锐角三角函数复习课件公开课ppt

合集下载

锐角三角函数复习课.ppt

锐角三角函数复习课.ppt

(2)一个锐角的余弦值随着角度的增大而减小 。
5、解直角三角形必须要已知 两 个条件,且其中一个条件必
是边。
6、解直角三角形的应用:
(1)在测量时,视线与水平线所成的角中,规定:视线在水平线 上方的角叫做 仰 角,视线在水平线下方的角叫做 俯 角。
(2)坡面的铅重高度(h)与水平长度(L)的比叫做 坡度 ,用字

i
表示,即i=
h L
。坡面与水平面的夹角叫做 坡 角,坡
角越大,坡度就越大,坡面就越 陡 。
达标检测
1、在Rt△ABC中,∠C=90°,sinA= 12,则∠B= 60°
3
4
2、在Rt△ABC中,∠C=90°,tanA=
3 4
,则sinA=
5 ,cosA= 5 。
3、已知α为锐角,且cosα=0.8,则锐角α的大致范围是( A ) A、45°<α<60° B、α>30° C、30°<α<45° D、α>45°
(1)互为余角的三角函数关系: ①sin(90°-A)= cosA ②cos(90°-A)= sinA
(2)同角的锐角三角函数关系:
① sin2 A cos2 A 1
③ tanAtanB= 1
② tan A sin A
cos A
4、三角函数的增减性:
(1)一个锐角的正弦、正切值随着角度的增大而增大 。
答:A、B两点的距离是100( 3 +1)米。
学习目标
1、理解锐角三角函数的定义,掌握特殊锐 角的三角函数值,并进行计算;
2、掌握直角三角形三边之间的关系,会解 直角三角形;
3、运用解直角三角形的知识解决简单的实 际问题。

课件锐角三角形复习.ppt

课件锐角三角形复习.ppt

3.证明: △ABC 的面积 S 1 AB AC sin A 2
(其中∠A为锐角).
4.某商场营业大厅从一层到二层的电梯长为11.65m,坡 角为31º,求一层和二层之间的高差(精确到0.01m).
5.一艘轮船由西向东航行到B处时,距A岛有30海里,且 A岛在船的北偏东62º的方向,A岛周围10海里的水域有暗 礁,如果轮船不改变航向,那么轮船有触礁的危险吗?
2、 30º 45º 60º 的正弦
tanα
30º
1 2
3 2 3 3
45º
2 2
2 2
1
60º
3 2
1 2
3
3、同一个锐角的正弦、余弦和正切的关系.
(1) sin2 cos2 1.
(2) tan A sin A . cos A
4、互为余角的正弦、余弦的关系. 设α为锐角,则
解直角三角形依据下列关系式:如图
B
a2 b2 c2. 勾股定理 a
c
∠A+∠B=90º.
sin
A
A的对边 斜边
.
cos
A
A的邻边 斜边
.
C
A
b
tan
A
A的对边 . A的邻边
其中∠A可以换成∠B.
2、在将解直角三角形应用到实际问题中时,首先要弄清楚 实际问题的情况,找出其中的直角三角形和已知元素;其次 要从已知元素和所求的未知元素,正确选用正弦,或余弦, 或正切;第三要会用计算器进行有关计算.
本章我们主要学习了锐角的正弦、余弦、正切的概念, 以及它们在求解直角三角形和实际生活中的广泛应用. 一、锐角三角形
1、概念. 在直角三角形中,一个锐角为α,则
sin

1.1.1锐角三角函数(公开课课件)

1.1.1锐角三角函数(公开课课件)
• 四级
• 五级
试着求一求的值.
A =


课堂小结
在Rt△ABC中,如果锐角A确定,
B
∠A的对边
A

∠A的邻边
C
那么∠A的对边与邻边的比随之
确定,这个比叫做∠A的正切.
记作:tanA
∠A的对边
tan A
∠A的邻边
tanA越大,梯子越陡, ∠A越大.
单击此处编辑母版标题样式
随堂练习
1. 如图,△ABC是等腰三角形,你能根据图中所给数据求



