北京科技大学机械工程材料与成形工艺(机械)期末复习总结.docx
机械工程材料复习总结
公差配合与精度复习总结绪论二、重点知识与规律总结1、基本知识互换性误差公差标准测量优先数系2、重点内容1)互换性的意义、种类和作用2)加工误差、公差、测量和互换性的关系3、规律总结1)公差越大,允许的加工误差越大,互换的范围越广,由此造成的结果是加工成本低,装配精度低2)优先数系的公比即10的开方数;公比越小,数值分布越密第一章尺寸公差及配合二、重点知识与规律总结1、基本知识孔与轴基本尺寸实际尺寸极限尺寸极限偏差尺寸公差公差带图间隙或过盈间隙配合过盈配合过渡配合配合公差标准公差基本偏差基孔制基轴制2、重点内容1)公差带图的绘制和分析2)实际尺寸与极限尺寸的关系3)标准公差和基本偏差的意义及数值确定4)配合类型的判别5)基准制的意义及选择3、规律总结1)从孔与轴公差带的位置关系判别配合的类型2)公差带的大小——标准公差——公差等级越低(大),标准公差越大(基本尺寸不变)公差带的位置——基本偏差——上半个喇叭是孔的,下半个喇叭是轴的(基本偏差的形状是一喇叭,其中H或h为分界点3)基孔制——孔(位置)不变,轴(位置)改变基轴制——轴(位置)不变,孔(位置)改变第二章形状和位置公差二、重点知识与规律总结1、基本知识形位误差形位公差要素形位公差带的四要素直线度平面度圆度圆柱度平行度垂直度同轴度对称度圆跳动全跳动(作用尺寸实体尺寸实效尺寸理想边界独立原则包容要求最大实体要求最小实体要求可逆要求)2、重点内容1)要素的类别2)形位公差带的四要素3)形位公差带的代号及标注4)形状公差5)位置公差6)常用形位公差带的定义3、规律总结1)公差带的形状◆被测要素是直线(直线度、平行度、垂直度、同轴度、倾斜度、位置度)给定平面内:两平行平面在一个方向:两平行平面在互相垂直的两个方向:四棱柱任意方向:一圆柱◆被测要素是平面(平面度、平行度、垂直度、对称度、倾斜度)两平行平面◆被测要素是圆柱面(圆柱度、全跳动)两同心圆柱面◆被测要素是圆(圆度、圆跳动、全跳动)径向:两同心圆轴向:两平行平面◆被测要素是点(位置度)给定平面内:一个圆任意方向:一个球2)标注◆被测要素的指引线(或基准代号的连线)指在可见轮廓线或其延长线上,并明显地与尺寸线错开,◆则被测要素(或基准)为轮廓要素;若与尺寸线对齐,则被测要素(或基准)为中心要素◆形位公差框格内公差数值前没有符号,公差带之间为一距离值;公差数值前有φ,公差带形状为一圆或一圆柱;公差数值前有Sφ,公差带形状为一球。
材料成形工艺设计期末复习总结
7.简述铸造成型的实质及优缺点。
答:铸造成型的实质是:利用金属的流动性,逐步冷却凝固成型的工艺过程。
优点:1.工艺灵活生大,2.成本较低,3.可以铸出外形复杂的毛坯缺点:1.组织性能差,2机械性能较低,3.难以精确控制,铸件质量不够稳定4.劳动条件太差,劳动强度太大。
8.合金流动性取决于哪些因素?合金流动性不好对铸件品质有何影响?答:合金流动性取决于1.合金的化学成分 2.浇注温度 3.浇注压力4.铸型的导热能力5.铸型的阻力合金流动性不好:产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣和缩孔缺陷的间接原因。
9.何谓合金的收缩,影响合金收缩的因素有哪些?答:合金的收缩:合金在浇注、凝固直至冷却到室温的过程中体积或缩减的现象影响因素:1.化学成分2 浇注温度 3.铸件的结构与铸型条件11.怎样区别铸件裂纹的性质?用什么措施防止裂纹?答:裂纹可以分为热裂纹和冷裂纹。
热裂纹的特征是:裂纹短、缝隙宽,形状曲折,裂纹内呈氧化色。
防止方法:选择凝固温度范围小,热裂纹倾向小的合金和改善铸件结构,提高型砂的退让。
冷裂纹的特征是:裂纹细小,呈现连续直线状,裂缝内有金属光泽或轻微氧化色。
防止方法:减少铸件内应力和降低合金脆性,设置防裂肋13.灰铸铁最适合铸造什么样的铸件?举出十种你所知道的铸铁名称及它们为什么不用别的材料的原因。
答:发动机缸体,缸盖,刹车盘,机床支架,阀门,法兰,飞轮,机床,机座,主轴箱原因是灰铸铁的性能:[组织]:可看成是碳钢的基体加片状石墨。
