥BA.∵棱柱 ADE —BCF 是直三棱柱,→∴ AB ⊥平面 BCF ,∴ BA 是平面且 OM?平面 BCF ,∴ OM ∥平面BCF 的一个法向量,BCF .(2)设平面 MDF 与平面 EFCD 的一个法向量分别为n 1= (x 1, y 1, z 1 ),n 2= ( x 2, y 2 , z 2).→→∵ DF = (1,- 1,1), DM =n 1 ·DF →= 0, 由→n 1 ·DM = 0.x 1- y 1+ z 1= 0,得 1解得x 1- y 1= 0,21→→,,- 1,0 , DC =(1,0,0), CF = (0,- 1,1)21y 1=2x 1,1z 1 =- x 1,1 1 令 x 1= 1,则 n 1= 1,2,-2 . 同理可得 n 2= (0,1,1) .∵ n 1·n 2= 0,∴平面MDF ⊥平面 EFCD .方法二→ → → →1 →→ + 1 →(1)OM = OF + FB +BM= DF -BF BA2 21 →→→1→1 → 1 → 1 →=(DB + BF)- BF + BA =-BD - BF +BA2 2222=- 1 → →1 → 1 →2 (BC + BA)- BF +2BA2=- 1 → 1 →2 BC - BF .2→ → →∴向量 OM 与向量 BF , BC 共面,又 OM?平面 BCF ,∴ OM ∥平面 BCF .(2)由题意知, BF , BC , BA 两两垂直,∵→ =→,→=→-→, CD BA FC BC BF→ →1 → 1 → → = 0, ∴ OM·CD =-BC -BF2 2·BA→ → 1 → 1 →→ → OM ·FC = - BC - BF ·(BC -BF )22=- 1BC →2+ 1BF → 2= 0.2 2∴ OM ⊥ CD , OM ⊥ FC ,又 CD ∩FC = C ,∴ OM ⊥平面 EFCD .又 OM? 平面 MDF ,∴平面 MDF ⊥平面 EFCD .跟踪演练 1证明 (1)如图建立空间直角坐标系 A - xyz ,令 AB = AA 1= 4,则 A(0,0,0) , E(0,4,2) ,F(2,2,0) , B(4,0,0) , B 1(4,0,4) .取 AB 中点为 N ,连接 CN ,则 N(2,0,0) , C(0,4,0) ,D (2,0,2) ,→∴ DE = (- 2,4,0),→NC = (- 2,4,0) ,→ →∴ DE =NC ,∴ DE ∥ NC ,又∵ NC? 平面 ABC , DE?平面 ABC.故 DE ∥平面 ABC.→(2)B 1F = (- 2,2,- 4),→ →.EF = (2,- 2,- 2), AF = (2,2,0)→ →B 1F ·EF = (- 2) ×2+ 2×(-2)+ (- 4) ×(- 2)= 0,→ →B 1F ·AF = (- 2) ×2+ 2×2+ (- 4) ×0=0.∴→⊥→,→⊥→,即B 1F EF B 1F AF B 1F ⊥ EF , B 1F ⊥AF ,又∵ AF ∩FE = F ,∴ B 1F ⊥平面 AEF.例 2解→ → →以 { AB ,AD ,AP } 为正交基底建立如图所示的空间直角坐标系 Axyz ,则各点的坐标为B(1,0,0) ,C(1,1,0) , D(0,2,0) , P(0,0,2).(1)因为 AD ⊥平面→ →.PAB ,所以 AD 是平面 PAB 的一个法向量, AD = (0,2,0) → ,- →= (0,2,- 2). 因为 PC =(1,1 2), PD设平面 PCD 的法向量为 m =( x , y , z),→ →则 m ·PC = 0, m ·PD = 0,x + y - 2z = 0,令 y =1,解得 z =1, x = 1.即2y - 2z = 0.所以 m =(1,1,1) 是平面 PCD 的一个法向量.→ →3AD ·m从而 cos 〈 AD , m 〉= → = 3 ,|AD ||m |所以平面 PAB 与平面 PCD 所成二面角的余弦值为33 .→ → →≤λ≤1),(2)因为 BP = (- 1,0,2),设 BQ = λBP = (- λ, 0,2λ)(0 → → → →又 CB = (0,- 1,0) ,则 CQ =CB +BQ = (- λ,- 1,2λ), →,又 DP = (0,- 2,2)→ → → →1+ 2λCQ ·DP= .从而 cos 〈 CQ , DP 〉= → → 2|CQ||DP | 10λ+ 2设 1+2λ= t , t ∈ [1,3] ,2→→2t 2=2 9则 cos 〈 CQ ,DP 〉=21 5≤ .5t - 10t + 92 20 109 t -9 + 99 2→ →3 10 当且仅当 t =,即 λ= 时, |cos 〈CQ , DP 〉 |的最大值为10.55π因为 y = cos x 在 0,2 上是减函数,此时直线CQ 与 DP 所成角取得最小值.又因为 BP = 12+ 22= 5,所以 BQ = 2BP =2 5.55跟踪演练 2 (1)证明 ∵平面 ABD ⊥平面 BCD ,平面 ABD ∩平面 BCD = BD ,AB? 平面 ABD ,AB ⊥ BD ,∴ AB ⊥平面 BCD .又 CD ? 平面 BCD ,∴ AB ⊥ CD .(2)解过点 B 在平面 BCD 内作 BE ⊥ BD ,如图.由 (1) 知 AB ⊥平面 BCD , BE? 平面 BCD , BD ? 平面 BCD , ∴ AB ⊥ BE , AB ⊥ BD.以 B 为坐标原点,分别以→ → →BE , BD , BA 的方向为 x 轴, y 轴, z 轴的正方向建立空间直角坐标系.依题意,得 B(0,0,0) , C(1,1,0) ,D (0,1,0) ,A(0,0,1) 11,M (0,, ),2 2→→1 1 →,- 1).则 BC =(1,1,0) ,BM = (0,, ), AD = (0,122设平面 MBC 的法向量 n = (x 0, y 0, z 0),n ·BC →=0,x 0+ y 0= 0,则即 1+ 1= 0,→2y 0 n ·BM = 0,2z 0取 z 0= 1,得平面 MBC 的一个法向量 n = (1,- 1,1).设直线 AD 与平面 MBC 所成角为 θ,→ →6|n ·AD |则 sin θ= |cos 〈n , AD 〉 |= → = 3 ,|n | ·|AD |即直线 AD 与平面 MBC 所成角的正弦值为63.例 3 (1) 证明 连接 A 1C ,交 AC 1 于点 O ,连接 OD . 由 ABC -A 1B 1C 1 是直三棱柱,得四边形ACC 1A 1 为矩形, O 为 A 1C的中点.又D 为BC 的中点,所以 OD 为 △ A 1BC 的中位线,所以 A 1B ∥ OD.因为 OD? 平面 ADC 1, A 1B?平面 ADC 1,所以 A 1B ∥平面 ADC 1.(2)解由 ABC - A 1B 1C 1 是直三棱柱,且∠ A BC = 90°,得 BA , BC , BB 1 两两垂直.以 BC , BA , BB 1 所在直线分别为 x , y , z 轴,建立如图所示的空间直角坐标系B - xyz.设 BA = 2,则 B(0,0,0) ,C(2,0,0) , A(0,2,0) , C 1(2,0,1) , D(1,0,0) ,→ →所以 AD = (1,- 2,0) , AC 1= (2,- 2,1). 设平面 ADC 1 的法向量为 n = (x , y , z), →n ·AD = 0,则有→n ·AC 1= 0.x - 2y = 0,取 y =1,得 n = (2,1,- 2).所以 2x - 2y + z = 0.易知平面 ADC 的一个法向量为 v =(0,0,1) .所以 cos 〈 n , v 〉= n ·v2=- .|n | |·v | 3因为二面角 C 1- AD - C 是锐二面角,所以二面角 C 1- AD - C 的余弦值为2 .3(3)解 假设存在满足条件的点 E.因为点 E 在线段 A 1B 1 上, A 1(0,2,1) , B 1(0,0,1) ,故可设 E(0, λ,1),其中 0≤λ≤2.→→. 所以 AE = (0, λ- 2,1), DC 1= (1,0,1) 因为 AE 与 DC 1 成 60°角,→→→ →1|AE ·DC 1|所以 |cos 〈AE ,DC 1〉 |= → →=2,|AE| |DC ·1 |即12+1· 2=1,解得 λ= 1 或 λ= 3(舍去 ).λ-2所以当点 E 为线段 A 1 B 1 的中点时, AE 与 DC 1 成 60°角. 跟踪演练 3解 (1) 如图,以 D 为坐标原点, DA , DC , DM 所在直线分别为 x 轴,y 轴,z 轴,建立空间直角坐标系, 则 D(0,0,0) ,A(1,0,0),M(0,0,1) , C(0,1,0) , B(1,1,0) ,1 →1 , 0,- 1), N(1,1,1), E(, 1,0),所以 NE = (-22→AM =(- 1,0,1).→ →1→ →2 10|NE ·AM |因为 |cos 〈NE ,AM 〉 |= → → =5=10 ,|NE| ×|AM| 2 × 2所以异面直线 NE 与 AM 所成角的余弦值为1010.(2)假设在线段 AN 上存在点 S ,使得 ES ⊥平面 AMN . →=(0,1,1) ,因为 AN→ → =(0 ,λ, λ)(0 ≤λ≤1), 可设 AS = λAN→1 又 EA = (2,- 1,0),→→→1所以 ES = EA + AS = ( , λ-1, λ).2由 ES ⊥平面 AMN ,→→ES ·AM = 0,得→ →ES ·AN = 0,- 1+ λ= 0,即 2λ- + λ= 0,1 → 1 1 →2 . 故 λ=,此时 AS = (0, , ), |AS|=222 2经检验,当 AS =2时, ES ⊥平面 AMN .2故线段 AN 上存在点 S ,使得 ES ⊥平面 AMN ,此时 AS = 2.2高考押题精练(1)证明连接 AC ,∵四边形 ABCD 是矩形,且 Q 为 BD 的中点,∴Q 为 AC 的中点,又在 △AEC 中, P 为 AE 的中点,∴ PQ ∥EC ,∵ EC? 面 BCE , PQ?面 BCE ,∴ PQ ∥平面 BCE.(2)解 如图,取 EF 的中点 M ,则 AF ⊥ AM ,以 A 为坐标原点,以 AM ,AF ,AD 所在直线分别为 x ,y ,z 轴建立空间直角坐标系.则 A(0,0,0) , D (0,0,1) ,M (2,0,0), F(0,2,0) .→ → →可得 AM = (2,0,0) , MF = (- 2,2,0), DF = (0,2,- 1).→n ·MF = 0,设平面 DEF 的法向量为n = (x , y , z),则→n ·DF = 0.- 2x + 2y =0,x - y = 0,故 2y -z =0, 即2y - z = 0.令 x =1,则 y =1, z = 2,故 n =(1,1,2) 是平面 DEF 的一个法向量.→∵ AM ⊥面 ADF ,∴ AM 为平面 ADF 的一个法向量.→→2×1+ 0×1+ 0×26n ·AM∴ cos 〈n , AM 〉=→ = 6×2= 6.|n | ·|AM|由图可知所求二面角为锐角,6∴二面角A-DF - E 的余弦值为 6 .二轮专题强化练答案精析第 3 讲 立体几何中的向量方法1. D [由已知得 M 、 A 、 B 、C 四点共面.所以 AM 在平面 ABC 内,选 D.]→→ → → → → →→ 1,其中一个与 →2. C [AP 可为下列 7 个向量: AB , AC , AD , AA 1, AB 1,AC 1, AD AB 重合,→→→2→→→→→ → → →→AP ·AB = |AB| = 1; AD ,AD 1, AA 1 与AB 垂直,这时 AP ·AB = 0; AC , AB 1 与 AB 的夹角为45°,→ → π → → 3×1×cos ∠ BAC 1= 3× 1= 1,故选 C.] 这时 AP ·AB = 2×1×cos = 1,最后 AC 1·AB =3 4 3. B [分别以 C 1B 1、 C 1D 1、 C 1C 所在直线为 x , y , z 轴,建立空间直角坐标系,如图所示.∵ A 1M = AN = 23 a ,∴ M a , 2 a ,N 2 23a , 3 3a ,3a , a ,→ a 2 a .∴MN = - ,0, 33→又 C 1 (0,0,0) ,D 1(0, a,0),∴ C 1D 1= (0, a,0),∴→ →=,∴→⊥→MN ·C 1D 1 0 MN C 1D 1.→MN?平面 BB 1C 1C ,∴ MN ∥平面 BB 1C 1C.]∵ C 1D 1是平面 BB 1C 1C 的法向量,且 4. A [设 AB = 1,→ → → → → → 则 CE ·BD = (AE - AC) ·(AD - AB)= 1 → 2 1 → →→ → → →2 AD - AD ·AB - AC ·AD + AC ·AB2= 1 112 - cos 60 -°cos 60 +°cos 60 =° .24→ →1→ →43CE ·BD∴ cos 〈CE ,BD 〉= → → = 3=6 .选 A.]|CE||BD | 25. A [如图所示建立空间直角坐标系,设正三棱柱的棱长为2, O(0,0,0),B(3, 0,0), A(0,- 1,0), B 1(→ 3, →3, 0,2),则 AB 1= ( 1,2),则 BO = (- 3,→ →0,0)为侧面ACC 1A 1的法向量,由 sin θ= |AB 1·BO|= 6.] → →4|AB 1||BO|2 6.5解析 以 D 点为坐标原点,分别以DA , DC ,DD 1 所在直线为 x 轴, y轴, z 轴建立如图所示的空间直角坐标系,则A(1,0,0) , M(1, 1, 1),21C(0,1,0), N(1,1, 2) .→ 1 →1所以 AM = (0,, 1),CN= (1,0, ).22 → →111故 AM ·CN = 0×1+ ×0+1× = ,2 2 2→2 1 2 + 1 25|AM |=0 + 2 = ,2→2 21 2 =5|CN|= 1+0+ 2 ,2→ →1→→2 2AM ·CN=所以 cos 〈 AM , CN 〉=→ → 5 5= .5|AM ||CN|2 ×27.2 17解析如图为折叠后的图形,其中作 AC ⊥ CD , BD ⊥ CD ,则 AC = 6, BD = 8, CD = 4,两异面直线 AC 、 BD 所成的角为 60°,故由→=→+→+→,AB AC CD DB→ 2 →→→2,得 |AB| = |AC +CD + DB | = 68→∴|AB|= 2 17.8.①②→→→2→ 2→ 2 → 解析 设正方体的棱长为 1,①中 (A 1A + A 1D 1+A 1B 1) =A 1C = 3A 1B 1 =3,故①正确; ②中 A 1B 1→ →→- A 1A = AB 1,由于 AB 1⊥ A 1C ,故②正确; ③中 A 1B 与 AD 1 两异面直线所成的角为 60°,但 AD 1→→ → →与 A 1B 的夹角为 120°,故③不正确;④中 |AB ·AA 1·AD |= 0.故④也不正确.9.证明(1) 以 A 为原点, AB 所在直线为 x 轴, AD 所在直线为 y 轴, AP 所在直线为 z 轴,建立如图所示的空间直角坐标系,则 A(0,0,0) , B(1,0,0) ,C(1,2,0) , D(0,2,0) , P(0,0,1) ,∵ E, F 分别是 PC, PD 的中点,∴ E 1, 1,1,F 0,1,1,222→1,0, 0→.EF=-,AB= (1,0,0)2→ 1 →→ →∵EF=-AB ,∴ EF ∥ AB,2即 EF∥AB,又 AB? 平面 PAB, EF?平面 PAB,∴ EF ∥平面 PAB.→,- 1)→→→→,(2)由 (1)可知 PB= (1,0,PD = (0,2,- 1),AP= (0,0,1), AD= (0,2,0), DC = (1,0,0)→→∵ AP·DC = (0,0,1) (1,0,0)·= 0,→→AD ·DC = (0,2,0) (1,0,0)·= 0,→→→→∴ AP⊥ DC,AD ⊥DC ,即 AP⊥ DC ,AD⊥ DC .又 AP∩AD= A,∴ DC ⊥平面 PAD .∵DC ? 平面 PDC,∴平面 PAD ⊥平面 PDC .10. (1)证明由PC⊥平面ABC,DE ?平面ABC,故PC⊥ DE.由 CE= 2, CD= DE= 2得△CDE 为等腰直角三角形,故 CD ⊥ DE .由 PC∩CD= C, DE 垂直于平面 PCD 内两条相交直线,故 DE ⊥平面 PCD .π(2)解由(1)知,△ CDE为等腰直角三角形,∠DCE =,如图,过 D 作4DF 垂直 CE 于 F,易知 DF = FC= FE= 1,又已知EB= 1,故 FB= 2.πDF=FB233.由∠ ACB=得 DF ∥AC ,AC BC =,故 AC=DF =2322以 C 为坐标原点,分别以→ →→轴, y 轴, z 轴的正方向建立空间直角坐标CA,CB,CP的方向为 x系,则 C(0,0,0) ,P(0,0,3) ,A 3,0, 0→→,2,E(0,2,0) ,D (1,1,0),ED=(1,- 1,0),DP= (- 1,- 1,3)→1,- 1,0 . DA =2→→- x1-y1+3z1=0,设平面 PAD 的法向量为n1=(x1,y1,z1),由 n1·DP=0,n1·DA=0,得1x1- y1=0,2故可取 n1=(2,1,1).→由 (1) 可知 DE ⊥平面 PCD ,故平面PCD 的法向量n2可取为ED,即 n2=(1,-1,0).从而法向量n1,n2的夹角的余弦值为cos 〈n1,n2〉=n1·n2=3,|n1| |·n2 |6故所求二面角 APDC 的余弦值为3 6 .11. B [ 根据题意可知平面A1BD ⊥平面 A1ACC 1且两平面的交线是A1O,所以过点P 作交线 A1O 的垂线 PE,则 PE⊥平面 A1BD,所以∠ A1OP 或其补角就是直线OP 与平面 A1BD 所成的角α.设正方体的边长为2,则根据图形可知直线OP 与平面 A1BD 可以垂直.当点 P 与点 C1重合时可得 A1O=OP=6,A1C1=2 2,所以1× 6× 6×sin α=1×22×2,22所以 sin α=2 2;3当点 P 与点 C 重合时,可得sin α=2=6 6 3.根据选项可知 B 正确. ]12.①③解析①中,∵ BC1∥平面 AD1C,∴ BC1上任意一点到平面 AD 1C 的距离相等,所以体积不变,正确;②中,P 在直线 BC1上运动时,直线 AB 与平面 ACD 1所成角和直线 AC1与平面ACD 1 所成角不相等,所以不正确;③中,P 在直线 BC 1 上运动时,点 P 在平面 AD 1 C 1B 中,既二面角 P —AD 1-C 的大小不受影响,所以正确.3 513. 10解析以 A 为坐标原点, AB 、 AD 、AA 1 所在直线分别为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示,11则 A 1 (0,0,1) ,E(1,0,2), F(2, 1,0), D 1 (0,1,1) .→1 →.∴ A 1E = (1,0,-),A 1D 1= (0,1,0)2设平面 A 1D 1E 的一个法向量为 n = (x , y , z),→=0,1n ·A 1E即x - z = 0,则2→ y = 0.n ·A 1D 1= 0,令 z = 2,则 x = 1.∴ n = (1,0,2) .→1又 A 1F = (2, 1,- 1),∴点 F 到平面 A 1D 1 E 的距离为→1- 2|||A 1F ·n |=2= 3 5d = |n |510.14.解 (1)∵ AC = BC , PA = PB , PC = PC ,∴△ PCA ≌△ PCB ,∴∠ PCA =∠ PCB ,∵ PC ⊥ AC ,∴ PC ⊥ CB ,又 AC ∩CB = C ,∴ PC ⊥平面 ACB ,且 PC , CA , CB 两两垂直,故以 C 为坐标原点,分别以CB , CA , CP 所在直线为 x ,y , z 轴建立空间直角坐标系,则C(0,0,0), A(0,2,0) , D(1,0,0) , P(0,0,2),→ →∴ AD = (1,- 2,0), PD = (1,0,- 2),设平面 PAD 的一个法向量为n = (x , y , z) ,→n ·AD =0∴,∴取 n = (2,1,1) ,→n ·PD =0→平面 PDB 的一个法向量为CA = (0,2,0) ,→6∴ cos 〈n , CA 〉= 6 ,设二面角 A —PD — B 的平面角为 θ,且 θ为钝角,6 6 ∴ cos θ=- 6 ,∴二面角 A — PD — B 的余弦值为-6.(2)方法一存在, M 是 AB 的中点或 A 是 MB 的中点.设 M(x,2- x,0) (x ∈ R ),→∴ PM = (x,2- x ,- 2),∴ →|cos 〈 PM , n 〉 ||x|1 = x 2+- x2+4· 6 = 6,解得 x = 1 或 x =- 2,∴ M(1,1,0) 或 M(- 2,4,0),∴在直线 AB 上存在点 M ,且当 M 是 AB 的中点或 A 是 MB 的中点时,使得 PM 与平面 PAD所成角的正弦值为 16.方法二 存在, M 是 AB 的中点或 A 是 MB 的中点. → →设 AM = λAB ,→=(2 λ,- 2λ, 0) (λ∈ R ),则 AM = λ(2,- 2,0) → → →∴ PM = PA + AM = (2λ,2- 2λ,- 2),→|2λ|∴ |cos 〈 PM , n 〉 |=2+- 2λ 2+ 4· 6 λ 1解得 λ= 或 λ=- 1.∴M 是 AB 的中点或 A 是 MB 的中点.∴在直线 AB 上存在点 M ,且当 M 是 AB 的中点或1=6.A 是 MB 的中点时,使得 PM 与平面 PAD1所成角的正弦值为 .。