∴CE=

tan∠EFC= =



拓展提升
单击此处编辑母版标题样式
随堂练习
(1
). tan60°=
,tan30°=
.发现:2tanA
tan2A
(填“=”或“≠”)
• 单击此处编辑母版文本样式
• 二级
• 三级 中 , ∠C = 90° , AC = 3 , tan
在 Rt△ABC
二级
• 三级
吗?
B
• 四级
• 五级
解:由图可知,D为AC的中点,
则DC=2.
1.5 3
tan C
= .
2 4
1.5
A
D
4
C
如何变化?
倾斜角越大——梯子越陡
1
2
梯子AB和EF哪个更陡?你是如何判断的?
当铅直高度一样,水平宽度越小,梯子越陡.
当水平宽度一样,铅直高度越大,梯子越陡.
梯子AB和EF哪个更陡?你是如何判断的?
如图,小明想通过测量B1C1及AC1 ,
算出它们的比,来说明梯子AB1的倾斜

《锐角三角函数》课件

《锐角三角函数》课件
锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02

锐角三角函数复习课课件

锐角三角函数复习课课件

90度角
总结词
正弦值和余弦值不存在,正切值为无穷大
详细描述
在90度角时,正弦函数值和余弦函数值都不存在,因为无法定义与x轴的角度;正切函数值为无穷大 ,因为在直角三角形中,对边长度可以无限小而保持与斜边的比值不变。
03
锐角三角函数的图像与性质
正弦函数图像
总结词
正弦函数图像是一个周期函数,其图像在直角坐标系中呈波 浪形。
用三角函数来处理角度和旋转。
05
常见题型解析与解题技巧
选择题
• 题型特点:选择题通常考察学生对锐角三角函数基础知识的理 解和应用,题目会给出一些具体的数值或图形,要求选择正确 的答案。
选择题
排除法
根据题目给出的选项,逐一排除明显 错误的答案,缩小选择范围。
代入法
对于涉及数值计算的题目,可以将选 项中的数值代入题目中,通过计算验 证答案的正确性。
在研究磁场和电场时,我们经常需要使用锐 角三角函数来描述场的方向和强度。
日常生活中的问题
建筑和设计
在建筑设计、工程规划和土木工程中,锐角 三角函数用于计算角度、高度和距离等参数 ,以确保结构的稳定性和安全性。
游戏和娱乐
在许多游戏和娱乐活动中,锐角三角函数也 起着重要作用。例如,在制作动画、设计游 戏关卡或创建虚拟现实环境时,我们需要使
总结词
正弦值为0,余弦值和正切值不存在
详细描述
在0度角时,正弦函数值为0,表示射线与x轴重合;余弦函数值不存在,因为无 法定义与x轴的角度;正切函数值也不存在,因为没有对边形成直角三角形。
30度角
总结词
正弦值为0.5,余弦值为0.866,正切值为1/3
详细描述
在30度角时,正弦函数值为0.5,表示对边长度为斜边长度的一半;余弦函数值 为0.866,表示邻边长度为斜边长度的一半的平方根;正切函数值为1/3,表示对 边长度与邻边长度的比值。

第16讲锐角三角函数复习课件(共42张PPT)

第16讲锐角三角函数复习课件(共42张PPT)

解:原式= 3+ 2× 22+ 3--3-2 3+1= 3+1+ 3 +3-2 3+1=5.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
4.在△ABC 中,若|cos A-12|+(1-tan B)2=0,则∠C 的
度数是
(C )
A.45°
B.60°
C.75°
D.105°
5.式子 2cos 30°-tan 45°- (1-tan 60°)2的值是
∵CE=EF,∴CAEC=
m= 5m
55,
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∴tan∠CAE= 55. 解法二:∴在 Rt△ABC 中,
tan
B=ABCC=
2m = 5m
2, 5
在 Rt△EFB 中,EF=BF·tan B=2m,∴CE=EF=2m,
5
5
2m
∴在 Rt△ACE 中,tan∠CAE=CAEC=2m5= 55,
∴tan∠CAE= 55.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
7.如图5-16-4,在Rt△ABC中, ∠C=90°,∠A=30°,E为线段AB上 一点且AE∶EB=4∶1,EF⊥AC于F, 连结FB,则tan∠CFB的值等于 ( C )
3 A. 3
53 C. 3
23 B. 3 D.5 3
大师导航 归类探究 自主招生交流平台 思维训练
第五章 解直角三角形
第16讲 锐角三角函数
全效优等生
全效优等生