按基体组织的不同灰铸铁分为三类:铁素体基体灰铸铁;铁素体一珠光体基体灰铸铁;珠光体基体灰铸铁。
[力学性能]:灰铸铁的力学性能与基体的组织和石墨的形态有关。
灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。
同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。
北京科技大学液态成型理论与工艺期末复习要点
液固相变驱动力:G H TS;GV GS GL HS TSS (HL TSL) (HS HL)T(SS SL) H TS; T=Tm (GV)TTm Hm TmSm 0
Sm Hm /Tm (近似认为H、S 不随温度变化) GV H(1T /Tm) HT /Tm 形核驱动力:GVt VHT/Tm; 形核阻力:Gi A 总自由能变化:△G= △GVt+Gi
tlti热流方向与晶体生长方向相反热流方向与晶体生长方向相反ti热流方向与晶体生长方向相同热流方向与晶体生长方向相同ttm??gvt?tm??hm?tm?sm?0??sm??hmtm近似认为?h?s不随温度变化??gv??h1?ttm??h?ttm形核驱动力
第一章 正温度梯度:TL>TI 热流方向与晶体生长方向相反 负温度梯度:TL <TI 热流方向与晶体生长方向相同 铸造:将满足化学成分要求的液态合金在重力场或其它力作用下引入到预制好的型腔中,经冷却使其凝固成为具有 型腔形状和相应尺寸的固体制品的方法。又称为凝固成形或铸造。 铸件:液态金属凝固成形获得的制品称为铸件。 充填:机械过程,改变材料的几何形状。 凝固:冷却过程,即热过程,改变材料性能。 工艺形态学角度描述如下:液态材料在场的作用下产生的质量力,为其有效的运动提供了能量,作为传递介质的铸 型,则为材料提供了形状信息,而材料的性能信息来自材料自身状态的转变特性和介质传热特性。 热量传递方式:传导、对流、辐射。微观上:金属原子由“近程有序”过渡到“远程有序”或“远程无序” ,得到 晶体或非晶体。宏观上:液态金属热量传递给环境,使之形成一定形状和性能的固体(铸件) 。 液态成形中的基本问题:① 凝固组织的形成与控制。② 传热分析和控制。③ 铸造缺陷的防止与控制。 凝固技术的发展:① 定向凝固技术② 快速凝固技术③ 复合材料制备技术。 第二章
机械工程材料期末总结
机械工程材料期末总结引言:机械工程材料是一门涉及了机械工程中所应用的各种材料的课程,包括基础材料知识、材料性能、材料选择与应用等方面。
本学期,我们学习了金属材料、塑料、复合材料、陶瓷材料等多种类型的材料,通过实验和课堂学习,深入了解了机械工程材料的特性与应用。
在这篇总结中,我将回顾本学期的学习内容,并总结所获得的知识与经验。
一、金属材料金属材料是机械工程中最常用的一种材料,具有优异的机械性能和导热性能。
在本学期的学习中,我们了解了金属材料的晶体结构、相图和固溶强化等基础知识,掌握了金属材料的加工性和热处理方法。
金属材料的应用广泛,例如在机械结构、汽车制造和航空航天等领域。
1.1 金属材料的晶体结构金属材料的晶体结构对其性能有重要影响,我们学习了常见的晶体结构,如面心立方、体心立方和密排六方等。
了解晶体结构有助于理解金属的力学性能和变形行为。
1.2 相图和固溶强化我们学习了金属材料的相图,了解了相变和固溶强化的原理。
通过固溶强化,可以提高金属材料的强度和硬度,提高其耐热性和耐腐蚀性,扩大其应用范围。
1.3 金属材料的加工性能金属材料的加工性能是指其在加工过程中的变形能力和可塑性。
我们学习了金属的塑性变形和脆性断裂等基本概念,了解了金属材料的加工方法,如冷加工和热加工。
了解金属材料的加工性能有助于优化加工过程,提高产品的质量和效率。
1.4 金属材料的热处理方法金属材料的热处理是通过控制其冷却速度和温度来改变其组织结构和性能的方法。
我们学习了常见的热处理方法,如退火、淬火和回火等。
了解热处理方法有助于优化材料的性能,提高其使用寿命和可靠性。
二、塑料材料塑料材料是一类具有可塑性和可加工性的有机材料,具有重量轻、绝缘性能好等特点。