江苏省2014年高考数学(文)二轮复习专题提升训练:阶段检测卷4
![江苏省2014年高考数学(文)二轮复习专题提升训练:阶段检测卷4](https://img.taocdn.com/s3/m/a57a33c3a1c7aa00b52acb17.png)
阶段检测卷(四)一、填空题(每小题5分,共70分)1.已知过A(-1,a),B(a,8)两点的直线与直线2x-y+1=0平行,则a的值为________.解析依题意得k AB=8-aa+1=2,解得a=2.答案 22.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________.解析由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为17,两圆的半径之差为1,半径之和为5,而1<17<5,所以两圆的位置关系为相交.答案相交3.已知圆(x+1)2+(y-1)2=1上一点P到直线3x-4y-3=0距离为d,则d的最小值为________.解析∵圆心C(-1,1)到直线3x-4y-3=0距离为|3×(-1)-4-3|5=2,∴d min=2-1=1.答案 14.已知圆x2+y2-4x-9=0与y轴的两个交点A,B都在某双曲线上,且A,B 两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为________.解析在方程x2+y2-4x-9=0中,令x=0,得y=±3,不妨设A(0,-3),B(0,3).设题中双曲线的标准方程为y2a2-x2b2=1(a>0,b>0).∵点A在双曲线上,∴9a2=1.∵A,B两点恰好将此双曲线的焦距三等分,∴双曲线的焦点为(0,-9),(0,9).a2+b2=81.∴a2=9,b2=72.∴此双曲线的标准方程为y29-x272=1.答案y29-x272=15.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±3x ,则它的离心率为________.解析 由题意,得e =ca =1+⎝ ⎛⎭⎪⎫b a 2=1+3=2.答案 26.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为45°的直线与椭圆的一个交点为M ,若MF 2垂直于x 轴,则椭圆的离心率为________.解析 过F 1作倾斜角为45°的直线y =x +c ,由MF 2垂直于x 轴得M 的横坐标c ,所以纵坐标2c ,代入椭圆方程得c 2a 2+4c 2b 2=1,∴e 2+4c 2a 2-c 2=1,∴(1-e 2)2=4e 2,∴e =2-1. 答案2-17.设圆C 的圆心与双曲线x 2a 2-y 22=1(a >0)的右焦点重合,且该圆与此双曲线的渐近线相切,若直线l :x -3y =0被圆C 截得的弦长等于2,则a 的值为________.解析 由题知圆心C (a 2+2,0),双曲线的渐近线方程为2x ±ay =0,圆心C 到渐近线的距离d =2·a 2+22+a 2=2,即圆C 的半径为 2.由直线l 被圆C截得的弦长为2及圆C 的半径为2可知,圆心C 到直线 l 的距离为1,即a 2+21+3=1,解得a = 2. 答案28.设圆x 2+y 2=1的一条切线与x 轴、y 轴分别交于点A 、B ,则线段AB 长度的最小值为________.解析 设切线方程为x a +y b =1,则|ab |a 2+b2=1,于是有a 2+b 2=a 2b 2≤ ⎝ ⎛⎭⎪⎫a 2+b 222,得a 2+b 2≥4,从而线段AB 长度为a 2+b 2≥2,其最小值为2.答案 29.已知圆O 的方程为x 2+y 2=2,圆M 的方程为(x -1)2+(y -3)2=1,过圆M 上任一点P 作圆O 的切线P A ,若直线P A 与圆M 的另一个交点为Q ,则当弦PQ 的长度最大时,直线P A 的斜率是________.解析 由题意知本题等价于求过圆M :(x -1)2+(y -3)2=1的圆心M (1,3)与圆O :x 2+y 2=2相切的切线的斜率k .设切线l :y -3=k (x -1),l :kx -y +3-k =0,由题意知2=|3-k |1+k 2,k =-7或k =1. 答案 -7或110.(2012·南通期末调研)设F 是双曲线x 2a 2-y 2b 2=1的右焦点,双曲线两条渐近线分别为l 1,l 2,过F 作直线l 1的垂线,分别交l 1,l 2于A 、B 两点.若OA ,AB ,OB 成等差数列,且向量BF →与F A →同向,则双曲线离心率e 的大小为________.解析 设OA =m -d ,AB =m ,OB =m +d ,由勾股定理,得(m -d )2+m 2=(m +d )2.解得m =4d .设∠AOF =α,则cos 2α=OA OB =35.cos α=1+cos 2α2=25,所以,离心率e =1cos α=52. 答案 5211.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 为切点,若四边形P ACB 的最小面积是2,则k 的值为________.解析 圆C 的方程可化为x 2+(y -1)2=1,因为四边形P ACB 的最小面积是2,且此时切线长为2,故圆心(0,1)到直线kx +y +4=0的距离为5,即51+k2=5,解得k =±2,又k >0,所以k =2. 答案 212.双曲线C :x 2-y 2=1,若双曲线C 的右顶点为A ,过A 的直线l 与双曲线C的两条渐近线交于P ,Q 两点,且P A →=2AQ →,则直线l 的斜率为________. 解析 双曲线C :x 2-y 2=1的渐近线方程为y =±x ,即x ±y =0.可以求得A (1,0),设直线l 的斜率为k ,∴直线l 的方程为y =k (x -1),分别与渐近线方程联立方程组,可以求得P ⎝ ⎛⎭⎪⎫k k -1,k k -1,Q ⎝ ⎛⎭⎪⎫k k +1,-k k +1或P ⎝ ⎛⎭⎪⎫kk +1,-k k +1,Q ⎝ ⎛⎭⎪⎫k k -1,k k -1,利用条件P A →=2AQ →,可以求得k =±3. 答案 ±313.设圆x 2+y 2=2的切线l 与x 轴正半轴、y 轴正半轴分别交于点A ,B ,当|AB |取最小值时,切线l 的方程为________.解析 设点A ,B 的坐标分别为A (a,0),B (0,b )(a ,b >0),则直线AB 的方程为x a +yb =1,即bx +ay -ab =0,因为直线AB 和圆相切,所以圆心到直线AB 的距离d =|-ab |a 2+b2=2,整理得2(a 2+b 2)=ab ,即2(a 2+b 2)=(ab )2≥4ab ,所以ab ≥4,当且仅当a =b 时取等号,又|AB |=a 2+b 2=ab2≥22,所以|AB |的最小值为22,此时a =b ,即a =b =2,切线l 的方程为x 2+y2=1,即x +y -2=0.答案 x +y -2=014.设双曲线x 24-y 2=1的右焦点为F ,点P 1、P 2、…、P n 是其右上方一段(2≤x ≤25,y ≥0)上的点,线段|P k F |的长度为a k (k =1,2,3,…,n ).若数列{a n }成等差数列且公差d ∈⎝ ⎛⎭⎪⎫15,55,则n 的最大取值为________.解析 数列{a n }递增,当a 1最小,a n 最大,且公差d 充分小时,数列项数较大.所以取a 1=5-2,a n =3,算得d =5-5n -1(n >1),又d ∈⎝ ⎛⎭⎪⎫15,55,所以55-4<n <26-55,又n ∈N *,故n 的最大取值为14. 答案 14 二、解答题(共90分)15.(本小题满分14分)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点. (1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,请说明理由. 解 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且可知左焦点为F ′(-2,0).从而有⎩⎨⎧ c =2,2a =|AF |+|AF ′|=8,解得⎩⎨⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12,故椭圆C 的方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,由题知直线l 的斜率与直线OA 的斜率相等,故可设直线l 的方程为y =32x +t . 由⎩⎪⎨⎪⎧y =32x +t ,x 216+y 212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点,所以Δ=(3t )2-4×3(t 2-12)≥0,解得-43≤t ≤4 3.另一方面,由直线OA 与l 的距离d =4,可得|t |94+1=4,从而t =±213.由于±213∉[-43,43],所以符合题意的直线l 不存在.16.(本小题满分14分)(2013·苏北四市模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,一条准线l :x =2. (1)求椭圆C 的方程;(2)设O 为坐标原点,M 是l 上的点,F 为椭圆C 的右焦点,过点F 作OM 的垂线与以OM 为直径的圆D 交于P ,Q 两点. ①若PQ =6,求圆D 的方程;②若M 是l 上的动点,求证点P 在定圆上,并求该定圆的方程.解(1)由题设:⎩⎪⎨⎪⎧c a =22a 2c =2,∴⎩⎨⎧a =2c =1,∴b 2=a 2-c 2=1,∴椭圆C 的方程为:x 22+y 2=1. (2)①由(1)知:F (1,0),设M (2,t ), 则圆D 的方程:(x -1)2+⎝ ⎛⎭⎪⎫y -t 22=1+t 24,直线PQ 的方程:2x +ty -2=0, ∵PQ =6,∴2⎝ ⎛⎭⎪⎫1+t 24-⎝⎛⎭⎪⎪⎫⎪⎪⎪⎪⎪⎪2+t 22-24+t 22=6, ∴t 2=4,∴t =±2.∴圆D 的方程:(x -1)2+(y -1)2=2或(x -1)2+(y +1)2=2. ②设P (x 0,y 0),由①知:⎩⎪⎨⎪⎧(x 0-1)2+⎝ ⎛⎭⎪⎫y 0-t 22=1+t 242x 0+ty 0-2=0,即:⎩⎨⎧x 20+y 20-2x 0-ty 0=02x 0+ty 0-2=0,消去t 得:x 20+y 20=2,∴点P 在定圆x 2+y 2=2上.17.(本小题满分14分)在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2)且斜率为k 的直线l 与圆Q 相交于不同的两点A ,B .(1)求圆Q 的面积; (2)求k 的取值范围;(3)是否存在常数k ,使得向量OA →+OB →与PQ →共线?如果存在,求k 的值;如果不存在,请说明理由.解 (1)圆的方程可化为(x -6)2+y 2=4,可得圆心为Q (6,0),半径为2,故圆的面积为4π.(2)设直线l 的方程为y =kx +2.直线l 与圆(x -6)2+y 2=4交于两个不同的点A ,B 等价于|6k +2|k 2+1<2,化简得(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝ ⎛⎭⎪⎫-34,0.(3)设A (x 1,y 1),B (x 2,y 2),则OA →+OB →=(x 1+x 2,y 1+y 2),由⎩⎨⎧y =kx +2,(x -6)2+y 2=4 得(k 2+1)x 2+4(k -3)x +36=0,解此方程得x 1,2=-4(k -3)±16(k -3)2-144(k 2+1)22(k 2+1).则x 1+x 2=-4(k -3)1+k 2,① 又y 1+y 2=k (x 1+x 2)+4.②而P (0,2),Q (6,0),PQ→=(6,-2).所以OA →+OB →与PQ →共线等价于-2(x 1+x 2)=6(y 1+y 2),将①②代入上式,解得k =-34.由(2)知k ∈⎝ ⎛⎭⎪⎫-34,0,故没有符合题意的常数k .18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以坐标原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2),设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T . 求证:点T 在椭圆C 上.(1)解 由题意知,椭圆C 的短半轴长为圆心到切线的距离,即b =|2|2= 2.因为离心率e =c a =32,所以ba =1-⎝ ⎛⎭⎪⎫c a 2=12.所以a =2 2. 所以椭圆C 的方程为x 28+y 22=1.(2)证明 由题意可设点M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0),则直线PM 的方程为y =y 0-1x 0x +1,① 直线QN 的方程为y =y 0-2-x 0x +2.②设点T 的坐标为(x ,y ),联立①②解得x 0=x2y -3,y 0=3y -42y -3.因为点M ,N 在椭圆C 上,故x 208+y 22=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12(3y -42y -3)2=1.整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1.所以点T 的坐标满足椭圆C 的方程,即点T 在椭圆C 上.19.(本小题满分16分)已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.(1)解 设椭圆的半焦距为c ,圆心O 到直线l 的距离d =61+1=3,∴b =5-3=2,由题意,得⎩⎪⎨⎪⎧c a =33,a 2=b 2+c 2,b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2) 证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程,得 ⎩⎪⎨⎪⎧y =k (x -x 0)+y 0,y 23+x 22=1.消去y ,得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0,∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0,整理,得(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2,则k 1·k 2=-y 20-32-x 20.∵点P 在圆O 上,∴x 20+y 20=5.∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1.20.(本小题满分16分)设椭圆M :x 2a 2+y 22=1(a >2)的右焦点为F 1,直线l :x =a 2a 2-2与x 轴交于点A ,若OF 1→=2F 1A →(其中O 为坐标原点). (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆N :x 2+(y -2)2=1的任意一条直径(E ,F 为直径的两个端点),求PE →·PF→的最大值.解 (1)由题设知,A ⎝ ⎛⎭⎪⎫a 2a 2-2,0,F 1()a 2-2,0, 由OF 1→=2F 1A →,得a 2-2=2⎝ ⎛⎭⎪⎫a 2a 2-2-a 2-2, 解得a 2=6.所以椭圆M 的方程为M :x 26+y 22=1. (2)设圆N :x 2+(y -1)2=1的圆心为N ,则PE →·PF →=(NE →-NP →)·(NF →-NP →)=(-NF →-NP →)·(NF→-NP →)=NP →2-NF →2=NP →2-1.从而求PE →·PF →的最大值转化为求NP →2的最大值.因为P 是椭圆M 上的任意一点,设P (x 0,y 0),所以x 206+y 22=1,即x 20=6-3y 20,因为点N (0,2),所以NP →2=x 20+(y 0-2)2=-2(y 0+1)2+12. 因为y 0∈[-2,2],所以当y 0=-1时,NP →2取得最大值12.所以PE →·PF →的最大值为11.。
2014高考数学文硬手笔(真题篇)常考问题立体几何中的向量方法
![2014高考数学文硬手笔(真题篇)常考问题立体几何中的向量方法](https://img.taocdn.com/s3/m/69b7e88881c758f5f61f67c0.png)
2014高考数学文“硬”手笔(真题篇)常考问题:圆锥曲线的基本问题[真题感悟]1.(2012·江苏卷)在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.解析 建立关于m 的方程求解∵c 2=m +m 2+4,∴e 2=c 2a 2=m +m 2+4m =5,∴m 2-4m +4=0,∴m =2. 答案 22.(2010·江苏卷)在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标是3,则点M 到此双曲线的右焦点的距离为________.解析 法一 x =3代入x 24-y 212=1,y =±15,不妨设M (3,15),右焦点F (4,0). ∴MF =1+15=4.法二 由双曲线第二定义知,M 到右焦点F 的距离与M 到右准线x =a 2c =1的距离比为离心率e =c a =2,∴MF 3-1=2,MF =4. 答案 43.(2013·广东卷改编)已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________.解析 由题意知c =3,e =c a =32,所以a =2;b 2=c 2-a 2=9-4=5,故所求双曲线方程为x 24-y 25=1.答案 x 24-y 25=14.(2013·湖南卷改编)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________.解析不妨设F1,F2分别为双曲线的左、右焦点,点P在双曲线的右支上,由双曲线的定义得|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,求得|PF1|=4a,|PF2|=2a.又在△PF1F2中,∠PF1F2=30°,所以∠PF2F1=90°,求得|F1F2|=23a,故双曲线C的离心率e=23a2a= 3.答案 3[考题分析](1)中心在坐标原点的椭圆的标准方程与几何性质,B级要求;(2)中心在坐标原点的双曲线的标准方程与几何性质,A级要求;(3)顶点在坐标原点的抛物线的标准方程与几何性质,A级要求;曲线与方程,A级要求.。
江苏省2014年高考数学(文)二轮复习专题提升训练:12 圆锥曲线的基本问题
![江苏省2014年高考数学(文)二轮复习专题提升训练:12 圆锥曲线的基本问题](https://img.taocdn.com/s3/m/dcbb5ddf76eeaeaad1f33057.png)