大师导航 归类探究 自主招生交流平台 思维训练
月球有多远? 如图,如果从地球上A点看, 月球S刚好在地平线上(即AS和地 球半径OA垂直),而同时从地球上B点看,S刚好在天顶处(即S 在地球半径OB的延长线上),那么∠S就叫做月球S的地平视 差,根据一个天体的地平视差,可以算出这个天体的距离. ∠S可以从∠AOB算出,而∠AOB可以从地球上A,B两点 的经纬度算出. 月球S的地平视差(∠S),就是从月球S看来,垂直于视线 (SA)的地球半径(OA)所对的角.

公开课锐角三角函数复习课件ppt

公开课锐角三角函数复习课件ppt

一.锐角三角函数的概念
ca
正弦:把锐角A的_对__边__与__斜__边_的比叫做∠A
的正弦,记作 sin A a
c
A bC
余弦:把锐角A的_邻__边__与__斜__边_的比叫做∠A的 余弦,记作 cos A b
c
正切:把锐角A的_对__边__与__邻__边_的比叫做∠A的 正切,记作 tan A a
思考:若∠A+∠B=900,那么: sinA = cosB cosA = sinB
在 整堂课 的教学 中,刘 教师总 是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
☆ 应用练习
一.已知角,求值 (1)tan45°-sin60°cos30° (2)2sin30°+3tan30°+tan45° (3)cos245°+ tan60°cos30° (4)2sin60°-3tan30°-(π-cos30°)+(-1)2012
一试. tan22.5 °= 2 1
A
D
D′
B
C
在 整堂课 的教学 中,刘 教师总 是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
☆ 应用练习
三.比较大小
(1)sin250____sin430 (2)cos70____cos80 (3)sin400____cos600 (4)tan480____tan400
B
A
C
4.如图,在Rt△ABC中,∠C=90,b= 2 3 ,c=4.
则a= 2 ,∠B= 60°,∠A= 30°.
5.如果 coAs1+ 3taB n30

锐角三角函数说课稿市公开课一等奖省优质课获奖课件.pptx

锐角三角函数说课稿市公开课一等奖省优质课获奖课件.pptx

注意:sinA不表示“sin”乘以“A”. 正弦常见写法有以下两种形式:
(1)sinA,sin42°,sinβ(省去角符号);
(2)sin∠DEF,sin∠1(不能省去角符号).
第4页
例题精讲 【例1】如图28-1-4,在Rt△ABC中,BC=8, AC=10. 求sinA和sinB值.
第5页
解析 依据正弦定义知sinA= ,sinB= . 因为AB未知,所以应先依据勾股定理求出AB.
(1)求证:DC=BC; (2)若AB=5,AC=4,求 tan∠DCE值.
第36页
第37页
第38页
第17页
锐角三角函数概念:锐角A正弦、余弦、正切都叫 做∠A锐角三角函数.三角函数实质是一个比值,这些 比值只与锐角大小相关,与直角三角形大小无关. 当 一个锐角值给定,它三个三角函数值就对应地确定了 ,另外,并非只有在直角三角形中才有锐角三角函数 值,而是只要有角就有三角函数值.
第18页
2. 各锐角三角函数之间关系: (1)互余关系:sinA=cos(90°-A), cosA= sin(90°-A). (2)平方关系:sin2A+cos2A=1. (3)弦切关系:tanA=
方法规律
第32页
第33页
7. (6分)在Rt△ABC中,∠C=90°,∠A,∠B ,∠C对边分别为a,b,c.已知2a=3b,求∠B三角函 数值.
第34页
第35页
8. (6分)如图KT28-1-2所表 示,△ABC内接于⊙O,AB是⊙O直 径,点D在⊙O上,过点C切线交AD 延长线于点E,且AE⊥CE,连接CD.
解析 作出图形如图28-1-10,可得AB=500 m,∠A=20°,在Rt△ABC中,利用三角函数即可求 得BC长度.