我们在本学期学习了塑料材料的种类、性能和加工方法。
2.1 塑料材料的种类塑料材料根据其结构和特性可以分为热塑性塑料和热固性塑料两类。
常见的热塑性塑料有聚乙烯、聚丙烯和聚氯乙烯等;常见的热固性塑料有环氧树脂和酚醛树脂等。
《工程材料及成型技术基础》期末考试重点总结
1、金属三种晶格类型:体心立方晶格、面心立方晶格、密排六方晶格。
2、晶体缺陷:点缺陷、线缺陷、面缺陷。
位错属于线缺陷。
3、材料抵抗外物压入其表面的能力称为硬度。
HRC表示洛氏硬度,HB表示布氏硬度,HV维氏硬度4、金属塑性加工性能用塑性和变形抗力衡量。
5、铸造应力分为:热应力和机械应力。
其中热应力属于残余应力。
6、单相固溶体压力加工性能好,共晶合金铸造加工性能好。
7、金属经过冷塑性变形后强度提高,塑性降低的现象称为形变强化。
8、铸造性能是指:流动性和收缩性。
9、板料冲压成形基本工序:分离工序和成形工序两大类。
10、工艺选择四条基本原则:①使用性能足够原则②工艺性能良好原则③经济性能合理原则④材料、成形工艺、零件结构相适应原则。
11、HT200是灰铸铁材料,其中200表示:最低抗拉强度为200MPa。
12、确定钢淬火加热温度的基本依据是:Fe-3C相图。
13、为保证铸造质量,顺序凝固适合于:缩孔倾向大的铸造合金。
14、锤上锻模时,锻件最终成型是在终锻模膛中完成的,切边后才符合要求。
15、材料45钢、T12、20钢、20Gr.中,焊接性能最好的是20钢(含碳量越高,焊接性能越差)16、机床床身用灰铸铁铸造成型17、固溶体分为:置换固溶体和间隙固溶体18、金属件化合物:正常价化合物、电子化合物、间隙化合物。
19、塑性衡量:伸长率和断面收缩率。
20、晶粒大小:①常温下晶粒越小,金属的强度、硬度越高,塑性、韧性越好。
②晶粒大小与形核率和长大速度有关③影响因素:过冷度和难溶杂质④细化晶粒:增大过冷度,变质处理。
机械搅拌21、单相固溶体合金塑性好,变形抗力好,变形均匀,不易开裂,加工性能好22、单相固溶体塑性变形形式:滑移和孪生23、退火:目的:1,、降低硬度,改善切削加工性2、消除残余应力,稳定尺寸,减少变形与开裂倾向3、细化晶粒,调整组织,消除组织缺陷。
完全退火:适用于亚共析钢,锻件及焊接件。
加热到Ac3以上使奥氏体化,作用:使加热过程中造成的粗大不均匀组织均匀细化,降低硬度,提高塑性,改善加工性能,消除内应力。
工程材料及成型技术期末考试复习要点+答案
工程材料及成型技术复习要点第二章材料的性能1、材料静态、动态力学性能有哪些?静态力学性能有弹性、刚性、强度、塑性、硬度等;动态力学性能有冲击韧性、疲劳强度、耐磨性等。
2、材料的工艺性能有哪些?工艺性能有铸造性能、压力加工性能、焊接性能、热处理性能、切削加工性能等。
3、钢制成直径为30mm的主轴,在使用过程中发现轴的弹性弯曲变形过大用45钢,试问是否可改用40Cr或通过热处理来减少变形量?为什么?答:不可以;因为轴的弹性弯曲变形过大是轴的刚度低即材料的弹性模量过低和轴的抗弯模量低引起的。
金属材料的弹性模量E主要取决与基体金属的性质,与合金化、热处理、冷热加工等关系不大(45钢和40Cr弹性模量差异不大)。
4、为什么疲劳裂纹对机械零件存在着很大的潜在危险?第三章金属的结构与结晶1、金属常见的晶体结构有哪些?体心立方晶格、面心立方晶格、密排六方晶格。
2、实际金属的晶体缺陷有哪些?它们对金属的性能有何影响?有点缺陷、线缺陷、面缺陷;点缺陷的存在(使周围原子间的作用失去平衡,原子需要重新调整位置,造成晶格畸变,从而)使材料的强度和硬度提高,塑性和韧性略有降低,金属的电阻率增加,密度也发生变化,此外也会加快金属中的扩散进程。
线缺陷也就是位错,位错的增多,会导致材料的强度显著增加;但是,塑性变形主要位错运动引起的,因此阻碍位错运动是金属强化重要途径。
面缺陷存在,会产生晶界和亚晶界,其原子排列不规则,晶格畸变大,晶界强度和硬度较高、熔点较低、耐腐蚀性较差、扩散系数大、电阻率较大、易产生內吸附、相变时优先形核等。
3、铸锭的缺陷有哪些?有缩孔和疏松、气孔、偏析。