常考问题12 圆锥曲线的基本问题(建议用时:50分钟)1.(2013·陕西卷)双曲线x 216-y 2m =1(m >0)的离心率为54,则m 等于________. 解析 由题意得c =16+m ,所以16+m 4=54,解得m =9. 答案 92.已知双曲线C ∶x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为2,离心率为2,则双曲线C 的焦点坐标是________.解析 ∵2a =2,∴a =1,又ca =2,∴c =2,∴双曲线C 的焦点坐标是(±2,0). 答案 (±2,0)3.(2013·徐州质检)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点,右焦点分别为A ,F ,它的左准线与x 轴的交点为B ,若A 是线段BF 的中点,则双曲线C 的离心率为________.解析 ∵A 是B ,F 的中点,∴2a =-a 2c +c . ∴e 2-2e -1=0,∵e >1,∴e =2+1. 答案2+14.(2013·新课标全国Ⅰ卷改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.解析 直线AB 的斜率k =0+13-1=12, 设A (x 1,y 1),B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1 ①x 22a 2+y 22b 2=1, ②①-②得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.又x 1+x 2=2,y 1+y 2=-2,所以k =-b 2a 2×2-2,所以b 2a 2=12,③ 又a 2-b 2=c 2=9,④由③④得a 2=18,b 2=9.故椭圆E 的方程为x 218+y 29=1. 答案 x 218+y 29=15.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为________.解析 由于抛物线y 2=4x 的焦点为F (1,0),即c =1,又e =ca =5,可得a =55,结合条件有a 2+b 2=c 2=1,可得b 2=45,又焦点在x 轴上,则所求的双曲线的方程为5x 2-54y 2=1. 答案 5x 2-54y 2=16.(2013·福建卷)椭圆T :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆T 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析 直线y =3(x +c )过点F 1,且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2,在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c 2a =2cc +3c=3-1.答案3-17.已知双曲线C 与椭圆x 216+y 212=1有共同的焦点F 1,F 2,且离心率互为倒数.若双曲线右支上一点P 到右焦点F 2的距离为4,则PF 2的中点M 到坐标原点O 的距离等于________.解析 由椭圆的标准方程,可得椭圆的半焦距c =16-12=2,故椭圆的离心率e 1=24=12,则双曲线的离心率e 2=1e 1=2.因为椭圆和双曲线有共同的焦点,所以双曲线的半焦距也为c =2.设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则有a =c e 2=22=1,b 2=c 2-a 2=22-12=3,所以双曲线的标准方程为x 2-y 23=1.因为点P 在双曲线的右支上,则由双曲线的定义,可得|PF 1|-|PF 2|=2a =2,又|PF 2|=4,所以|PF 1|=6.因为坐标原点O 为F 1F 2的中点,M 为PF 2的中点. 所以|MO |=12|PF 1|=3. 答案 38.(2012·南京、盐城模拟)设椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)恒过定点A (1,2),则椭圆的中心到准线的距离的最小值________.解析 由题设知1a 2+4b 2=1,∴b 2=4a 2a 2-1,∴椭圆的中心到准线的距离d =a 2c ,由d 2=a 4c 2=a 4a 2-b 2=a 4a 2-4a 2a 2-1=a 2(a 2-1)a 2-5, 令a 2-5=t (t >0)得d 2=(t +5)(t +4)t =t +20t +9≥9+45(当且仅当t =25时取等号)∴d ≥2+5即椭圆的中心到准线的距离的最小值2+ 5. 答案 2+ 59.在平面直角坐标系xOy 中,已知对于任意实数k ,直线(3k +1)x +(k -3)y -(3k +3)=0恒过定点F .设椭圆C 的中心在原点,一个焦点为F ,且椭圆C 上的点到F 的最大距离为2+ 3. (1)求椭圆C 的方程;(2)设(m ,n )是椭圆C 上的任意一点,圆O :x 2+y 2=r 2(r >0)与椭圆C 有4个相异公共点,试分别判断圆O 与直线l 1:mx +ny =1和l 2:mx +ny =4的位置关系.解 (1)由(3k +1)x +(k -3)y -(3k +3)=0整理 得(3x +y -3)k +(x -3y -3)=0, 解方程组⎩⎨⎧3x +y -3=0,x -3y -3=0得F (3,0).设椭圆C 的长轴长、短轴长、焦距分别为2a,2b,2c ,则由题设知⎩⎨⎧c =3,a +c =2+ 3.于是a =2,b =1. 所以椭圆C 的方程为x 24+y 2=1.(2)因为圆O :x 2+y 2=r 2(r >0)与椭圆C 有4个相异公共点,所以b <r <a ,即1<r <2.因为点(m ,n )是椭圆x 24+y 2=1上的点,所以m 24+n 2=1, 且-2≤m ≤2. 所以m 2+n 2=34m 2+1∈[1,2].于是圆心O 到直线l 1的距离d 1=1m 2+n 2≤1<r , 圆心O 到直线l 2的距离d 2=4m 2+n 2≥2>r . 故直线l 1与圆O 相交,直线l 2与圆O 相离.10.已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1. (1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的一点,OPOM =λ,求点M 的轨迹方程,并说明轨迹是什么曲线.解 (1)设椭圆长半轴长及半焦距分别为a ,c ,由已知得⎩⎨⎧a -c =1,a +c =7,解得⎩⎨⎧a =4,c =3.又∵b 2=a 2-c 2,∴b =7,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),其中x ∈[-4,4],由已知OP 2OM 2=λ2及点P 在椭圆C 上可得9x 2+11216(x 2+y 2)=λ2,整理得(16λ2-9)x 2+16λ2y 2=112,其中x ∈[-4,4]. ①当λ=34时,化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4).轨迹是两条平行于x 轴的线段.②当λ≠34时,方程变形为x 211216λ2-9+y 211216λ2=1,其中x ∈[-4,4].当0<λ<34时,点M 的轨迹为中心在原点、实轴在y 轴上的双曲线满足-4≤x ≤4的部分;当34<λ<1时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆满足-4≤x ≤4的部分;当λ≥1时,点M 的轨迹为中心在原点,长轴在x 轴上的椭圆. 11.(2013·南京、盐城模拟)在平面直角坐标系xOy 中,过点A (-2,-1)椭圆C ∶x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,短轴端点为B 1、B 2,FB 1→·FB 2→=2b 2. (1)求a 、b 的值;(2)过点A 的直线l 与椭圆C 的另一交点为Q ,与y 轴的交点为R .过原点O 且平行于l 的直线与椭圆的一个交点为P .若AQ ·AR =3OP 2,求直线l 的方程. 解 (1)因为F (-c,0),B 1(0,-b ),B 2(0,b ),所以FB 1→=(c ,-b ),FB 2→=(c ,b ).因为FB 1→·FB 2→=2b 2, 所以c 2-b 2=2b 2.① 因为椭圆C 过A (-2,-1),代入得,4a 2+1b 2=1.②由①②解得a 2=8,b 2=2. 所以a =22,b = 2.(2)由题意,设直线l 的方程为y +1=k (x +2).由⎩⎪⎨⎪⎧y +1=k (x +2),x 28+y 22=1得(x +2)[(4k 2+1)(x +2)-(8k +4)]=0.因为x +2≠0,所以x +2=8k +44k 2+1,即x Q +2=8k +44k 2+1.由题意,直线OP 的方程为y =kx . 由⎩⎪⎨⎪⎧y =kx ,x 28+y 22=1,得(1+4k 2)x 2=8.则x 2P =81+4k 2, 因为AQ ·AR =3OP 2.所以|x Q -(-2)|×|0-(-2)|=3x 2P . 即⎪⎪⎪⎪⎪⎪8k +44k 2+1×2=3×81+4k 2.解得k =1,或k =-2.当k =1时,直线l 的方程为x -y +1=0, 当k =-2时,直线l 的方程为2x +y +5=0. 备课札记:。
江苏省2014年高考数学(文)二轮复习专题提升训练:16 立体几何中的向量方法
![江苏省2014年高考数学(文)二轮复习专题提升训练:16 立体几何中的向量方法](https://img.taocdn.com/s3/m/a46429dd26fff705cc170a57.png)
常考问题16 立体几何中的向量方法(建议用时:80分钟)1.(2013·新课标全国Ⅱ卷)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .(1)证明:BC 1∥平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点.又D 是AB 的中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC .以C 为坐标原点,CA→的方向为x 轴正方向,CB →的方向为y轴正方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m =(x 2,y 2,z 2)是平面A 1CE 的法向量, 则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.即⎩⎨⎧2y 2+z 2=0,2x 2+2z 2=0,可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63.2.(2013·陕西卷)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2. (1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.(1)证明 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1=2, ∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0), A 1(0,0,1).由A 1B 1→=AB →,易得B 1(-1,1,1). ∵A 1C →=(-1,0,-1),BD →=(0,-2,0), BB 1→=(-1,0,1). ∴A 1C →·BD →=0,A 1C →·BB 1→=0, ∴A 1C ⊥BD ,A 1C ⊥BB 1, 又BD ∩BB 1=B , ∴A 1C ⊥平面BB 1D 1D .(2)解 设平面OCB 1的法向量n =(x ,y ,z ). ∵OC →=(-1,0,0),OB 1→=(-1,1,1), ∴⎩⎪⎨⎪⎧n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎨⎧x =0,y =-z ,取n =(0,1,-1), 由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量, ∴cos θ=|cos 〈n ,A 1C →〉|=12×2=12. 又∵0≤θ≤π2,∴θ=π3.3.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 的中点.(1)求证:平面EAC ⊥平面PBC ;(2)若二面角P -AC -E 的余弦值为63,求直线P A 与平面EAC 所成角的正弦值.(1)证明 ∵PC ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥PC .∵AB =2,AD =CD =1,∴AC =BC = 2. ∴AC 2+BC 2=AB 2.∴AC ⊥BC . 又BC ∩PC =C ,∴AC ⊥平面PBC . ∵AC ⊂平面EAC , ∴平面EAC ⊥平面PBC .(2)解 如图,以点C 为原点,DA→,CD →,CP →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0),设P (0,0,a )(a >0),则E ⎝ ⎛⎭⎪⎫12,-12,a 2,CA →=(1,1,0),CP →=(0,0,a ),CE→=⎝ ⎛⎭⎪⎫12,-12,a 2.取m =(1,-1,0),则m ·CA →=m ·CP →=0,m 为面P AC 的法向量.设n =(x ,y ,z )为面EAC 的法向量,则n ·CA →=n ·CE →=0,即⎩⎨⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2,则n =(a ,-a ,-2),依题意,|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2.于是n =(2,-2,-2),P A →=(1,1,-2).设直线P A 与平面EAC 所成角为θ,则sin θ=|cos 〈P A →,n 〉|=P A →·n |P A ||n |=23,即直线P A 与平面EAC 所成角的正弦值为23.4.(2013·辽宁卷)如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点.(1)求证:平面P AC ⊥平面PBC ;(2)若AB =2,AC =1,P A =1,求二面角C -PB -A 的余弦值.(1)证明 由AB 是圆的直径,得AC ⊥BC , 由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC . 又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC , 所以BC ⊥平面P AC .又BC ⊂平面PBC , 所以平面PBC ⊥平面P AC .(2)解 过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴、y 轴、z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC = 3. 因为P A =1,所以A (0,1,0),B (3,0,0),P (0,1,1). 故C B →=(3,0,0),C P →=(0,1,1). 设平面BCP 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧C B →·n 1=0,C P →·n 1=0,所以⎩⎨⎧3x 1=0,y 1+z 1=0,不妨令y 1=1,则n 1=(0,1,-1). 因为A P →=(0,0,1),A B →=(3,-1,0), 设平面ABP 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧A P →·n 2=0,A B →·n 2=0,所以⎩⎨⎧z 2=0,3x 2-y 2=0,不妨令x 2=1,则n 2=(1,3,0). 于是cos 〈n 1,n 2〉=322=64.所以由题意可知二面角C -PB -A 的余弦值为64. 5.(2013·合肥第二次质检)在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,且P A ⊥平面ABCD . (1)求证:PC ⊥BD ;(2)过直线BD 且垂直于直线PC 的平面交PC 于点E ,且三棱锥E -BCD 的体积取到最大值. ①求此时四棱锥E -ABCD 的高; ②求二面角A -DE -B 的正弦值的大小.(1)证明 连接AC ,因为四边形ABCD 是正方形,所以BD ⊥AC .因为P A ⊥平面ABCD ,所以P A ⊥BD .又AC ∩P A =A ,所以BD ⊥平面P AC . 又PC ⊂平面P AC ,所以PC ⊥BD .(2)解 ①设P A =x ,三棱锥E -BCD 的底面积为定值,在△PBC 中,易知PB =x 2+1,PC =x 2+2,又BC =1,故△PBC 直角三角形.又BE ⊥PC ,得EC =1x 2+2,可求得该三棱锥的高h =x x 2+2=1x +2x.当且仅当x =2x ,即x =2时,三棱锥E -BCD 的体积取到最大值,所以h =24.此时四棱锥E -ABCD 的高为24.②以点A 为原点,AB ,AD ,AP 所在直线为坐标轴建立空间直角坐标系,则A (0,0,0),C (1,1,0),D (0,1,0),P (0,0,2),易求得CE =14CP . 所以AE →=AC →+14CP →=⎝ ⎛⎭⎪⎫34,34,24,AD →=(0,1,0).设平面ADE 的法向量n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧AE →·n =0,AD →·n =0,即⎩⎨⎧34x +34y +24z =0,y =0,令x =2,则n 1=(2,0,-3),同理可得平面BDE 的法向量n 2=CP →=(-1,-1,2),所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-22211.所以sin 〈n 1,n 2〉=3311.所以二面角A -DE -B 的正弦值的大小为3311.6.(2013·天津卷)如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长.解 如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)证明:易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE .(2)B 1C →=(1,-2,-1).设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎨⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1).由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m ||B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217,所以二面角B 1-CE -C 1的正弦值为217.(3)AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →||AB →|=2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1, 于是λ3λ2+2λ+1=26,解得λ=13,所以AM = 2.。
【创新设计】(江苏专用)2014届高三数学二轮总复习 常考问题16 立体几何中的向量方法 理
![【创新设计】(江苏专用)2014届高三数学二轮总复习 常考问题16 立体几何中的向量方法 理](https://img.taocdn.com/s3/m/5821171f915f804d2a16c11e.png)
常考问题16 立体几何中的向量方法[真题感悟](2013·江苏卷)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.解 (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD→=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53. 因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. [考题分析]高考对本内容的考查主要有:(1)空间向量的坐标表示及坐标运算,属B 级要求;(2)线线、线面、面面平行关系判定,属B 级要求;(3)线线、线面、面面垂直的判定,属B 级要求;(4)求异面直线、直线与平面、平面与平面所成角,属B级要求.。
江苏省2014年高考数学(文)二轮复习专题提升训练:阶段检测卷1
![江苏省2014年高考数学(文)二轮复习专题提升训练:阶段检测卷1](https://img.taocdn.com/s3/m/44604edf240c844769eaee17.png)