锐角三角函数总复习ppt课件.pptx

锐角三角函数总复习ppt课件.pptx

基础自主导学
1.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的 是( )
A.sin
A=
3 2
C.cos
B=
3 2
答案:D
B.tan A=12 D.tan B= 3
2.在正方形网格中,△ABC的位置如图,则cos B的值为( )
A.
1 2
C.
3 2
答案:B
B.
2 2
D.
┃ 知识归类
解直角三角形
1.三边关系:a2+b2=c2
2.三角关系:∠A=90°-∠B
a
3.边角关系:sinA=cosB= c


b
,cosA=sinB=c ,tanA
sinA
sinB
= cosA ,tanB= cosB
.
4.面积关系:sABC
1 2
ab
1 2
ch
(2)直角三角形可解的条件和解法
条件:解直角三角形时知道其中的2个元素(至少有一个是边), 就可以求出其余的3个未知元素.
[思路分析]设每层楼高为x m,由MC-CC′求出MC′的 长,进而表示出DC′与EC′的长,在直角三角形DC′A′中, 利用锐角三角函数定义表示出C′A′,同理表示出C′B′, 由 C′B′-C′A′求出 AB 的长即可.
解:设每层楼高为 x m, 由题意,得 MC′=MC-CC′=2.5-1.5=1(m). ∴DC′=5x+1,EC′=4x+1. 在Rt△DC′A′中,∠DA′C′=60°, ∴C′A′=tDanC6′0°= 33(5x+1).
1 2
,sin45°=
2 2
,sin60°=
3 2

锐角三角函数比赛课市公开课一等奖省优质课获奖课件.pptx

锐角三角函数比赛课市公开课一等奖省优质课获奖课件.pptx
第4页
比如求sin18°,利用计算器sin键,并输入角 度值18,得到结果sin18°=0.309016994。
又如求tan30°36′,利用tan键,并输入角度、分 值,就能够得到结果0.591398351。 因为30°36′=30.6°,所以也能够利用tan键,并输入
角度值30.6,一样得到结果0.591398351。
(2)cቤተ መጻሕፍቲ ባይዱs a=0.4174;
(3)tan a=0.1890;
(4)cot a=1.3773.
第10页
4、用计算器求下式值.(准确到0.0001) sin81°32′17″+cos38°43′47″
第11页
5.比较大小:
cos30° cos60° tan30° tan60°
第12页
值有没有ta改n变α范围?
0
3
1
3 不存在
0< sinA<1
3
0<cosA<1
第2页
同学们,前面我们学习了特殊角 30°45°60°三角函数值,一些非特殊角 (如17°56°89°等)三角函数值又怎么求 呢?
这一节课我们就学习借助计算器来完成这 个任务.
第3页
这节课我们介 绍怎样利用计 算器求已知锐 角三角函数值 和由三角函数 值求对应锐 角.
特殊角三角函数值
角度 这张表还能够看出逐许步多 知识之间内在联络?增大
正弦值三角函数 角 度 怎样改
余变弦?值 sinα
怎样改
正变切?值 怎样改
cosα
变? 锐角A正弦思值、考余弦

3 0°
45 °
6 0°
9 0°
正 弦
0 1
1 2

公开课锐角三角函数复习课件

公开课锐角三角函数复习课件

特殊角的三角函数值
• 0°、30°、45°、60°、90°等特殊角的三角函数值应熟练掌握, 包括sin、cos、tan、cot、sec、csc等函数。
02
锐角三角函数的图像与 性质
正弦函数的图像与性质
正弦函数的周期性和对称性
正弦函数是周期函数,具有轴对称性和中心对称性。
正弦函数的单调性
在每个周期内,正弦函数在一定区间内单调递增或递减。
正切函数的图像与性质
正切函数的定义域
正切函数只在直角三角形 中定义,表示对边与邻边 的比值。
正切函数的单调性
正切函数在每个区间内单 调递增,无周期性。
正切函数的值域
正切函数的值域为全体实 数,表示任意两个边的比 值。
三角函数图像的变换
平移变换
翻折变换
通过平移正弦、余弦、正切函数的图 像,可以得到其他三角函数图像。
根据数学模型,选择合适的三角 函数公式进行计算。
计算结果
根据选择的公式进行计算,得出 结果。
理解题意
首先需要仔细阅读题目,理解题 目的要求和所给条件,明确解题 的目标。
检验结果
最后需要对计算结果进行检验, 确保结果的正确性。经典Leabharlann 角三角函数综合题解析题型一
求角度问题
题型二
求边长问题
题型三
求面积问题
02
通过已知的边长和角度,利用三角函数可以求出其他边长或角
度,从而解决实际问题。
特殊角的三角函数值
03
对于一些特殊角,如30°、45°、60°等,其三角函数值是已知的
,这些值在解直角三角形时非常有用。
三角函数在实际问题中的应用
测量问题
在建筑、工程和地理测量等领域 ,经常需要使用三角函数来解决 实际问题,如计算距离、高度和