4、如何控制晶粒大小?增大过冷度、变质处理、振动和搅拌。
5、影响扩散的因素有哪些?温度、晶体结构、表面及晶体缺陷(外比内快)。
间隙、空位、填隙、换位四种扩散机制6、为什么钢锭希望尽量减少柱状晶区?柱状晶区是由外往内顺序结晶的,组织较致密,有明显的各向异性,进行塑性变形时柱状晶区易出现晶间开裂。
机械工程材料及成型工艺期末复习资料
百度下载,不是考试题!!!1. 强度:外力作用下,材料抵抗变形和断裂的能力。
2.屈服强度:材料在外力作用下开始发生塑性变形的最低应力值,用 表示,单位为MPa 。
3. 断裂前材料发生塑性变形的能力叫塑性,拉伸时用延伸率或伸长率(δ)和断面收缩率( )表示。
4.硬度是衡量材料软硬程度的指标,常用的硬度有布氏硬度、洛氏硬度、维氏硬度等。
布氏硬度材料选择:压头为淬火钢球时用HBS ,适用于布氏硬度值在450以下的材料;压头为硬质合金球时用HBW ,适用于布氏硬度在650以下的材料。
不适用于成品零件和薄壁件的硬度检验。
5. 韧性是材料在冲击载荷作用下抵抗变形和断裂的能力6.用假想的直线将结点连接起来所形成的三维空间格架称为晶格7.晶格中能够完全反映晶格特征的最小几何单元为晶胞。
8.最常见的立方晶格有:体心立方晶格(α-Fe )、面心立方晶格(γ-Fe )、密排六方晶格(C (石墨))。
9. 合金中有两类基本相 —— 固溶体 和 金属化合物。
按溶质原子在溶剂晶格中所占的位置的不同,可将固溶体分为置换固溶体和间隙固溶体。
10.固溶强化:由于溶质原子的溶入,引起溶剂晶格发生扭曲和畸变,使合金的强度、硬度上升,塑性韧性下降的现象;产生固溶强化的原因:溶质原子使溶剂晶格发生畸变及对位错的钉扎作用,阻碍了位错的运动。
与纯金属相比,固溶体的强度、硬度高,塑性、韧性低,但与金属化合物相比其硬度要低很得多,而塑性韧性要高的多11.机械化合物不是相,是一个混合物。
12.晶体缺陷类型:(1)点缺陷:空位、间隙原子、异类原子(2)线缺陷:位错(3)面缺陷:晶界与亚晶界(要会判断)13. 理想结晶温度和实际结晶温度之差叫过冷度。
过冷是金属结晶的必要条件。
14.金属晶核形成的方式:自发形核和非自发形核15.细化晶粒的方法:(1)增加过冷度ΔT ;2)变质处理;3)振动与搅拌。
16.有些物质的晶格结构随温度变化而改变的现象,称为同素异构转变δ-Fe γ-Fe α-Fe面心立方晶格 体心立方晶格17. 细晶强化:金属内部晶粒越细小,则晶界越多且晶格畸变越大。
机械工程材料及其成型技术期末考试试题及其答案(-内容超好)
5.自由锻的基本工序有___镦粗_镦粗拔长冲孔扩孔弯曲______、___拔长_______、____冲孔______、_______扩孔___、_弯曲_________等。
2、填出下列力学性能指标的符号:屈服强度_σs , 洛氏硬度C标尺_HRC______, 冲击韧性_____Ak___。
3.常见金属的晶格类型有____体心立方___________ 、___________面心立方晶格____、__密排六方__________等。α-Fe属于_____体心立方_____晶格, γ-Fe属于___面心立方_______晶格。
11.铸件的收缩过程可以划分为___液态收缩(缩孔)_________、_____凝固收缩(缩孔 缩松)______和___固态收缩(内应力,变形 裂纹)________三个阶段。液态收缩凝固收缩固态收缩
铸造应力(热应力 相变应力 机械阻碍应力)
12.锻压是指锻造和__冲压____锻造冲压___的总称,锻造按成型方式分为_____模锻______和__自由锻_________两类。
6、在亚共析碳钢中, 钢的力学性能随含碳量的增加其强度提高而__塑性韧性____下降(强度硬度提高), 这是由于平衡组织中___ Fe3C____增多而____F___减少的缘故。
7、焊条焊芯的作用是___作为电弧电极_和____填充金属______ ________。
药皮的作用.a.稳定电弧;b.产生熔渣和气体, 保护溶池金属不被氧化;c.起机械保护作用
机械工程材料期末复习部分知识要点