阶段检测卷(一)一、填空题(每小题5分,共70分)1.集合M ={x |xx -1>0},集合N ={y |y =},则M ∩N 等于________.解析 M =(-∞,0)∪(1,+∞),N =[0,+∞), 所以M ∩N =(1,+∞). 答案 (1+∞)2.已知函数f (x )=⎩⎨⎧-x 3,x ≤0,2x ,x >0,则f [f (-1)]等于________.解析 ∵f (-1)=-(-1)3=1, ∴f [f (-1)]=f (1)=2. 答案 23.(2012·山东卷改编)函数f (x )=1ln (x +1)+4-x 2的定义域为________.解析 根据使函数有意义的条件求解.由⎩⎨⎧x +1>0, ln (x +1)≠0, 4-x 2≥0,得-1<x ≤2,且x ≠0.答案 (-1,0)∪(0,2]4.若0<a <b <1<c ,m =log a c ,n =log b c ,r =a c, 则m ,n ,r 的大小关系是________. 解析 因为m =log a c <log a 1=0,同理n <0, 作商m n =log a clog bc =log a b <log a a =1,即mn <1,又m ,n <0, 从而有0>m >n , 即r =a c >0,故r >m >n . 答案 r >m >n5.已知定义在R 上的函数f (x )的图象关于原点对称,其最小正周期为4,且x ∈(0,2)时,f (x )=log 2(1+3x ),则f (2 015)=______.解析 由函数f (x )的最小正周期为4,所以f (2 015)=f (503×4+3)=f (3)=f (-1),又函数f (x )的图象关于原点对称,知f (-x )=-f (x ),故f (2 015)=f (-1)=-f (1)=-log 24=-2. 答案 -26.若函数f (x )=ln x -12ax 2-2x (a ≠0)存在单调递减区间,则实数a 的取值范围是______.解析 对函数f (x )求导,得f ′(x )=-ax 2+2x -1x (x >0).依题意,得f ′(x )<0在(0,+∞)上有解,即ax 2+2x -1>0在(0,+∞)上有解,∴Δ=4+4a >0且方程ax 2+2x -1=0至少有一个正根,∴a >-1,又∵a ≠0, ∴-1<a <0或a >0. 答案 (-1,0)∪(0,+∞) 7.设f (x )=x 3+log 2()x +x 2+1,则不等式f (m )+f (m 2-2)≥0(m ∈R)成立的充要条件是________.(注:填写m 的取值范围)解析 判断函数是奇函数,且在R 上是递增函数,∴f (m )+f (m 2-2)≥0即为f (m 2-2)≥-f (m )=f (-m ),∴m 2-2≥-m ,解得m ≥1或m ≤-2. 答案 m ≥1或m ≤-28.(2013·盐城模拟)若y =f (x )是定义在R 上周期为2的周期函数,且f (x )是偶函数,当x ∈[0,1]时,f (x )=2x -1,则函数g (x )=f (x )-log 3|x |的零点个数为________.解析 利用数形结合的方法求解,在同一坐标系中作出函数y =f (x ),y =log 3|x |的图象如图,由图象可知原函数有4个零点.答案 49.已知函数f (x )=13x 3+ax 2-bx (a ,b ∈R),若y =f (x )在区间[-1,2]上是单调减函数,则a +b 的最小值为______.解析 由题意可知f ′(x )=x 2+2ax -b ≤0在区间[-1,2]上恒成立,∴1-2a-b ≤0且4+4a -b ≤0,作出可行域如图,当直线经过两直线的交点⎝ ⎛⎭⎪⎫-12,2时,取得最小值32.答案 3210.(2012·南通密卷)函数f (x )的定义域为D ,若满足①f (x )在D 内是单调函数,②存在[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域为[-b ,-a ],那么y =f (x )叫做对称函数,现有f (x )=2-x -k 是对称函数,那么k 的取值范围是________. 解析 由于f (x )=2-x -k 在(-∞,2]上是减函数,所以⎩⎪⎨⎪⎧2-a -k =-a 2-b -k =-b ⇒关于x 的方程2-x -k =-x 在(-∞,2]上有两个不同实根,通过换元结合图象可得k ∈⎣⎢⎡⎭⎪⎫2,94.答案 ⎣⎢⎡⎭⎪⎫2,9411.利民工厂某产品的年产量在100吨至300吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量为________.解析 由于每吨的成本与产量之间的函数关系式为g (x )=y x =x 10+4 000x -30(100≤x ≤300),由基本不等式得g (x )=x 10+4 000x -30≥2x 10·4 000x -30=10,当且仅当x 10=4 000x 时取得等号,此时x =200. 答案 20012.已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ′(x )的图象如图,下列关于函数f (x )的四个命题:①函数y =f (x )是周期函数; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4;④当1<a <2时,函数y =f (x )-a 有4个零点.其中真命题的个数是________. 解析 首先排除①,不能确定周期性,f (x )在[0,2]上时f ′(x )<0,故②正确,当x ∈[-1,t ]时,f (x )的最大值是2,结合原函数的单调性知0≤t ≤5,所以排除③;不能确定在x =2时函数值和a 的大小,故不能确定几个零点,故④错误. 答案 113.若a >1,设函数f (x )=a x +x -4的零点为m ,函数g (x )=log a x +x -4的零点为n ,则1m +1n 的最小值为________.解析 函数f (x )=a x +x -4的零点是函数y =a x 与函数y =4-x 图象交点A 的横坐标,函数g (x )=log a x +x -4的零点是函数y =log a x 与函数y =4-x 图象交点B 的横坐标.由于指数函数与对数函数互为反函数,其图象关于直线y =x 对称,且直线y =4-x 与直线y =x 垂直,故直线y =4-x 与直线y =x 的交点(2,2)即是线段AB 的中点,所以m +n =4,且m >0,n >0.所以1m +1n =14(m +n )⎝ ⎛⎭⎪⎫1m +1n =14⎝ ⎛⎭⎪⎫2+m n +n m ≥1,当且仅当m =n 时等号成立.答案 114.对函数f (x )=x sin x ,现有下列命题:①函数f (x )是偶函数;②函数f (x )的最小正周期是2π;③点(π,0)是函数f (x )的图象的一个对称中心;④函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递增,在区间⎣⎢⎡⎦⎥⎤-π2,0上单调递减.其中是真命题的是________.(写出所有真命题的序号)解析 ∵定义域关于原点对称,且f (-x )=f (x ),∴函数f (x )是偶函数,①正确;∵f (x +2π)≠f (x ),∴2π不是函数f (x )的周期,②错误;∵f ⎝ ⎛⎭⎪⎫π2≠-f ⎝ ⎛⎭⎪⎫3π2,∴点(π,0)不是函数f (x )的图象的一个对称中心,③错误; ∵f ′(x )=sin x +x cos x ≥0在区间⎣⎢⎡⎦⎥⎤0,π2上恒成立,∴函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递增,又∵函数f (x )是偶函数,∴在区间⎣⎢⎡⎦⎥⎤-π2,0上单调递减,④正确,所以真命题的序号是①④. 答案 ①④ 二、解答题(共90分)15.(本小题满分14分)(2013·阳光启学大联考)已知函数f (x )=ln xx . (1)确定y =f (x )在(0,+∞)上的单调性;(2)若a >0,函数h (x )=xf (x )-x -ax 2在(0,2)上有极值,求实数a 的取值范围. 解 (1)对已知函数f (x )求导得, f ′(x )=1-ln xx 2.由1-ln x =0,得x =e.∴当x ∈(0,e)时,f ′(x )>0;当x ∈(e ,+∞)时,f ′(x )<0, ∴函数f (x )在(0,e]上单调递增, 在[e ,+∞)上单调递减. (2)由h (x )=xf (x )-x -ax 2, 可得h (x )=ln x -x -ax 2,则h ′(x )=1x -1-2ax =-2ax 2-x +1x.h (x )=xf (x )-x -ax 2在(0,2)上有极值的充要条件是φ(x )=-2ax 2-x +1在(0,2)上有零点,∴φ(0)·φ(2)<0,解得a >-18.综上所述,a 的取值范围是(0,+∞).16.(本小题满分14分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ).当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元),每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部售完. (1)写出年利润L (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 解 (1)由题意可得L (x )=⎩⎪⎨⎪⎧0.05×1 000x -⎝ ⎛⎭⎪⎫13x 2+10x +250,0<x <80,0.05×1 000x -(51x +10 000x -1 450+250),x ≥80,即L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250,0<x <80,1 200-(x +10 000x ),x ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950, ∴当x =60时,L (x )取得最大值,且L (60)=950. 当x ≥80时, L (x )=1 200-(x +10 000x )≤1 200-2x ·10 000x=1 200-200=1 000,∴当且仅当x =10 000x ,即x =100时,L (x )取得最大值,且L (100)=1 000>950. 综上所述,当x =100时,L (x )取得最大值1 000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. 17.(本小题满分14分)已知函数f (x )=a ln(2x +1)+bx +1.(1)若函数y =f (x )在x =1处取得极值,且曲线y =f (x )在点(0,f (0))处的切线与直线2x +y -3=0平行,求a 的值; (2)若b =12,试讨论函数y =f (x )的单调性.解 (1)函数f (x )的定义域为⎝ ⎛⎭⎪⎫-12,+∞,f ′(x )=2a 2x +1+b =2bx +2a +b 2x +1,由题意可得⎩⎨⎧f ′(1)=0,f ′(0)=-2,解得⎩⎪⎨⎪⎧a =-32,b =1,所以a =-32.(2)若b =12,则f (x )=a ln(2x +1)+12x +1, 所以f ′(x )=2x +4a +14x +2,1° 令f ′(x )=2x +4a +14x +2>0,由函数定义域可知,4x +2>0,所以2x +4a +1>0,①当a ≥0时,x ∈⎝ ⎛⎭⎪⎫-12,+∞,f ′(x )>0,函数f (x )单调递增;②当a <0时,x ∈⎝ ⎛⎭⎪⎫-2a -12,+∞,f ′(x )>0,函数f (x )单调递增.2° 令f ′(x )=2x +4a +14x +2<0,即2x +4a +1<0,①当a ≥0时,不等式f ′(x )<0无解;②当a <0时,x ∈⎝ ⎛⎭⎪⎫-12,-2a -12,f ′(x )<0,函数f ′(x )单调递减.综上,当a ≥0时,函数f (x )在区间⎝ ⎛⎭⎪⎫-12,+∞为增函数;当a <0时,函数f (x )在区间⎝ ⎛⎭⎪⎫-2a -12,+∞为增函数;在区间⎝ ⎛⎭⎪⎫-12,-2a -12为减函数. 18.(本小题满分16分)(2013·扬州中学质检)已知二次函数f (x )的二次项系数为a ,且不等式f (x )>2x 的解集为(-1,3).(1)若函数g (x )=xf (x )在区间⎝ ⎛⎭⎪⎫-∞,a 3内单调递减,求a 的取值范围;(2)当a =-1时,证明方程f (x )=2x 3-1仅有一个实数根;(3)当x ∈[0,1]时,试讨论|f (x )+(2a -1)x +3a +1|≤3成立的充要条件. 解 (1)∵f (x )-2x >0的解集为(-1,3),∴可设f (x )-2x =a (x +1)(x -3),且a <0, 因而f (x )=a (x +1)(x -3)+2x =ax 2+2(1-a )x -3a ①g (x )=xf (x )=ax 3+2(1-a )x 2-3ax , ∵g (x )在区间⎝ ⎛⎭⎪⎫-∞,a 3内单调递减,∴g ′(x )=3ax 2+4(1-a )x -3a 在⎝ ⎛⎭⎪⎫-∞,a 3上的函数值非正, 由于a <0,对称轴x =2(a -1)3a >0,故只需g ′⎝ ⎛⎭⎪⎫a 3=a 33+43a (1-a )-3a ≤0,注意到a <0,∴a 2+4(1-a )-9≥0,得a ≤-1或a ≥5(舍去). 故所求a 的取值范围是(-∞,-1].(2)a =-1时,方程f (x )=2x 3-1仅有一个实数根,即证方程2x 3+x 2-4x -4=0仅有一个实数根.令h (x )=2x 3+x 2-4x -4,由h ′(x )=6x 2+2x -4=0,得x 1=-1,x 2=23,易知h (x )在(-∞,-1),⎝ ⎛⎭⎪⎫23,+∞上递增,在⎝ ⎛⎭⎪⎫-1,23上递减,h (x )的极大值h (-1)=-1<0,故函数h (x )的图象与x 轴仅有一个交点,∴a =-1时,方程f (x )=2x 3-1仅有一个实数根,得证.(3)设r (x )=f (x )+(2a -1)x +3a +1=ax 2+x +1,r (0)=1,对称轴为x =-12a ,由题意,得⎩⎪⎨⎪⎧-12≤a <0,r (1)=a +2≤3或⎩⎪⎨⎪⎧a <-12,r ⎝ ⎛⎭⎪⎫-12a =1-14a ≤3,r (1)=a +2≥-3,解出-5≤a <0,故使|f (x )+(2a -1)x +3a +1|≤3成立的充要条件是-5≤a <0. 19.(本小题满分16分)已知函数f (x )=ln ax -x -ax (a ≠0). (1)求函数f (x )的单调区间及最值;(2)求证:对于任意正整数n ,均有1+12+13+…+1n ≥ln e nn !(e 为自然对数的底数);(3)当a =1时,是否存在过点(1,-1)的直线与函数y =f (x )的图象相切?若存在,有多少条?若不存在,请说明理由. (1)解 由题意得f ′(x )=x -ax 2.当a >0时,函数f (x )的定义域为(0,+∞),此时函数在(0,a )上是减函数,在(a ,+∞)上是增函数,f (x )min =f (a )=ln a 2,无最大值.当a <0时,函数f (x )的定义域为(-∞,0),此时函数在(-∞,a )上是减函数,在(a,0)上是增函数,f (x )min =f (a )=ln a 2,无最大值.(2)证明 取a =1,由(1)知f (x )=ln x -x -1x ≥f (1)=0,故1x ≥1-ln x =ln ex , 取x =1,2,3,…,n ,则1+12+13+…+1n ≥ln e nn !.(3)假设存在这样的切线,设其中一个切点为T ⎝⎛⎭⎪⎫x 0,ln x 0-x 0-1x 0,∴切线方程为y +1=x 0-1x 20(x -1),将点T 坐标代入得ln x 0-x 0-1x 0+1=(x 0-1)2x 20,即ln x 0+3x 0-1x 20-1=0,①设g (x )=ln x +3x -1x 2-1,则g ′(x )=(x -1)(x -2)x 3.∵x >0,∴g (x )在区间(0,1),(2,+∞)上是增函数,在区间(1,2)上是减函数, 故g (x )极大值=g (1)=1>0,g (x )极小值=g (2)=ln 2+14>0. 又g ⎝ ⎛⎭⎪⎫14=ln 14+12-16-1=-ln 4-5<0.注意到g (x )在其定义域上的单调性,知g (x )=0仅在⎝ ⎛⎭⎪⎫14,1内有且仅有一根,方程①有且仅有一解,故符合条件的切线仅有一条. 20.(本小题满分16分)已知函数f (x )=a x +x 2,g (x )=x ln a ,a >1. (1)求证:函数F (x )=f (x )-g (x )在(0,+∞)上单调递增; (2)若函数y =⎪⎪⎪⎪⎪⎪F (x )-b +1b -3有四个零点,求b 的取值范围;(3)若对于任意的x 1,x 2∈[-1,1]时,都有|F (x 2)-F (x 1)|≤e 2-2恒成立,求a 的取值范围.(1)证明 ∵F (x )=f (x )-g (x )=a x +x 2-x ln a , ∴F ′(x )=a x ·ln a +2x -ln a =(a x -1)ln a +2x .∵a >1,x >0,∴a x -1>0,ln a >0,2x >0,∴当x ∈(0,+∞)时,F ′(x )>0,即函数F (x )在区间(0,+∞)上单调递增. (2)解 由(1)知当x ∈(-∞,0)时,F ′(x )<0,∴F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. ∴F (x )的最小值为F (0)=1.由⎪⎪⎪⎪⎪⎪F (x )-b +1b -3=0,得F (x )=b -1b +3或F (x )=b -1b -3,∴要使函数y =⎪⎪⎪⎪⎪⎪F (x )-b +1b -3有四个零点,只需⎩⎪⎨⎪⎧b -1b +3>1,b -1b -3>1,即b -1b >4,即b 2-4b -1b>0,解得b >2+5或2-5<b <0.故b 的取值范围是(2-5,0)∪(2+5,+∞).(3)解 ∵∀x 1,x 2∈[-1,1],由(1)知F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴F (x )min =F (0)=1.从而再来比较F (-1)与F (1)的大小即可. F (-1)=1a +1+ln a ,F (1)=a +1-ln a , ∴F (1)-F (-1)=a -1a -2ln a . 令H (x )=x -1x -2ln x (x >0),则H ′(x )=1+1x 2-2x =x 2-2x +1x 2=(x -1)2x 2>0,∴H (x )在(0,+∞)上单调递增. ∵a >1,∴H (a )>H (1)=0.∴F (1)>F (-1). ∴|F (x 2)-F (x 1)|的最大值为|F (1)-F (0)|=a -ln a ,∴要使|F (x 2)-F (x 1)|≤e 2-2恒成立,只需a -ln a ≤e 2-2即可.令h (a )=a -ln a (a >1),h ′(a )=1-1a >0,∴h (a )在(1,+∞)上单调递增.∵h (e 2)=e 2-2,∴只需h(a)≤h(e2),即1<a≤e2.故a的取值范围是(1,e2].11。
江苏2014高考数学-立体几何专题
![江苏2014高考数学-立体几何专题](https://img.taocdn.com/s3/m/428789d7b4daa58da1114a98.png)
PABCOM(第16立体几何总练习16.如图,四棱锥P ABCD -中,底面ABCD 为菱形,060DAB ∠=,平面PCD ⊥底面ABCD ,E 是AB 的中点,G 为PA 上的一点. (1)求证:平面GDE ⊥平面PCD ; (2)若//PC 平面DGE ,求PGGA 的值.16. 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,BD ⊥面PAC ,AC =10,PA =6,cos ∠PCA =45,M 是PC 的中点. (Ⅰ)证明PC ⊥平面BMD ;(Ⅱ)若三棱锥M -BCD 的体积为14,求菱形ABCD 的边长.16.(本小题满分14分)如图,在三棱锥P ABC -中,除棱PC 外,其余棱均等长,M 为棱AB 的中点,O 为线段MC 上 靠近点M 的三等分点.(1)若PO MC ⊥,求证:PO ⊥平面ABC ;(2)试在平面PAB 上确定一点Q ,使得//OQ 平面PAC ,且//OQ 平面PBC ,并给出证明.点E 在棱1CC 的延15(14分).如图,在长方体1111ABCD A B C D -中,PB CD E G长线上,且11112CC C E BC AB ====. (Ⅰ)求证:1D E ∥平面1ACB ; (Ⅱ)求证:平面11D B E ⊥平面1DCB ; (Ⅲ)求四面体11D B AC 的体积.16.、如图,已知E ,F 分别是正方形ABCD 边BC 、CD 的中点,EF 与AC 交于点O ,PA 、NC 都垂直于平面ABCD ,且4PA AB ==, 2NC =,M 是线段PA 上一动点.(Ⅰ)求证:平面PAC ⊥平面NEF ;(Ⅱ)若//PC 平面MEF ,试求:PM MA 的值;16.在四棱柱ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,底面ABCD 为菱形,∠BAD =60°,P 为AB 的中点,Q 为CD 1的中点.(1)求证:DP ⊥平面A 1ABB 1; (2)求证:PQ ∥平面ADD 1A 1.BEADC1A1B 1C 1D 第16题图17、(本题满分14分)如图,长方体1111D C B A ABCD -中,a AA AB ==1,a BC 2=,M 是AD 中点,N 是11C B 中点.(1)求证:1A 、M 、C 、N 四点共面; (2)求证:MC BD ⊥1;(3)求证:平面MCN A 1⊥平面11BD A ;16.(本小题满分14分)如图,在四棱锥P ABCD -中,AB ∥DC ,2DC AB =,AP AD =,PB ⊥AC ,BD ⊥AC ,E 为PD 的中点. 求证:(1)AE ∥平面PBC ;(2)PD ⊥平面ACE .16.如图,在四面体ABCD 中,AB AC DB DC ===,点E 是BC 的中点,点F 在线段AC 上,且AF AC λ=.(1)若EF ∥平面ABD ,求实数λ的值;(2)求证:平面BCD ⊥平面AED .B 1 ABCD QPA 1C 1D 1ABCD A 1B 1C 1D 1MN(第16题图)EABDF。