《锐角三角函数》(九年级下册数学)公开课获奖课件百校联赛一等奖课件

《锐角三角函数》(九年级下册数学)公开课获奖课件百校联赛一等奖课件
B
C A
这个问题能够归结为: 在 Rt△ABC 中,∠C=90°,∠A=30°,BC=35 m, 求 AB.
在上面旳问题中,假如出 水口旳高度为 50 m,那么需要 准备多长旳水管?
D B' B
am 50 m 35 m
A
C C' E
思索:由这些成果,你能得到什么结论?
结论: 在直角三角形中,假如一种锐角旳度数是30°, 那么不论三角形旳大小怎样,这个角旳对边与斜
第二十八章
28.1 锐角三角函数(1)
新知探究
比萨斜塔 1350 年落成时就已倾斜,其塔顶中心点 偏离垂直中心线 2.1 m.至今,这座高 54.5 m 旳斜塔仍 巍然挺立.
你能用“塔身中心线 与垂直中心线所成旳角θ” 来描述比萨斜塔旳倾斜程 度吗?
比萨斜塔 1350 年落成时就已倾斜,其塔顶中心点偏 离垂直中心线 2.1 m.至今,这座高 54.5 m 旳斜塔仍巍然 挺立.
你能用“塔身中心线与垂直中心线所成旳角θ”来描 述比萨斜塔旳倾斜程度吗?
2.1 m 垂直中心线
塔顶中心点 54.5 m 塔身中心线
θ
问题探究
为了绿化荒山,某地打算从位于山脚下旳机井房沿着 山坡铺设水管,在山坡上修建一座扬水站,对坡面旳绿地 进行喷灌.现测得斜坡与水平面所成角旳度数是 30°, 为 使出水口旳高度为 35 m,需要准备多长旳水管?
在图中 ∠A旳对边记作a ∠B旳对边记作b ∠C旳对边记作c
例1 如图,在Rt△ABC中,∠C=90°,求sinA和sinB旳值.
求sinA就 是要拟定∠A 旳对边与斜
边旳比;求 sinB就是要 拟定∠B旳对 边与斜边旳 比
解:(1)在Rt△ABC中,
AB AC2 BC2 42 32 5

锐角三角函数复习.ppt

锐角三角函数复习.ppt
又BC-CD=BD
解得x=6
∴CD=6
A
B
C
D
例题解析
(2) BC=BD+CD=4+6=10=AD
在Rt△ACD中
在Rt△ABC中z x xk
问题2 要解一个直角三角形,除一个直角的已知元素外,还需要几个元素?为什么这些元素中至少要有一条边?试给出可以求解直角三角形的两个条件.
A
B
C
D
问题3 如果题中给出的图形不是直角三角形而是一个综合图形,我们用什么方法进行处理,就能把它转化为可以解的直角三角形?
问题4 你认为需要具备哪些知识、掌握哪些方法,就能较顺利地解决有关实际问题?请总结实际问题的一般步骤和注意点.
锐角三角 函数z x xk
特殊角的三 角函数
解直角三 角形
简单实际 问题
c
a
b
A
B
C
知识
特殊角的三 角函数
2
1
30°
1
1
45°
2
1
60°
30°+ 60°= 90°
返 回
解直角 三角形
∠A+ ∠ B=90°
a2+b2=c2
三角函数 关系式
计算器
由锐角求三角函数值
由三角函数值求锐角
返 回
简单实 际问题
数学模型
直角三角形
等腰梯形
组合图形
等腰三角形
构建

作高转化为直角三角形

返 回
问题1 已知:如同,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=3,CD= ,怎样求sinA和cos∠BCD的值?怎样求∠B的正切值?
已知:如图,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC= ,求:(1)DC的长;(2)sinB的值.

锐角三角函数复习课ppt课件

锐角三角函数复习课ppt课件

sina cosa tana
1
2
3
2
2
2
3
2
1
2
2
2
3
3
1
3
思考
锐角A的正弦值、余弦 值有无变化范围?
0< sinA<1
0<cosA最<新1 版整理ppt
角度 逐渐 增大
正 弦 值 余弦 也 值逐 增 渐减 大 正小切
值也 随之 增大
14
sin 2 cos2 1 tan sin
cos
1.3m
O
O
10m
方法总结:对于这
样的实际问题,先认真 分析题意,建立直角三
BC
B
角形的模型,将实际问
题转化为数学问题
A
A
最新版整理ppt
19
• 10分:元旦期间,学校的教学楼上AC挂着庆元旦 条幅BC,小明站在点F处,测得条幅顶端B的仰 角为300,再往条幅方向前进20m到达点E处,测 得B的仰角为600,求条幅BC的长。
AC=
√3,
AB=2,Tan
B 2
75° √3 =3
4,如果α和β都是锐角,且sinα= cosβ,
则α与β的关系 是( B

A,相等 B,互余 C,互补 D,不确定。
5.已知在Rt△ABC中, ∠C=90°,sinA=
1 2
,则
cosB=( A )
A,
1 2
B,√22
C, √最2新3版整理Dp,pt √3
4
6. 计算
(1) tan30°+cos45°+tan60°
3 2 3 32
4 3 2 32
(2) tan30°·tan60°+ cos230°

锐角三角函数优秀教学课件市公开课一等奖省优质课获奖课件.pptx

锐角三角函数优秀教学课件市公开课一等奖省优质课获奖课件.pptx

用计算器求出以下各角三角函数值,说明你发觉,
并尝试验证.
(1)sin 62°25'30″; (2)sin 80°;
(3)sin 12°25'; (4)cos 27°34'30″;
(5)cos 10°;
(6)cos 77°35'.
【结论】
(1)锐角α正弦值伴随α增大而增大;
(2)sin α=cos(90°-α),其中α为锐角.
第6页
检测反馈
1.用计算器求sin 62°20'值正确是 ( ) A A.0.8857 B.0.8856 C.0.8852 D.0.8851
解析:按计算器使用说明依次按键得sin 62°20'≈3249,则∠A约为
A.17° B.18° C.19°
(B) D.20°
解析:按计算器使说明依次按键得∠A≈18°.故选B.
3.用计算器求三角函数值(准确到0.001).
(1)sin 23°≈ 0.391 ;
(2)tan 54°53'40″≈ 1.423 .
解析:用计算器求得sin 23°≈0.391,tan 54°53'40″≈1.423.
第7页
4.已知sin α=0.2,cos β=0.8,则α+β≈ 48°24' .(准确到1')
第2页
用计算器求任意锐角三角函数值
求出以下各角三角函数值.
(1)sin 18°; (2)cos 21°28'30″; (3)tan 30°36'.
解:(1)sin 18°≈0.309016994. (2)cos 21°28'30″≈0.930577395. (3)tan 30°36'≈0.591398351.