(江苏专用)高考数学二轮复习 专题七 第1讲 立体几何中的向量方法提升训练 理(必做部分)-人教版高
![(江苏专用)高考数学二轮复习 专题七 第1讲 立体几何中的向量方法提升训练 理(必做部分)-人教版高](https://img.taocdn.com/s3/m/af2d330653ea551810a6f524ccbff121dd36c56a.png)
第1讲 立体几何中的向量方法1.(2015·全国Ⅰ卷)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3. 由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,可得EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2015·某某卷)如图所示,在多面体A 1B 1D 1DCBA ,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F .(1)证明:EF ∥B 1C ;(2)求二面角E A 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE .又B 1C ⊂面B 1CD 1.面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →.n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0, (-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E A 1D B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.3.(2014·新课标全国Ⅰ卷)如图,三棱柱ABC A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A A 1B 1C 1的余弦值. (1)证明 连接BC 1,交B 1C 于点O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点. 又AB ⊥B 1C ,AB ∩BO =B ,所以B 1C ⊥平面ABO . 由于AO ⊂平面ABO ,故B 1C ⊥AO . 又B 1O =CO ,故AC =AB 1.(2)解 因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO . 又因为AB =BC ,所以△BOA ≌△BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两互相垂直.以O 为坐标原点,OB →,OB 1→,OA →的方向分别为x 轴、y 轴、z 轴的正方向,|OB →|为单位长,建立如图所示的空间直角坐标系Oxyz .因为∠CBB 1=60°, 所以△CBB 1为等边三角形.又AB =BC ,OC =OA ,则A ⎝ ⎛⎭⎪⎫0,0,33,B (1,0,0),B 1⎝ ⎛⎭⎪⎫0,33,0,C ⎝ ⎛⎭⎪⎫0,-33,0. AB 1→=⎝⎛⎭⎪⎫0,33,-33,A 1B 1→=AB →=⎝ ⎛⎭⎪⎫1,0,-33,B 1C 1→=BC →=⎝ ⎛⎭⎪⎫-1,-33,0. 设n =(x ,y ,z )是平面AA 1B 1的法向量,则 ⎩⎪⎨⎪⎧n ·AB 1→=0,n ·A 1B 1→=0,即⎩⎪⎨⎪⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量,则⎩⎪⎨⎪⎧m ·A 1B 1→=0,m ·B 1C 1→=0.同理可取m =(1,-3,3).则cos 〈n ,m 〉=n·m |n||m|=17.所以二面角A A 1B 1C 1的余弦值为17.4.(2015·某某卷)如图,在三棱柱ABCA 1B 1C 1中,∠BAC =90°,AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1BDB 1的平面角的余弦值.(1)证明 设E 为BC 的中点,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE . 因为AB =AC ,所以AE ⊥BC . 故AE ⊥平面A 1BC .由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B ,从而DE ∥A 1A 且DE =A 1A ,所以A 1AED 为平行四边形.故A 1D ∥AE .又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC . (2)解 法一 作A 1F ⊥BD 且A 1F ∩BD =F ,连接B 1F . 由AE =EB =2,∠A 1EA =∠A 1EB =90°,得A 1B =A 1A =4. 由A 1D =B 1D ,A 1B =B 1B ,得△A 1DB 与△B 1DB 全等.由A 1F ⊥BD ,得B 1F ⊥BD ,因此∠A 1FB 1为二面角A 1BDB 1的平面角. 由A 1D =2,A 1B =4,∠DA 1B =90°,得BD =32,A 1F =B 1F =43.由余弦定理得cos∠A 1FB 1=-18.故二面角A 1BDB 1的平面角的余弦值为-18.法二 以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系Exyz ,如图所示.由题意知各点坐标如下:A 1(0,0,14),B (0,2,0),D (-2,0,14),B 1(-2,2,14).因此A 1B →=(0,2,-14),BD →=(-2,-2,14),DB 1→=(0,2,0).设平面A 1BD 的法向量为m =(x 1,y 1,z 1),平面B 1BD 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧2y 1-14z 1=0,-2x 1-2y 1+14z 1=0,可取m =(0,7,1).由⎩⎪⎨⎪⎧n ·DB 1→=0,n ·BD →=0,即⎩⎨⎧2y 2=0,-2x 2-2y 2+14z 2=0,可取n =(7,0,1).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=18.由题意可知,所求二面角的平面角是钝角,故二面角A 1BDB 1的平面角的余弦值为-18.5.(2014·某某卷)如图,在棱长为2的正方体ABCDA 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.解 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图所示的空间直角坐标系Dxyz .由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),(1)证明 当λ=1时,FP →=(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则m·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.6.如图,四棱柱ABCD A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE ;(2)求二面角B 1CEC 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长. 解 如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)证明 易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE .(2)B 1C →=(1,-2,-1).设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m=(-3,-2,1).由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m ||B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217,所以二面角B 1CEC 1的正弦值为217. (3)AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量.设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →||AB →|=2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1, 于是λ3λ2+2λ+1=26,解得λ=13(负值舍去),所以AM = 2.。
江苏省2014年高考数学(文)二轮复习专题提升训练:阶段检测卷2
![江苏省2014年高考数学(文)二轮复习专题提升训练:阶段检测卷2](https://img.taocdn.com/s3/m/9383b9c98bd63186bcebbc56.png)
阶段检测卷(二)一、填空题(每小题5分,共70分)1.已知α∈⎝ ⎛⎭⎪⎫π,3π2,cos α=-55,tan 2α等于________.解析 由于α∈⎝ ⎛⎭⎪⎫π,3π2,cos α=-55,则sin α=-1-cos 2α=-255,那么tan α=sin αcos α=2,则tan 2α=2tan α1-tan 2 α=-43. 答案 -432.已知向量a =(2,1),a ·b =10,|a +b |=52,则|b |等于________.解析 由于|a |=5,而|a +b |2=(a +b )2=a 2+2a ·b +b 2=5+2×10+b 2=(52)2,则有b 2=25,解得|b |=5. 答案 53.(2013·苏锡常镇调研)已知钝角α满足cos α=-35,则tan ⎝ ⎛⎭⎪⎫α2+π4的值为________.解析 因为α是钝角,所以α2是锐角, cos α=2cos 2α2-1=-35,所以cos α2=55,sin α2=255,tan α2=2, 所以tan ⎝ ⎛⎭⎪⎫α2+π4=2+11-2=-3.答案 -34.已知向量a ,b 满足|a |=2,|b |=1,且(a +b )⊥⎝ ⎛⎭⎪⎫a -52b ,则a 与b 的夹角为________.解析 因为(a +b )⊥⎝ ⎛⎭⎪⎫a -52b ,所以(a +b )·⎝ ⎛⎭⎪⎫a -52b =a 2-52b 2-32a·b =0.又因为|a |=2,|b |=1,所以4-52-32a·b =0.所以a·b =1.又a·b =|a ||b |cos 〈a ,b 〉=1,所以cos 〈a ,b 〉=12.又a 与b 的夹角的取值范围是[0,π],所以a 与b 的夹角为π3. 答案 π35.(2013·南京模拟)函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象如图所示,则f (0)=________.解析 由图知,A =2.函数的周期(用区间长度表示)为8π3-⎝ ⎛⎭⎪⎫-4π3=4π,∴2πω=4π,ω=12.又∵⎝ ⎛⎭⎪⎫-4π3,0在函数的图象上,∴2sin ⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫-4π3+φ=0, 得12×⎝ ⎛⎭⎪⎫-4π3+φ=0,即φ=2π3.∴函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫x 2+2π3,∴f (0)= 3. 答案36.若M 为△ABC 所在平面内一点,且满足(MB →-MC →)·(MB →+MC →-2MA →)=0,则△ABC 为________三角形.解析 由(MB →-MC →)·(MB →+MC →-2MA →)=0,可知CB →·(AB →+AC →)=0,设BC 的中点为D ,则AB →+AC →=2A D →,故CB →·AD →=0,所以CB →⊥AD →.又D 为BC 中点,故△ABC 为等腰三角形. 答案 等腰7.在△ABC 中,AB =2,AC =3,BC =4,则角A ,B ,C 中最大角的余弦值为________.解析 根据三角形的性质:大边对大角,由此可知角A 最大,由余弦定理得cos A =b 2+c 2-a 22bc =32+22-422×3×2=-14. 答案 -148.(2012·南京、盐城模拟)已知正△ABC 的边长为1,CP →=7CA →+3CB →,则CP →·AB →=________.解析 CP →·AB →=(7CA →+3CB →)·AB →=7CA →·AB →+3CB →·AB→=-72+32=-2. 答案 -29.(2013·盐城调研)△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,向量m =(2sin B,2-cos 2B ),n =⎝ ⎛⎭⎪⎫2sin 2⎝ ⎛⎭⎪⎫π4+B 2,-1,m ⊥n ,∠B =________.解析 由m ⊥n ,得m ·n =0,所以4sin B ·sin 2⎝ ⎛⎭⎪⎫π4+B 2+cos 2B -2=0,所以2sinB ⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+B +cos 2B -2=0, 即2sin B +2sin 2B +1-2sin 2B -2=0, 也即sin B =12,又因为0<B <π,所以B =π6或56π. 答案 π6或56π10.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________. 解析 设AB =c ,则AD =c ,BD =2c 3,BC =4c3, 在△ABD 中,由余弦定理得cos A =c 2+c 2-43c 22c2=13,sin A =223,在△ABC 中,由正弦定理得csin C =4c 3223,解得sin C=66. 答案 6611.在△ABC 所在的平面上有一点P 满足P A →+PB →+PC →=AB →,则△PBC 与△ABC 的面积之比是________.解析 因为P A →+PB →+PC →=AB →,所以P A →+PB →+PC →+BA →=0,即PC →=2AP →,所以点P 是CA 边上的靠近A 点的一个三等分点,故S △PBC S △ABC =PC AC =23. 答案 2312.在△ABC 中,若AB =1,AC =3|A B →+A C →|=|B C →|,则BA →·BC →|BC →|=______.解析 如图, AB→+AC →=AD →,依题意,得|AD →|=|BC →|,所以四边形ABDC 是矩形,∠BAC =90°. 因为AB =1,AC =3,所以BC =2.cos ∠ABC =AB BC =12,BA →·BC →|BC →|=|BA →|| BC →|cos ∠ABC| BC →|=|BA→|cos ∠ABC =12. 答案 1213.已知f (x )=sin x ,x ∈R ,g (x )的图象与f (x )的图象关于点⎝ ⎛⎭⎪⎫π4,0对称,则在区间[0,2π]上满足f (x )≤g (x )的x 的范围是________.解析 设(x ,y )为g (x )的图象上任意一点,则其关于点⎝ ⎛⎭⎪⎫π4,0对称的点为⎝ ⎛⎭⎪⎫π2-x ,-y ,由题意知该点在f (x )的图象上,所以-y =sin ⎝ ⎛⎭⎪⎫π2-x , 即g (x )=-sin ⎝ ⎛⎭⎪⎫π2-x =-cos x ,由sin x ≤-cos x ,得sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤0,又因为x ∈[0,2π],从而解得3π4≤x ≤7π4. 答案 ⎣⎢⎡⎦⎥⎤3π4,7π414.(2013·泰州模拟)如图,在直角三角形ABC 中,AC =3,BC =1,点M ,N 分别是AB ,BC 的中点,点P 是△ABC (包括边界)内任一点,则AN →·MP →的取值范围为________. 解析 以点C 为原点,CB 所在直线为x 轴,CA 所在直线为y 轴,建立如图所示直角坐标系,设P (x ,y ),则由题可知B (1,0),A (0,3),N ⎝ ⎛⎭⎪⎫12,0,M ⎝ ⎛⎭⎪⎫12,32,所以AN →=⎝ ⎛⎭⎪⎫12,-3,MP →=⎝ ⎛⎭⎪⎫x -12,y -32,所以AN →·MP→=x 2-14-3y +32=x 2-3y +54,直线AB 的方程为3x +y -3=0.由题可知⎩⎨⎧x ≥0,y ≥0,3x +y -3≤0,由线性规划知识可知,当直线x 2-3y +54-z =0过点A 时有最小值-74,过点B 时有最大值74. 答案 ⎣⎢⎡⎦⎥⎤-74,74二、解答题(共90分)15.(本小题满分14分)已知a =(sin α,1), b =(cos α,2),α∈⎝ ⎛⎭⎪⎫0,π4.(1)若a ∥b ,求tan α的值; (2)若a ·b =125,求sin ⎝ ⎛⎭⎪⎫2α+π4的值.解 (1)因为a ∥b ,所以2sin α=cos α,所以tan α=12. (2)因为a ·b =125,所以sin αcos α+2=125即sin 2α=45. 因为α∈⎝ ⎛⎭⎪⎫0,π4,所以2α∈⎝ ⎛⎭⎪⎫0,π2,所以cos 2α=1-sin 22α=35.所以sin ⎝ ⎛⎭⎪⎫2α+π4=sin 2αcos π4+cos 2αsin π4=45×22+35×22=7210.16.(本小题满分14分)已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π2,π.(1)求f (x ) 的零点;(2)求f (x )的最大值和最小值.解 (1)令f (x )=0得sin x ·(3sin x +cos x )=0, 所以sin x =0,或tan x =-33. 由sin x =0,x ∈⎣⎢⎡⎦⎥⎤π2,π,得x =π;由tan x =-33,x ∈⎣⎢⎡⎦⎥⎤π2,π,得x =5π6.综上,函数f (x )在⎣⎢⎡⎦⎥⎤π2,π上的零点为5π6或π.(2)f (x )=32(1-cos 2x )+12sin 2x =sin ⎝ ⎛⎭⎪⎫2x -π3+32.因为x ∈⎣⎢⎡⎦⎥⎤π2,π,所以2x -π3∈⎣⎢⎡⎦⎥⎤2π3,5π3.当2x -π3=2π3,即x =π2时,f (x )的最大值为3; 当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32.17.(本小题满分14分)已知函数f (x )=M sin(ωx +φ)(M >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若(2a -c )cos B =b cos C ,求f ⎝ ⎛⎭⎪⎫A 2的取值范围.解 (1)由图象知M =1,f (x )的最小正周期T =4×⎝ ⎛⎭⎪⎫5π12-π6=π,故ω=2πT =2.将点⎝ ⎛⎭⎪⎫π6,1代入f (x )的解析式得sin ⎝ ⎛⎭⎪⎫π3+φ=1,即π3+φ=2k π+π2,φ=2k π+π6,k ∈Z , 又|φ|<π2∴φ=π6.故函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.(2)由(2a -c )cos B =b cos C ,得 (2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin(B +C )=sin A . ∵sin A ≠0,∴cos B =12, ∴B =π3,∴A +C =2π3. ∵f ⎝ ⎛⎭⎪⎫A 2=sin ⎝ ⎛⎭⎪⎫A +π6, 又∵0<A <2π3,∴A +π6∈⎝ ⎛⎭⎪⎫π6,56π.∴sin ⎝ ⎛⎭⎪⎫A +π6∈⎝ ⎛⎦⎥⎤12,1,∴f ⎝ ⎛⎭⎪⎫A 2∈⎝ ⎛⎦⎥⎤12,1.18.(本小题满分16分)(2013·湖北卷)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值. 解 (1)由cos 2A -3cos(B +C )=1, 得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0, 解得cos A =12或cos A =-2(舍去). 因为0<A <π,所以A =π3,(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20.又b =5,知c =4. 由余弦定理,得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21. 又由正弦定理得sin B sin C =b a sin A ·ca sin A = bc a 2sin 2A =2021×34=57. 19.(本小题满分16分)(2013·江西卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C +(cos A -3sin A )cos B =0. (1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0,即有sin A sin B -3sin A cos B =0,因为sin A ≠0,所以sin B -3cos B =0, 即3cos B =sin B . 所以tan B =3, 又因为0<B <π, 所以B =π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 因为a +c =1,cos B =12,所以b 2=(a +c )2-3ac ≥(a +c )2-3⎝⎛⎭⎪⎫a +c 22=14(a +c )2=14,∴b ≥12. 又a +c >b ,∴b <1,∴12≤b <1.20.(本小题满分16分)(2013·江苏卷)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35. (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513, sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =AC sin B ,得AB =ACsin B ×sin C = 1 2606365×45=1 040(m). 所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎢⎡⎦⎥⎤1 25043,62514(单位:m/min)范围内.备课札记:。
2014高考数学(理)二轮专题升级训练:专题5 第3讲 立体几何中的向量方法(含答案解析)
![2014高考数学(理)二轮专题升级训练:专题5 第3讲 立体几何中的向量方法(含答案解析)](https://img.taocdn.com/s3/m/0ca6c5900b1c59eef9c7b47b.png)
专题升级训练立体几何中的向量方法(时间:60分钟满分:100分)一、选择题(本大题共6小题,每小题6分,共36分)1.平面α的一个法向量n=(1,—1,0),则y轴与平面α所成的角的大小为( )A. B。
C。
D.2.在二面角α-l—β中,平面α的法向量为n,平面β的法向量为m,若〈n,m>=130°,则二面角α—l-β的大小为()A。
50°B。
130°C.50°或130°D。
可能与130°毫无关系3.直三棱柱ABC—A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=,M是CC1的中点,则异面直线AB1与A1M所成的角为()A.60°B.45°C.30°D。
90°4。
如图,四棱锥P—ABCD的底面为正方形,PD⊥底面ABCD,PD=AD=1,设点C到平面PAB的距离为d1,点B到平面PAC的距离为d2,则有( )A.1〈d1〈d2B.d1〈d2〈1C。
d1〈1<d2D.d2<d1〈15。
过正方形ABCD的顶点A,引PA⊥平面ABCD.若PA=BA,则平面ABP和平面CDP所成的二面角的大小是()A.30°B。
45°C。
60°D.90°6。
如图,在四棱锥P—ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为()二、填空题(本大题共3小题,每小题6分,共18分)7。
如图所示,在棱长为1的正方体ABCD—A1B1C1D1中,M和N分别是A1B1和BB1的中点,那么直线AM与CN所成角的余弦值为.8。
正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是.9.在空间直角坐标系中有棱长为a的正方体ABCD—A1B1C1D1,点M是线段DC1上的动点,则点M到直线AD1距离的最小值是.三、解答题(本大题共3小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤)10。
江苏省2014年高考数学(文)二轮复习专题提升训练:19 几何证明选讲
![江苏省2014年高考数学(文)二轮复习专题提升训练:19 几何证明选讲](https://img.taocdn.com/s3/m/d597b3f3f705cc1755270957.png)
常考问题19 几何证明选讲1.(2011·江苏卷)如图,圆O 1与圆O 2内切于点A ,其半径分别为r 1与r 2(r 1>r 2),圆O 1的弦AB 交圆O 2于点C (O 1不在AB 上).求证:AB ∶AC 为定值.证明 如图,连接AO 1并延长,分别交两圆于点E 和点D .连接BD ,CE .因为圆O 1与圆O 2内切于点A ,所以点O 2在AD 上,故AD ,AE 分别为圆O 1,圆O 2的直径.从而∠ABD =∠ACE =π2.所以BD ∥CE ,于是AB AC =AD AE =2r 12r 2=r 1r 2.所以AB ∶AC 为定值.2.(2012·苏北四市质量检测)如图,∠P AQ 是直角,圆O 与AP 相切于点T ,与AQ 相交于两点B ,C .求证:BT 平分∠OBA .证明 连接OT ,因为AT 是切线,所以OT ⊥AP .又因为∠P AQ 是直角,即AQ ⊥AP ,所以AB ∥OT ,所以∠TBA =∠BTO .又OT =OB ,所以∠OTB =∠OBT ,所以∠OBT =∠TBA ,即BT 平分∠OBA .3.(2010·江苏卷)AB 是圆O 的直径,D 为圆O 上一点,过D作圆O 的切线交AB 延长线于点C ,若DA =DC ,求证:AB =2BC .证明 连接OD ,则:OD ⊥DC ,又OA =OD ,DA =DC ,所以∠DAO =∠ODA =∠DCO ,∠DOC =∠DAO +∠ODA=2∠DCO,所以∠DCO=30°,∠DOC=60°,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC.4.如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P.(1)证明:OM·OP=OA2;(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.证明(1)因为MA是圆O的切线,所以OA⊥AM.又因为AP⊥OM,在Rt△OAM中,由射影定理知,OA2=OM·OP.(2)因为BK是圆O的切线,BN⊥OK,同(1),有OB2=ON·OK,又OB=OA,所以OP·OM=ON·OK,即ONOP=OMOK.又∠NOP=∠MOK,所以△ONP∽△OMK,故∠OKM=∠OPN=90°. 5.(2013·辽宁卷)如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:(1)∠FEB=∠CEB;(2)EF2=AD·BC.证明(1)由直线CD与⊙O相切,得∠CEB=∠EAB.由AB为⊙O的直径,得AE⊥EB,从而∠EAB+∠EBF=π2;又EF⊥AB,得∠FEB+∠EBF=π2,从而∠FEB=∠EAB.故∠FEB=∠CEB.(2)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边,得Rt△BCE≌Rt△BFE,所以BC=BF.同理可证,得AD=AF.又在Rt△AEB中,EF⊥AB,故EF2=AF·BF,所以EF2=AD·BC.6.(2013·新课标全国Ⅰ卷)如图,直线AB为圆O的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.(1)证明连接DE,则∠DCB=∠DEB,∵DB⊥BE,∴∠DBC+∠CBE=90°,∠DEB+∠EDB=90°,∴∠DBC+∠CBE=∠DEB+∠EDB,又∠CBE=∠EBF=∠EDB,∴∠DBC=∠DEB=∠DCB,∴DB=DC.(2)解由(1)知:∠CBE=∠EBF=∠BCE,∴∠BDE=∠CDE,∴DE是BC的垂直平分线,设交点为H,则BH=3 2,∴OH=1-34=12,∴DH=3 2,∴tan∠BDE=3232=33,∴∠BDE=30°,∴∠FBE=∠BDE=30°,∴∠CBF+∠BCF=90°,∴∠BFC=90°,∴BC是△BCF的外接圆直径.∴△BCF的外接圆半径为3 2.备课札记:。
2014届高考数学总复习 7.7立体几何的向量方法(理)提高分课时作业(含2013年模拟题) 新人教
![2014届高考数学总复习 7.7立体几何的向量方法(理)提高分课时作业(含2013年模拟题) 新人教](https://img.taocdn.com/s3/m/c2715a16fe00bed5b9f3f90f76c66137ee064fe7.png)
【题组设计】2014届高考数学(人教版)总复习“提高分”课时作业 7.7立体几何的向量方法(理)(含2013年模拟题)【考点排查表】难度及题号 错题记录考查考点及角度 基础 中档 稍难 平行、垂直问题 1 7 11 线线角、线面角 4 6,8 13 二面角及距离2,35,910,12一、选择题1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1上的动点,则直线NO 、AM 的位置关系是( )A .平行B .相交C .异面垂直D .异面不垂直【解析】 建立坐标系如图,设正方体的棱长为2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,t,2),NO →=(-1,1-t ,-2),AM →=(-2,0,1),NO →·AM →=0,则直线NO 、AM 的位置关系是异面垂直.【答案】 C2.已知在长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A.83B.38C.43D.34【解析】 如图,建立坐标系D -xyz ,则A 1(2,0,4),A (2,0,0),B 1(2,2,4),D 1(0,0,4), AD →1=(-2,0,4),AB →1=(0,2,4),AA →1=(0,0,4),设平面AB 1D 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AD →1=0,n ·AB →1=0,即⎩⎪⎨⎪⎧-2x +4z =0,2y +4z =0,解得x =2z 且y =-2z ,不妨设n =(2,-2,1), 设点A 1到平面AB 1D 1的距离为d , 则d =|AA 1→·n ||n |=43.【答案】 C3.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2. 若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A.2B. 3 C .2 D.22【解析】 如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2).设AD =a ,则D 点坐标为(1,0,a ), CD →=(1,0,a ),CB →1=(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ). 则⎩⎪⎨⎪⎧m ·CB →1=0m ·CD →=0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0),则由cos 60°=m ·n |m ||n |,得1a 2+2=12,即a =2,故AD = 2. 【答案】 A4.在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( )A .30° B.45° C .60° D.90°【解析】 建立坐标系如图,设棱长为2,设AD 与面BB 1C 1C 所成角为θ,∴C (0,1,0),D (0,0,1),A (-3,0,0).则平面BB 1C 1C 的一个法向量为n =(1,0,0),AD →=(3,0,1); ∴cos 〈AD →,n 〉=AD →·n |AD →||n |=32,∴sin θ=32,∴θ=60°. 【答案】 C5.已知直角△ABC 中,∠C =90°,∠B =30°,AB =4,D 为AB 的中点,沿中线将△ACD 折起使得AB =13,则二面角A -CD -B 的大小为( )A .60° B.90°C .120° D.150°【解析】 取CD 中点E ,在平面BCD 内过B 点作BF ⊥CD ,交CD 延长线于F .据题意知AE ⊥CD ,AE =BF =3,EF =2,AB =13. 且〈EA →,FB →〉为二面角的平面角, 由AB 2→=(AE →+EF →+FB →)2得13=3+3+4+2×3×cos〈AE →,FB →〉, ∴cos 〈EA →,FB →〉=-12,∴〈EA →,FB →〉=120°.即所求的二面角为120°. 【答案】 C6.如图,设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B=λ.当∠APC 为钝角时,则λ的取值X 围是( )A .0,13B .0,12C.12,1D.13,1 【解析】 由题设可知,以DA →、DC →、DD →1为单位正交基底,建立如图所示的空间直角坐标系D -xyz ,则有A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1).由D 1B →=(1,1,-1)得D 1P →=λD 1B →=(λ,λ,-λ), 所以PA →=PD →1+D 1A →=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1), PC →=PD →1+D 1C →=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1).显然∠APC 不是平角,所以∠APC 为钝角等价于cos ∠APC =cos 〈PA →,PC →〉=PA →·PC →|PA →||PC →|<0,这等价于PA →·PC →<0,即(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)2=(λ-1)(3λ-1)<0,得13<λ<1.因此,λ的取值X 围为13,1.【答案】 D 二、填空题7.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为________. 【解析】 由题知:BP →⊥AB →,BP →⊥BC →可得:⎩⎪⎨⎪⎧AB →·BC →=0;BP →·AB →=0;BP →·BC →=0.即:⎩⎪⎨⎪⎧1×3+5×1+-2×z =0,x -1+5y +-2×-3=0,3x -1+y -3z =0,解得:x =407,y =-157,z =4.【答案】407,-157,48.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P -ABC 的体积为________.【解析】 以B 为坐标原点,BA 为x 轴,BC 为y 轴,BB 1为z 轴建立空间直角坐标系(如图),设BP →=λBD →1,可得P (λ,λ,λ),再由cos ∠APC =AP →·CP→|AP →||CP →|可求得当λ=13时,∠APC 最大,故V P -ABC =13×12×1×1×13=118.【答案】1189.如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=BC =AB =2,AB ⊥BC ,则二面角B 1-A 1C -C 1的大小为________.【解析】 如图,建立空间直角坐标系.则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2),设AC 的中点为M ,∵BM ⊥AC ,BM ⊥CC 1. ∴BM ⊥平面A 1C 1C ,即B M →=(1,1,0)是平面A 1C 1C 的一个法向量. 设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C →=(-2,2,-2),A 1B 1→=(-2,0,0),∴⎩⎪⎨⎪⎧n ·A 1B 1→=-2x =0,n ·A 1C →=-2x +2y -2z =0,令z =1,解得x =0,y =1. ∴n =(0,1,1),设法向量n 与B M →的夹角为φ,二面角B 1-A 1C -C 1的大小为θ,显然θ为锐角. ∵cos θ=|cos φ|=|n ·B M →||n |·|B M →|=12,解得θ=π3.∴二面角B 1-A 1C -C 1的大小为π3.【答案】π3三、解答题10.(2012·全国新课标高考)如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【解】 (1)证明:由题设知,三棱柱的侧面为矩形. 由于D 为AA 1的中点,故DC =DC 1. 又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,DC ∩BD =D , 所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC . (2)由(1)知BC ⊥DC 1,且BC ⊥CC 1, 则BC ⊥平面ACC 1A 1,所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA →的方向为x 轴的正方向,|CA →|为单位长,建立如图所示的空间直角坐标系C -xyz .由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2). 则A 1D →=(0,0,-1),BD →=(1,-1,1),DC →1=(-1,0,1). 设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则 ⎩⎪⎨⎪⎧n ·BD →=0,n ·A 1D →=0,即⎩⎪⎨⎪⎧x -y +z =0,z =0,可取n =(1,1,0).同理,设m =(x ,y ,z )是平面C 1BD 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·DC →1=0,即⎩⎪⎨⎪⎧x -y +z =0,-x +z =0,可取m =(1,2,1).从而cos 〈n ,m 〉=n ·m |n |·|m |=32.故二面角A 1-BD -C 1的大小为30°. 11.(2012·某某高考)如图,在四棱锥P -ABCD 中,底面是边长为23的菱形,∠BAD =120°,且PA ⊥平面ABCD ,PA =26,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平面角的余弦值.【解】 (1)证明:连接BD ,因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线,所以MN ∥BD .又因为MN ⊄平面ABCD ,BD ⊂平面ABCD ,所以MN ∥平面ABCD .(2)连接AC 交BD 于O ,以O 为原点,OC ,OD 所在直线为x ,y 轴,建立空间直角坐标系Oxyz ,如图所示.在菱形ABCD 中,∠BAD =120°,得AC =AB =23,BD =3AB =6. 又因为PA ⊥平面ABCD ,所以PA ⊥AC .在直角△PAC 中,AC =23,PA =26,AQ ⊥PC , 得QC =2,PQ =4.由此知各点坐标如下:A (-3,0,0),B (0,-3,0),C (3,0,0),D (0,3,0),P (-3,0,26),M -32,-32,6,N -32,32,6,Q 33,0,263. 设m =(x ,y ,z )为平面AMN 的法向量,由AM →=32,-32,6,AN →=32,32,6知⎩⎪⎨⎪⎧32x -32y +6z =0,32x +32y +6z =0.取z =-1,得m =(22,0,-1). 设n =(x ,y ,z )为平面QMN 的法向量, 由QM →=-536,-32,63,QN →=-536,32,63知⎩⎪⎨⎪⎧-536x -32y +63z =0,-536x +32y +63z =0.取z =5,得n =(22,0,5).于是cos 〈m ,n 〉=m ·n |m |·|n |=3333.所以二面角A -MN -Q 的平面角的余弦值为3333. 12.(2012·某某高考)如图,直三棱柱ABC A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′MN C 为直二面角,求λ的值.【解】 (1)证明法一:连接AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC A ′B ′C ′为直三棱柱,所以M 为AB ′的中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′.又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′,因此MN ∥平面A ′ACC ′.法二:取A ′B ′的中点P ,连接MP ,NP .而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′.