锐角三角函数PPT比赛课市公开课一等奖省优质课获奖课件.pptx

锐角三角函数PPT比赛课市公开课一等奖省优质课获奖课件.pptx
第10页
【针对练一】
1.计算: (1)2 cos45°;
解: 2 2 2
2
(2)1-2sin30°cos30°. 解: 1 2 1 3 22 1 3 2 2 3 2
第11页
合作探究 达成目标
例4:如图(1),在RtABC中,C 900 ,
AB 6, BC 3, 求A的度数。
(2)如图(2),已知圆锥的高AO等于
第13页
总结梳理 内化目标
熟记特殊三角函数表:
30°
45°
60°
sinα
1
2
3
2
2
2
cosα
3
2
1
2
2
2
tanα
3
3
1
3
要熟记上表,灵活利用
第14页
达标检测 反思目标
1、已知α为锐角,且 1 <cosα< 2 ,则α取
2
2
值范围是( )C
A.0°<α<30°
B.60°<α<90
C.45°<α<60°
展示点评:问题(1)中,有两个变量t与v,当一个量t 改变时,另一个量v伴随它改变而改变,而且对于t每个 确定值,v都有唯一确定值与其对应.问题(2)(3) 也一样.所以这些变量间含有函数关系,它们
解析式分别为 v 1463 ,y 1000 ,S 1.68104 .
t
x
n
第5页
合作探究 达成目标
第3,4,7题 .
• 课后作业:“学生用书”课 后作业部分.
第18页
∠A邻边
第3页
• 1.了解特殊角三角函数值由来 . • 2.熟记30°,45°,60°三角函数值. • 3.依据一个特殊角三角函数值说出这个角.

28章锐角三角函数全章ppt课件

28章锐角三角函数全章ppt课件

问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的 距离是使用这个梯子所能攀到的最大高度.
问题(1)可以归结为:在Rt △ABC中,已知∠A=75°,斜
边AB=6,求∠A的对边BC的长.
B
由 sin A BC 得 AB
BC AB sin A 6sin 75
由计算器求得 sin75°≈0.97
α
A
C
所以 BC≈6×0.97≈5.8
因此使用这个梯子能够安全攀到墙面的最大高度约是5.8m
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的 角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6, 求锐角a的度数
由于
B
cos a AC 2.4 0.4
AB 6
tan A BC 8k 8 AC 15k 15
例题示范
例3: 如图,在Rt△ABC中,∠C=90° B
1.求证:sinA=cosB,sinB=cosA
2.求证:tan A sin A ;tan A 1
cos A
tan B
3.求证:sin2 A cos2 A 1
A
C
sin2 A sin A sin A
如图,Rt△ABC中,直角边AC、BC小于斜边AB,
sin A BC <1
AB
sin B AC AB
<1
A
C
所以0<sinA <1, 0<sinB <1, 如果∠A < ∠B,则BC<AC , 那么0< sinA <sinB <1
探究
精讲
如图,在Rt△ABC中,∠C= 90°,当锐角A确定时,∠A 的对边与斜边的比就随之确 定,此时,其他边之间的比 是否也确定了呢?为什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 是啊,如果你优秀,你便拥有了大把的选 择机会,否则你只能被迫谋生。
-
3
当你抱怨自己已经很辛苦的时候,请看看在西部 的那些穷孩子,他们饭吃不饱,衣穿不暖,冻着 脚丫,啃着窝窝头的情形,请你对比一下那些透 支着体力却依旧食不果腹的打工者!
-
4
• 当你想要放弃了,一定要想想那些睡得比你晚、 起得比你早、跑得比你卖力、天赋还比你高的牛 人,他们早已在晨光中跑向那个你永远只能眺望 的远方。
-
20
一艘渔船位于港口A的北偏东60°方向,距离港口 20海里B处,它沿北偏西37°方向航行至C处突然 出现故障,在C处等待救援,B,C之间的距离为10 海里,救援船从港口A出发20分钟到达C处,求救 援的艇的航行速度.(sin37°≈0.6, cos37°≈0.8, ≈1.732,结果取整数

-
2(勾股定理)
A
(2)两锐角之间的关系
∠A+∠B=90°
b
(3)边角之间的关系
sin
A
A的对边 斜边
a c
sin
B
B的对边 斜边
b c
C
cos
A
A的邻边 斜边
b c
cos B
B的邻边 斜边
a c
tan
A
A的对边 A的邻边
a b
B的对边 b
tan
B -
B的邻边
a
c
a
B
13
直击中考
考点三:解直角三角形
F
-
16
解直角三角形的实际应用------求距离问题
例2:如图,海岛A四周20海里周围内为暗礁 区,一艘货轮由东向西航行,在B处见岛A在 北偏西60˚,航行24海里到C,见岛A在北偏西 30˚,货轮继续向西航行,有无触礁的危险?
N1
N
A
D
C
-
B
17
小结:
说一说这节课你有什么收获?
1,锐角三角函数的定义
∠C=90°,AB=2BC,则sinB的值为(