又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′.而MN ⊂平面MPN ,所以MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立空间直角坐标系O xyz ,如图所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1),所以M ⎝⎛⎭⎪⎫λ2,0,12,N ⎝ ⎛⎭⎪⎫λ2,λ2,1.设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎪⎨⎪⎧ m ·AM →=0,m ·MN →=0得⎩⎪⎨⎪⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可得m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量, 由⎩⎪⎨⎪⎧n ·NC →=0,n ·MN →=0得⎩⎪⎨⎪⎧-λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0,可取n =(-3,-1,λ).因为A ′MN C 为直二面角,所以m ·n =0.即-3+(-1)×(-1)+λ2=0,解得λ=2(负值舍去). 四、选做题13.(2012·某某高考)如图,在三棱锥P -ABC 中,∠APB =90°,∠PAB =60°,AB =BC =CA ,平面PAB ⊥平面ABC .(1)求直线PC 与平面ABC 所成的角的正切值; (2)求二面角B -AP -C 的余弦值.【解】 法一:(1)如图,设AB 的中点为D ,AD 的中点为O ,连接PO 、PD 、CO 、CD .由已知,△PAD 为等边三角形, 所以PO ⊥AD .又平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AD , 所以PO ⊥平面ABC .所以∠OCP 为直线PC 与平面ABC 所成的角.不妨设AB =4,则PD =2,CD =23,OD =1,PO = 3. 在Rt △OCD 中,CO =OD 2+CD 2=13. 所以,在Rt △POC 中,tan ∠OCP =POCO=313=3913. 故直线PC 与平面ABC 所成的角的正切值为3913.(2)过D 作DE ⊥AP 于E ,连接CE .由已知可得,CD ⊥平面PAB .根据三垂线定理知,CE ⊥PA .所以∠CED 为二面角B -AP -C 的平面角.由(1)知,DE = 3.在Rt △CDE 中,tan ∠CED =CD DE =233=2, 易求cos ∠CED =55. 所以,二面角B -AP -C 的余弦值为55. 法二:(1)如图,设AB 的中点为D ,作PO ⊥AB 于点O ,连接CD .因为平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AD ,所以PO ⊥平面ABC .所以PO ⊥CD .由AB =BC =CA ,知CD ⊥AB .设E 为AC 的中点,则EO ∥CD ,从而OE ⊥PO ,OE ⊥AB .如图,以O 为坐标原点,OB 、OE 、OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系O -xyz .不妨设PA =2,由已知可得,AB =4,OA =OD =1,OP =3,CD =2 3.所以O (0,0,0),A (-1,0,0),C (1,23,0),P (0,0,3), 所以CP →=(-1,-23,3).而OP →=(0,0,3)为平面ABC 的一个法向量,设α为直线PC 与平面ABC 所成的角,则sin α=CP →·OP →|CP →||OP →|=0+0+316×3=34, 易求tan α=3913, 故直线PC 与平面ABC 所成的角的正切值为3913. (2)由(1)有AP →=(1,0,3),AC →=(2,23,0).设平面APC 的一个法向量为n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n ⊥AP →n ⊥AC →⇒⎩⎪⎨⎪⎧n ·AP →=0n ·AC →=0 ⇒⎩⎨⎧ x 1,y 1,z 1·1,0,3=0,x 1,y 1,z 1·2,23,0=0. 从而⎩⎨⎧x 1+3z 1=0,2x 1+23y 1=0. 取x 1=-3,则y 1=1,z 1=1,所以n =(-3,1,1).设二面角B -AP -C 的平面角为β,易知β为锐角. 而平面ABP 的一个法向量为m =(0,1,0),则cos β=n ·m |n ||m |=13+1+1=55, 故二面角B -AP -C 的余弦值为55.。
江苏省高考数学二轮复习专题八附加题第1讲立体几何中的向量方法、抛物线学案
![江苏省高考数学二轮复习专题八附加题第1讲立体几何中的向量方法、抛物线学案](https://img.taocdn.com/s3/m/0b52df4b25c52cc58bd6be57.png)
第1讲 立体几何中的向量方法、抛物线[考情考向分析] 1.利用空间向量的坐标判定线面关系,求异面直线、直线与平面、平面与平面所成的角,其中求角是考查热点,均属B 级要求.2.考查顶点在坐标原点的抛物线的标准方程与几何性质,A 级要求.热点一 利用空间向量求空间角例1 (2018·淮安等四市模拟)在正三棱柱ABC -A 1B 1C 1中,已知AB =1,AA 1=2,E ,F ,G 分别是AA 1,AC 和A 1C 1的中点.以{FA →,FB →,FG →}为正交基底,建立如图所示的空间直角坐标系F -xyz .(1)求异面直线AC 与BE 所成角的余弦值; (2)求二面角F -BC 1-C 的余弦值. 解 (1)因为AB =1,AA 1=2,则F (0,0,0),A ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫-12,0,0,B ⎝ ⎛⎭⎪⎫0,32,0,E ⎝⎛⎭⎪⎫12,0,1,所以AC →=(-1,0,0),BE →=⎝ ⎛⎭⎪⎫12,-32,1,记异面直线AC 与BE 所成的角为α,则cos α=|cos 〈AC →,BE →〉|=⎪⎪⎪⎪⎪⎪⎪⎪-1×12⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-322+1 =24, 所以异面直线AC 与BE 所成角的余弦值为24. (2)设平面BFC 1的法向量为m =(x 1,y 1,z 1) ,因为FB →=⎝ ⎛⎭⎪⎫0,32,0,FC 1→=⎝ ⎛⎭⎪⎫-12,0,2,则⎩⎪⎨⎪⎧m ·FB →=32y 1=0,m ·FC 1→=-12x 1+2z 1=0,取x 1=4得,m =(4,0,1).设平面BCC 1的一个法向量为n =(x 2,y 2,z 2), 同理得,n =(3,-1,0), 所以cos 〈m ,n 〉 =4×3+(-1)×0+1×0()32+(-1)2+02·42+02+12=25117,根据图形可知二面角F -BC 1-C 为锐二面角, 所以二面角F -BC 1-C 的余弦值为25117.思维升华 利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.跟踪演练1 (2018·镇江期末)如图, AC ⊥BC, O 为AB 中点,且DC ⊥平面ABC, DC ∥BE .已知AC =BC =DC =BE =2.(1)求直线AD 与CE 所成角; (2)求二面角O -CE -B 的余弦值.解 (1)因为AC ⊥CB 且DC ⊥平面ABC ,所以以C 为原点, CB →为x 轴正方向,CA →为y 轴正方向,CD →为z 轴正方向,建立如图所示的空间直角坐标系C -xyz .∵AC =BC =BE =2,∴C ()0,0,0, B ()2,0,0, A ()0,2,0, O ()1,1,0,E ()2,0,2, D ()0,0,2,且AD →=()0,-2,2,CE →=()2,0,2.∴cos〈AD →, CE →〉=AD →·CE→||AD→||CE→=422×22=12. ∴AD 与CE 的夹角为60°.(2)平面BCE 的法向量m =()0,1,0,设平面OCE 的法向量n =()x 0,y 0,z 0. 由CO →=()1,1,0, CE →=()2,0,2, 得⎩⎪⎨⎪⎧n ·CE →=0,n ·CO →=0,则⎩⎪⎨⎪⎧2x 0+2z 0=0,x 0+y 0=0,解得⎩⎪⎨⎪⎧z 0=-x 0,y 0=-x 0,取x 0=-1,则n =()-1,1,1.∵二面角O -CE -B 为锐二面角,记为θ, ∴cos θ=|cos 〈m ,n 〉|=||m ·n ||m | n |=33.热点二 抛物线例2 (2018·南通模拟)如图,在平面直角坐标系xOy 中,已知点T (1,t )(t <0)到抛物线y 2=2px (p >0)焦点的距离为2.(1)求p ,t 的值;(2)设A ,B 是抛物线上异于点T 的两个不同点,过A 作y 轴的垂线,与直线TB 交于点C ,过B 作y 轴的垂线,与直线TA 交于点D ,过T 作y 轴的垂线,与直线AB ,CD 分别交于点E ,F .求证:①直线CD 的斜率为定值; ②T 是线段EF 的中点.(1)解 由抛物线定义知,1+p2=2,所以p =2,将点T (1,t )(t <0)代入抛物线y 2=4x ,得t =-2.(2)证明 设A ⎝ ⎛⎭⎪⎫y 214,y 1,B ⎝ ⎛⎭⎪⎫y 224,y 2, ①则直线TA 的方程为y +2=y 1+2y 214-1(x -1), 令y =y 2得,x =(y 2+2)(y 1-2)4+1,所以D ⎝ ⎛⎭⎪⎫(y 2+2)(y 1-2)4+1,y 2,同理C ⎝⎛⎭⎪⎫(y 1+2)(y 2-2)4+1,y 1, 所以直线CD 的斜率为y 2-y 1(y 2+2)(y 1-2)4-(y 1+2)(y 2-2)4=y 2-y 14(y 1-y 2)4=-1.故直线CD 的斜率为定值.②设点E ,F 的横坐标分别为x E ,x F ,由①知,直线CD 的方程为y -y 1=-x +(y 1+2)(y 2-2)4+1,令y =-2得,x F =2+y 1+(y 1+2)(y 2-2)4+1,设x 1=y 214,则直线AB 的方程为y -y 1=4y 1+y 2(x -x 1), 令y =-2得,x E =x 1-(y 1+2)(y 1+y 2)4,所以x E +x F2=x 1-(y 1+2)(y 1+y 2)4+2+y 1+(y 1+2)(y 2-2)4+12=4x 1-y 21-2y 1-y 1y 2-2y 2+8+4y 1+y 1y 2+2y 2-2y 1-4+48=4x 1-y 21+88=1,所以T 是线段EF 的中点.思维升华 对于抛物线试题,解题关键是联立方程组,构造方程,应用抛物线的定义及几何性质进行分析求解,涉及直线与圆锥曲线的位置关系问题要注意分类讨论.跟踪演练2 (2018·南京模拟)在平面直角坐标系xOy 中,抛物线C :y 2=2px ()p >0的焦点为F ,点A ()1,a ()a >0是抛物线C 上一点,且AF =2. (1)求p 的值;(2)若M ,N 为抛物线C 上异于A 的两点,且AM ⊥AN .记点M ,N 到直线y =-2的距离分别为d 1,d 2,求d 1d 2的值.解 (1)因为点A (1,a )(a >0)是抛物线C 上一点, 且AF =2,所以p2+1=2,所以p =2.(2)由(1)得抛物线方程为y 2=4x .因为点A (1,a )(a >0)是抛物线C 上一点,所以a =2.设直线AM 的方程为x -1=m (y -2)(m ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧x -1=m ()y -2,y 2=4x ,消去x ,得y 2-4my +8m -4=0,即(y -2)(y -4m +2)=0,所以y 1=4m -2. 因为AM ⊥AN ,所以-1m 代替m ,得y 2=-4m-2,所以d 1d 2=|(y 1+2)(y 2+2)|=⎪⎪⎪⎪⎪⎪4m ×⎝ ⎛⎭⎪⎫-4m =16.1.(2018·江苏)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.解 如图,在正三棱柱ABC -A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以{OB →,OC →,OO 1→}为基底,建立空间直角坐标系O -xyz .因为AB =AA 1=2,所以A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点,所以P ⎝⎛⎭⎪⎫32,-12,2,从而BP →=⎝ ⎛⎭⎪⎫-32,-12,2,AC 1→=(0,2,2),故|cos 〈BP →,AC 1→〉|=|BP →·AC 1→||BP →||AC 1→|=|-1+4|5×22=31020.因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)因为Q 为BC 的中点,所以Q ⎝⎛⎭⎪⎫32,12,0, 因此AQ →=⎝ ⎛⎭⎪⎫32,32,0,AC 1→=(0,2,2),CC 1→=(0,0,2).设n =(x ,y ,z )为平面AQC 1的一个法向量, 则⎩⎪⎨⎪⎧AQ →·n =0,AC 1→·n =0,即⎩⎪⎨⎪⎧32x +32y =0,2y +2z =0.不妨取n =(3,-1,1).设直线CC 1与平面AQC 1所成的角为θ,则sin θ=|cos 〈CC 1→,n 〉|=|CC 1→·n ||CC 1→||n |=22×5=55.所以直线CC 1与平面AQC 1所成角的正弦值为55. 2.(2018·盐城模拟)如图,四棱锥P -ABCD 的底面ABCD 是菱形, AC 与BD 交于点O, OP ⊥底面ABCD ,点M 为PC 中点, AC =4,BD =2,OP =4.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.解 (1)因为ABCD 是菱形,所以AC ⊥BD .又OP ⊥底面ABCD ,以O 为原点,直线OA ,OB ,OP 分别为x 轴, y 轴, z 轴,建立如图所示的空间直角坐标系O -xyz .则A ()2,0,0, B ()0,1,0, P ()0,0,4, C ()-2,0,0,M ()-1,0,2. 所以AP →=()-2,0,4, BM →=()-1,-1,2, 所以 AP →·BM →=10,||AP →=25, ||BM →= 6.则cos 〈AP →,BM →〉=AP →·BM→||AP→||BM→=1025×6=306.故直线AP 与BM 所成角的余弦值为306. (2)AB →=()-2,1,0, BM →=()-1,-1,2. 设平面ABM 的一个法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧n ·AB →=0,n ·BM →=0,得⎩⎪⎨⎪⎧-2x +y =0,-x -y +2z =0,令x =2,得y =4, z =3.得平面ABM 的一个法向量为n =()2,4,3. 又平面PAC 的一个法向量为OB →=()0,1,0, 所以n ·OB →=4, ||n =29, ||OB →=1. 则cos 〈n ,OB →〉=n ·OB→||n ||OB →=429=42929.故平面ABM 与平面PAC 所成锐二面角的余弦值为42929.3.(2016·江苏)如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程; (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.(1)解 ∵l :x -y -2=0,∴l 与x 轴的交点坐标为(2,0). 即抛物线的焦点为(2,0),∴p2=2,p =4.∴抛物线C 的方程为y 2=8x .(2)①证明 设点P (x 1,y 1),Q (x 2,y 2).则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,则⎩⎪⎨⎪⎧x 1=y 212p,x 2=y222p ,∴k PQ =y 1-y 2y 212p -y 222p=2py 1+y 2, 又∵P ,Q 关于l 对称.∴k PQ =-1,即y 1+y 2=-2p , ∴y 1+y 22=-p ,又∵PQ 的中点一定在l 上, ∴x 1+x 22=y 1+y 22+2=2-p .∴线段PQ 的中点坐标为(2-p ,-p ). ②解 ∵PQ 的中点为(2-p ,-p ),∴⎩⎪⎨⎪⎧y 1+y 2=-2p ,x 1+x 2=y 21+y 222p =4-2p ,即⎩⎪⎨⎪⎧y 1+y 2=-2p ,y 21+y 22=8p -4p 2,∴⎩⎪⎨⎪⎧y 1+y 2=-2p ,y 1y 2=4p 2-4p ,即关于y 的方程y 2+2py +4p 2-4p =0有两个不等实根,∴Δ>0.即(2p )2-4(4p 2-4p )>0,解得0<p <43,故所求p 的取值范围为⎝ ⎛⎭⎪⎫0,43. 4.(2018·徐州质检)在平面直角坐标系xOy 中,已知平行于x 轴的动直线l 交抛物线C :y2=4x 于点P ,点F 为C 的焦点.圆心不在y 轴上的圆M 与直线l, PF, x 轴都相切,设M 的轨迹为曲线E .(1)求曲线E 的方程;(2)若直线l 1与曲线E 相切于点Q ()s ,t ,过点Q 且垂直于l 1的直线为l 2,直线l 1,l 2分别与y 轴相交于点A ,B .当线段AB 的长度最小时,求s 的值. 解 (1)因为抛物线C 的方程为y 2=4x ,所以F 的坐标为()1,0,设M (m ,n ),因为圆M 与x 轴、直线l 都相切,l 平行于x 轴, 所以圆M 的半径为||n ,点P (n 2,2n ),则直线PF 的方程为y 2n =x -1n 2-1,即2n (x -1)-y (n 2-1)=0,所以||2n (m -1)-n (n 2-1)(2n )2+(n 2-1)2=||n ,又m ,n ≠0,所以||2m -n 2-1=n 2+1,即n 2-m +1=0, 所以E 的方程为y 2=x -1(y ≠0). (2)设Q (t 2+1,t ), A (0,y 1),B (0,y 2),由(1)知,点Q 处的切线l 1的斜率存在,由对称性不妨设t >0, 由y ′=12x -1,所以k AQ =t -y 1t 2+1=12t 2+1-1, k BQ =t -y 2t 2+1=-2t 2+1-1,所以y 1=t 2-12t,y 2=2t 3+3t,所以AB =⎪⎪⎪⎪⎪⎪2t 3+3t -t 2+12t =2t 3+52t +12t (t >0).令f (t )=2t 3+52t +12t ,t >0,则f ′(t )=6t 2+52-12t 2=12t 4+5t 2-12t2,由f ′(t )>0得t >-5+7324, 由f ′(t )<0, 得0<t <-5+7324, 所以f (t )在区间⎝ ⎛⎭⎪⎫0,-5+7324上单调递减,在⎝ ⎛⎭⎪⎫-5+7324,+∞上单调递增, 所以当t =-5+7324时,f (t )取得极小值也是最小值, 即AB 取得最小值, 此时s =t 2+1=19+7324.A 组 专题通关1.(2018·全国大联考江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =AA 1=2,D 为棱CC 1上任意一点(含端点).(1)若D 为CC 1的中点,求直线BA 1与直线AD 所成角的余弦值; (2)当点D 与点C 1重合时,求二面角A 1-BD -A 的平面角的正弦值.解 如图,以A 为原点,AC ,BA ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz .由题意,可得A (0,0,0),B (0,-2,0),A 1(0,0,2),C (2,0,0),C 1(2,0,2),∴AB →=(0,-2,0),BA 1→=(0,2,2),(1)若D 为CC 1的中点,则D (2,0,1),AD →=(2,0,1),设直线BA 1与直线AD 的夹角为θ,则 cos θ=|BA 1→·AD →||AB 1→||AD →|=|2×0+2×0+2×1|22+22·22+12=1010, ∴直线BA 1与直线AD 所成角的余弦值为1010. (2)当点D 与点C 1重合时,D (2,0,2),则BD →=(2,2,2), 设平面A 1BD 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧BD →·m =0,BA 1→·m =0,即⎩⎪⎨⎪⎧2x +2y +2z =0,2y +2z =0,取y =1,得x =0,z =-1,即平面A 1BD 的一个法向量为m =(0,1,-1),同理,可求得平面ABD 的一个法向量为n =(-1,0,1), 设二面角A 1-BD -A 的平面角为α, 则||cos α=|m ·n ||m ||n |=|(-1)×0+1×0+(-1)×1|02+12+(-1)2×(-1)2+02+12=12·2=12, ∵α∈[0,π],∴sin α=1-cos 2α=32, ∴二面角A 1-BD -A 的平面角的正弦值为32. 