A、 1 B、 2
C、 3 D、1
C
2
2
2
B
c a
A
bC
-
10
二、特殊角的三角函数值
1
2
2
2
3
2
2
2
3 3
1
-
3 2
1 2
3
11
直击中考 考|. 点二:特殊角三角函数值
例1
45 0 -
例2
30 0
-
12
三、解直角三角形
知识梳理:
a b c (1)三边之间的关系 22
A
A的邻边 斜边
b c
⑶正切
tan
A
A的对边 A的邻边
a b
A
b
c
Ca
B
-
8
直击中考 考点一:锐角三角函数的定义及简单应用
例1:在正方形网格中,∠α的位置如图所示,则
sinα的值为( B) .
A1 B 2 C 3 D 3
2
2
2
3
-
9
直击中考 考点一:锐角三角函数的定义及简单应用
例2、(1)(2016乐山)在Rt△ABC中,若
• 所以,请不要在最能吃苦的时候选择安逸,没有 谁的青春是在红地毯上走过。从来就没有什么天 生的幸运,一切全都靠背后日复一日、年复一年 辛劳的耕耘,努力。
-
5
努力到无能为力,拼搏到感动自 己,你的人生终将闪耀。
-
6
锐角三角函数
-
7
一.锐角三角函数的定义
⑴正弦
sin
A
A的对边 斜边
a c
⑵余弦
cos
21
如图,某校数学兴趣小组为测得校园里旗杆
AB的高度,在操场的平地上选择一点C,测 得旗杆顶端A的仰角为30°,再向旗杆的方 向前进16米,到达点D处(C、D、B三点在 同一直线上),又测得旗杆顶端A的仰角为 45°,请计算旗杆AB的高度(结果保留根号 )
-
22
(2017.乌鲁木齐)一艘渔船位于港口A的北偏东 60°方向,距离港口20海里B处,它沿北偏西37° 方向航行至C处突然出现故障,在C处等待救援,B, C之间的距离为10海里,救援船从港口A出发20分 钟到达C处,求救援的艇的航行速 度.(sin37°≈0.6,cos37°≈0.8, ≈1.732,结 果取整数)
吃 苦 在 前,享 受 在 后
-----------冲刺中考
-
1
马云在《不吃苦,你要 青春干嘛》这篇演讲中这样 说到“当你不去拼一份奖学 金,不去过没试过的生活, 整天挂着QQ,刷着微博, 逛着淘宝,玩着网游,干着 我80岁都能做的事,你要 青春干嘛?”
-
2
• 著名作家龙应台在给儿子安德烈的一封信 中这样写到:我要求你读书用功,不是因 为我要你跟别人比成就,而是因为,我希 望你将来拥有更多选择的权利,选择有意 义、有时间的工作,而不是被迫谋生。
-
23
D点测得∠ADB=60°,又CD=60m,则河宽AB

m(结果保留根号)-15四、解直角三角形的实际应用
直击中考: 考点四:解直角三角形的实际应用------求高度问题
例1(2017.新疆)如图,甲、乙为两座建筑物,它们之间的
水平距离BC为30m,在A点测得D点的仰角∠EAD为45°, 在B点测得D点的仰角∠CBD为60°,求这两座建筑物的 高度(结果保留根号)
2,特殊角的三角函数值 3,解直角三角形 4,解直角三角形的应用
常用的思想方法 和辅助线的作法
-
18
作业:中考总复习P126 1---3题
-
19
(2018•新疆)如图,在数学活动课上,小丽为了 测量校园内旗杆AB的高度,站在教学楼的C处测得 旗杆底端B的俯角为45°,测得旗杆顶端A的仰角 为30°.已知旗杆与教学楼的距离BD=9m,请你帮 她求出旗杆的高度(结果保留根号).
例1:(2014•新疆)如图,在Rt△ABC中, ∠C=90°,∠B=37°,BC=32,则AC=-----(参考数据:sin37°≈0.60,cos37°≈0.80, tan37°≈0.75)
-
14
直击中考
考点三:解直角三角形
例2:(2016.内高)如图,测量河宽AB(假
设河的两岸平行),在C点测得∠ACB=30°,
相关文档
最新文档