2.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,A 1E =CF =1.(1)求异面直线AC 1与D 1E 所成角的余弦值; (2)求直线AC 1与平面BED 1F 所成角的正弦值.解 (1)以D 为坐标原点,{DA →,DC →,DD 1→}为正交基底,建立空间直角坐标系D -xyz 如图所示,则A (3,0,0),C 1(0,3,3),D 1(0,0,3),E (3,0,2),∴AC 1→=(-3,3,3),D 1E →=(3,0,-1), ∴cos〈AC 1→,D 1E →〉=AC 1→·D 1E→|AC 1→||D 1E →|=-9-333×10=-23015.则异面直线AC 1与D 1E 所成角的余弦值为23015.(2)由(1)知B (3,3,0),BE →=(0,-3,2),D 1E →=(3,0,-1). 设平面BED 1F 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·D 1E →=0,n ·BE →=0,得⎩⎪⎨⎪⎧3x -z =0,-3y +2z =0,令x =1,则n =(1,2,3).则直线AC 1与平面BED 1F 所成角的正弦值为 |AC 1→·n ||AC 1→||n |=|-3+6+9|33·14=24221.3.(2018·江苏扬州中学期中)古希腊有一著名的尺规作图题“倍立方问题”:求作一个正方体,使它的体积等于已知立方体体积的2倍,倍立方问题可以利用抛物线(可尺规作图)来解决,首先作一个通径为2a (其中正数a 为原立方体的棱长)的抛物线C 1,如图,再作一个顶点与抛物线C 1顶点O 重合而对称轴垂直的抛物线C 2,且与C 1交于不同于点O 的一点P ,自点P 向抛物线C 1的对称轴作垂线,垂足为M ,可使以OM 为棱长的立方体的体积为原立方体的2倍.(1)建立适当的平面直角坐标系,求抛物线C 1的标准方程;(2)为使以OM 为棱长的立方体的体积为原立方体的2倍,求抛物线C 2的标准方程(只须以一个开口方向为例).解 (1)以O 为坐标原点,OM →为x 轴正方向建立平面直角坐标系,由题意,抛物线C 1的通径为2a ,所以标准方程为y 2=2ax . (2)设抛物线C 2:x 2=my (m >0), 又由题意, OM 3=x 3P =2a 3, 所以x P =32a ,代入y 2=2ax , 得 y 2P =232a 2,解得y P =34a , 将点P ⎝⎛⎭⎫32a ,34a 代入x 2=my ,得 ⎝⎛⎭⎫32a 2=m 34a ,解得 m =a , 所以抛物线C 2为x 2=ay .4.如图,抛物线关于y 轴对称,它的顶点在坐标原点,点P (2,1),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)求抛物线的方程;(2)若∠APB 的平分线垂直于y 轴,证明直线AB 的斜率为定值. (1)解 由已知条件,可设抛物线的方程为x 2=2py (p >0), 因为点P (2,1)在抛物线上,所以22=2p ×1,p =2. 故所求抛物线的方程是x 2=4y . (2)证明 由题意知,k AP +k BP =0,所以y 1-1x 1-2+y 2-1x 2-2=0, 即x 214-1x 1-2+x 224-1x 2-2=0,所以x 1+24+x 2+24=0, 所以x 1+x 2=-4.k AB =y 1-y 2x 1-x 2=x 214-x 224x 1-x 2=x 1+x 24=-1.即直线AB 的斜率为定值-1.5.已知抛物线C 的顶点为O (0,0),焦点为F (0,1).(1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点,求MN 的最小值.解 (1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,p =2,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的斜率必存在,设方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y ,整理得x 2-4kx -4=0,Δ>0恒成立.所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,联立,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2. 所以MN =(x M -x N )2+(y M -y N )2=(x M -x N )2+(x M -x N )2=2|x M -x N | =2⎪⎪⎪⎪⎪⎪84-x 1-84-x 2=82⎪⎪⎪⎪⎪⎪x 1-x 2x 1x 2-4(x 1+x 2)+16=82k 2+1|4k -3|,令4k -3=t ,t ≠0,则k =t +34.当t >0时,MN =2 225t 2+6t+1>22.当t <0时,MN =2 2⎝ ⎛⎭⎪⎫5t +352+1625≥85 2. 综上所述,当t =-253,即k =-43时,MN 的最小值是852. B 组 能力提高6.(2017·江苏)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B -A 1D -A 的正弦值.解 在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA 1→}为正交基底,建立空间直角坐标系A -xyz .因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3).(1)A 1B →=(3,-1,-3),AC 1→=(3,1,3), 则cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=(3,-1,-3)·(3,1,3)7=-17,因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)平面A 1DA 的一个法向量为AE →=(3,0,0). 设m =(x ,y ,z )为平面BA 1D 的一个法向量, 又A 1B →=(3,-1,-3),BD →=(-3,3,0),则⎩⎪⎨⎪⎧m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0.不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量,从而cos 〈AE →,m 〉=AE →·m |AE →||m |=(3,0,0)·(3,3,2)3×4=34.设二面角B -A 1D -A 的大小为θ,则|cos θ|=34.因为θ∈[0,π],所以sin θ=1-cos 2θ=74. 因此二面角B -A 1D -A 的正弦值为74. 7.(2018·宿迁模拟)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,AB =1,AA 1=t ,建立如图所示的空间直角坐标系O -xyz .(1)若t =1,求异面直线AC 1与A 1B 所成角的大小; (2)若t =5,求直线AC 1与平面A 1BD 所成角的正弦值; (3)若二面角A 1—BD —C 的大小为120°,求实数t 的值.解 (1)当t =1时,A (0,0,0),,B (1,0,0),A 1(0,0,1),C 1(1,1,1), 则AC 1→=(1,1,1),A 1B →=(1,0,-1), 故cos 〈AC 1→,A 1B →〉=AC 1→·A 1B→|AC 1→||A 1B →|=0,所以异面直线AC 1与A 1B 所成角为90°.(2)当t =5时,A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,5),C 1(1,1,5),则A 1B →=(1,0,-5),A 1D →=(0,1,-5), 设平面A 1BD 的法向量n =(a ,b ,c ),则由⎩⎪⎨⎪⎧A 1B →·n =0,A 1D →·n =0,得⎩⎪⎨⎪⎧a -5c =0,b -5c =0,不妨取c =1,则a =b =5, 此时n =(5,5,1), 设AC 1与平面A 1BD 所成角为θ,因为AC 1→=(1,1,5), 则sin θ=||cos 〈AC 1→,n 〉=|AC 1→·n ||AC 1→|||n =|15|51×27=51751,所以AC 1与平面A 1BD 所成角的正弦值为51751.(3)由A 1(0,0,t )得,A 1B →=(1,0,-t ),A 1D →=(0,1,-t ), 设平面A 1BD 的法向量m =(x ,y ,z ), 则由⎩⎪⎨⎪⎧A 1B →·m =0,A 1D →·m =0,得⎩⎪⎨⎪⎧x -zt =0,y -zt =0,不妨取z =1,则x =y =t ,此时m =(t ,t,1), 又平面CBD 的法向量AA 1→=(0,0,t ),故||cos 〈AA 1→,m 〉=|AA 1→·m ||AA 1→|||m =t 1+2t 2×t =12, 解得t =62, 所以当二面角A 1-BD -C 的大小为120°时,t 的值为62. 8.在平面直角坐标系xOy 中,直线l :x =-1,点T (3,0).动点P 满足PS ⊥l ,垂足为S ,且OP →·ST →=0.设动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设Q 是曲线C 上异于点P 的另一点,且直线PQ 过点(1,0),线段PQ 的中点为M ,直线l 与x 轴的交点为N .求证:向量SM →与NQ →共线. (1)解 设P (x ,y )为曲线C 上任意一点. 因为PS ⊥l ,垂足为S ,又直线l :x =-1,所以S (-1,y ).因为T (3,0),所以OP →=(x ,y ),ST →=(4,-y ).因为OP →·ST →=0,所以4x -y 2=0,即y 2=4x . 所以曲线C 的方程为y 2=4x . (2)证明 因为直线PQ 过点(1,0),故设直线PQ 的方程为x =my +1,P (x 1,y 1),Q (x 2,y 2).联立⎩⎪⎨⎪⎧y 2=4x ,x =my +1,消去x ,得y 2―4my ―4=0.所以y 1+y 2=4m ,y 1y 2=―4. 因为点M 为线段PQ 的中点, 所以点M 的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22,即点M (2m 2+1,2m ).又因为S (-1,y 1),N (-1,0), 所以SM →=(2m 2+2,2m -y 1), NQ →=(x 2+1,y 2)=(my 2+2,y 2).因为(2m 2+2)y 2-(2m -y 1)(my 2+2) =(2m 2+2)y 2-2m 2y 2+my 1y 2-4m +2y 1 =2(y 1+y 2)+my 1y 2-4m =8m -4m -4m =0, 所以向量SM →与NQ →共线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常考问题16 立体几何中的向量方法(建议用时:80分钟)1.(2013·新课标全国Ⅱ卷)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .(1)证明:BC 1∥平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点.又D 是AB 的中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC .以C 为坐标原点,CA→的方向为x 轴正方向,CB →的方向为y轴正方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m =(x 2,y 2,z 2)是平面A 1CE 的法向量, 则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.即⎩⎨⎧2y 2+z 2=0,2x 2+2z 2=0,可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63.2.(2013·陕西卷)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2. (1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.(1)证明 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1=2, ∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0), A 1(0,0,1).由A 1B 1→=AB →,易得B 1(-1,1,1). ∵A 1C →=(-1,0,-1),BD →=(0,-2,0), BB 1→=(-1,0,1). ∴A 1C →·BD →=0,A 1C →·BB 1→=0, ∴A 1C ⊥BD ,A 1C ⊥BB 1, 又BD ∩BB 1=B , ∴A 1C ⊥平面BB 1D 1D .(2)解 设平面OCB 1的法向量n =(x ,y ,z ). ∵OC →=(-1,0,0),OB 1→=(-1,1,1), ∴⎩⎪⎨⎪⎧n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎨⎧x =0,y =-z ,取n =(0,1,-1), 由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量, ∴cos θ=|cos 〈n ,A 1C →〉|=12×2=12. 又∵0≤θ≤π2,∴θ=π3.3.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 的中点.(1)求证:平面EAC ⊥平面PBC ;(2)若二面角P -AC -E 的余弦值为63,求直线P A 与平面EAC 所成角的正弦值.(1)证明 ∵PC ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥PC .∵AB =2,AD =CD =1,∴AC =BC = 2. ∴AC 2+BC 2=AB 2.∴AC ⊥BC . 又BC ∩PC =C ,∴AC ⊥平面PBC . ∵AC ⊂平面EAC , ∴平面EAC ⊥平面PBC .(2)解 如图,以点C 为原点,DA→,CD →,CP →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0),设P (0,0,a )(a >0),则E ⎝ ⎛⎭⎪⎫12,-12,a 2,CA →=(1,1,0),CP →=(0,0,a ),CE→=⎝ ⎛⎭⎪⎫12,-12,a 2.取m =(1,-1,0),则m ·CA →=m ·CP →=0,m 为面P AC 的法向量.设n =(x ,y ,z )为面EAC 的法向量,则n ·CA →=n ·CE →=0,即⎩⎨⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2,则n =(a ,-a ,-2),依题意,|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2.于是n =(2,-2,-2),P A →=(1,1,-2).设直线P A 与平面EAC 所成角为θ,则sin θ=|cos 〈P A →,n 〉|=P A →·n |P A ||n |=23,即直线P A 与平面EAC 所成角的正弦值为23.4.(2013·辽宁卷)如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点.(1)求证:平面P AC ⊥平面PBC ;(2)若AB =2,AC =1,P A =1,求二面角C -PB -A 的余弦值.(1)证明 由AB 是圆的直径,得AC ⊥BC , 由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC . 又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC , 所以BC ⊥平面P AC .又BC ⊂平面PBC , 所以平面PBC ⊥平面P AC .(2)解 过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴、y 轴、z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC = 3. 因为P A =1,所以A (0,1,0),B (3,0,0),P (0,1,1). 故C B →=(3,0,0),C P →=(0,1,1). 设平面BCP 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧C B →·n 1=0,C P →·n 1=0,所以⎩⎨⎧3x 1=0,y 1+z 1=0,不妨令y 1=1,则n 1=(0,1,-1). 因为A P →=(0,0,1),A B →=(3,-1,0), 设平面ABP 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧A P →·n 2=0,A B →·n 2=0,所以⎩⎨⎧z 2=0,3x 2-y 2=0,不妨令x 2=1,则n 2=(1,3,0). 于是cos 〈n 1,n 2〉=322=64.所以由题意可知二面角C -PB -A 的余弦值为64. 5.(2013·合肥第二次质检)在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,且P A ⊥平面ABCD . (1)求证:PC ⊥BD ;(2)过直线BD 且垂直于直线PC 的平面交PC 于点E ,且三棱锥E -BCD 的体积取到最大值. ①求此时四棱锥E -ABCD 的高; ②求二面角A -DE -B 的正弦值的大小.(1)证明 连接AC ,因为四边形ABCD 是正方形,所以BD ⊥AC .因为P A ⊥平面ABCD ,所以P A ⊥BD .又AC ∩P A =A ,所以BD ⊥平面P AC . 又PC ⊂平面P AC ,所以PC ⊥BD .(2)解 ①设P A =x ,三棱锥E -BCD 的底面积为定值,在△PBC 中,易知PB =x 2+1,PC =x 2+2,又BC =1,故△PBC 直角三角形.又BE ⊥PC ,得EC =1x 2+2,可求得该三棱锥的高h =x x 2+2=1x +2x.当且仅当x =2x ,即x =2时,三棱锥E -BCD 的体积取到最大值,所以h =24.此时四棱锥E -ABCD 的高为24.②以点A 为原点,AB ,AD ,AP 所在直线为坐标轴建立空间直角坐标系,则A (0,0,0),C (1,1,0),D (0,1,0),P (0,0,2),易求得CE =14CP . 所以AE →=AC →+14CP →=⎝ ⎛⎭⎪⎫34,34,24,AD →=(0,1,0).设平面ADE 的法向量n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧AE →·n =0,AD →·n =0,即⎩⎨⎧34x +34y +24z =0,y =0,令x =2,则n 1=(2,0,-3),同理可得平面BDE 的法向量n 2=CP →=(-1,-1,2),所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-22211.所以sin 〈n 1,n 2〉=3311.所以二面角A -DE -B 的正弦值的大小为3311.6.(2013·天津卷)如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长.解 如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)证明:易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE .(2)B 1C →=(1,-2,-1).设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎨⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1).由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m ||B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217,所以二面角B 1-CE -C 1的正弦值为217.(3)AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →||AB →|=2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1, 于是λ3λ2+2λ+1=26,解得λ=13,所以AM = 2.。