疑问?1、在常见的工业金属中错位密度越小,其强度越高(错位强化)。
2、γ-Fe比α-Fe的溶碳量大,其原因是什么?(α铁是铁素体,是碳溶解在a-Fe中的间隙固溶体,其溶碳能力很小,常温下仅能溶解为0.0008%的碳,在727℃时最大的溶碳能力为0.02%。
γ铁是奥氏体,是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。
它仍保持γ-Fe的面心立方晶格。
其溶碳能力较大,在727℃时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。
α铁是铁素体,含碳量0-0.0218%γ铁是奥氏体,含碳量0-2.11%)3、什么是加工硬化?(金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。
又称冷作硬化。
产生原因是,金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等)4、再结晶退火与去应力退火的区别?(去应力退火:将工件加热至Ac1以下某一温度,保温一定时间后冷却,使工件发生回复,从而消除残余内应力的工艺称为去应力退火,冷形变后的金属在低于再结晶温度加热,以去除内应力,但仍保留冷作硬化效果的热处理。
再结晶退火:是经冷形变后的金属加热到再结晶温度以上,保持适当时间,使形变晶粒重新结晶成均匀的等轴晶粒,以消除形变强化和残余应力的热处理工艺。
)5、钢的牌号。
6、什么是包晶、共晶、共析转变?(共晶反应:指一定成分的液体合金,在一定温度下,同时结晶出成分和晶格均不相同的两种晶体的反应。
包晶反应:指一定成分的固相与一定成分的液相作用,形成另外一种固相的反应过程。
共析反应:由特定成分的单相固态合金,在恒定的温度下,分解成两个新的,具有一定晶体结构的固相的反应。
共同点:反应都是在恒温下发生,反应物和产物都是具有特定成分的相,都处于三相平衡状态。
不同点:共晶反应是一种液相在恒温下生成两种固相的反应;共析反应是一种固相在恒温下生成两种固相的反应;而包晶反应是一种液相与一种固相在恒温下生成另一种固相的反应。
北科机械制造工艺复习题(含答案,仅供参考)
北科机械制造工艺复习题(含答案,仅供参考)北科工艺复习题(参考)1、误差复映系数反映了(加工)误差与(毛坯)误差之间的比例关系。
2、机床主轴的回转误差包括(径向圆跳动)、( 轴向圆跳动)和( 倾角摆动 )。
3、影响机床部件刚度的因素有:( 联结表面间的接触变形 )、( 零件间的摩擦力 )和( 接合面间隙薄弱零件本身的变形 )。
4、工艺系统热源传递方式有( 导热传热 )、( 对流传热 )和( 辐射传热 )三种形式。
5、机械加工中,在没有周期外力作用下,由系统内部激发反馈产生的周期振动称为( 自激 )振动。
6、根据工件加工表面位置尺寸要求必须限制的自由度没有得到完全限制,称为( 欠定位 )。
7、把对加工精度影响最大的方向称为( 误差敏感 )方向。
8、工件以圆柱面在短V 形块上定位时,限制了工件( 2 )个自由度,若在长V 形块上定位时,限制了工件( 4 )个自由度。
9、淬硬丝杠螺纹精加工应安排在淬火之( 后 )完成。
10、镗床的主轴径向跳动将造成被加工孔的( 圆度 )误差。
11、安排在切削加工之前的( 退火)、( 正火)、调质等热处理工序,是为了改善工件的切削性能。
12、机械加工表面质量将影响零件的耐磨性、耐蚀性、___疲劳___强度和_ 零件 __配合__质量。
13.、零件的加工精度包括( 尺寸 )精度、( 形状 )精度和表面 _精度三方面内容。
14、加工过程由,表面层若以冷塑性变形为主,则表面层产生( 残余压 )_应力;若以热塑性变形为主,则表面层产生( 残余拉 )应力。
15、加工表面质量主要对( 耐磨性),( 疲劳强度)、(_零件配合质量)和(耐蚀性)等使用性能产生影响。
1、车床主轴的纯轴向窜动对( AD )加工无影响。
A.车内圆B.车端面C.车螺纹D. 车外圆E.车倒角2、T i 为增环的公差,T j 为减环的公差,M 为增环的数目,N 为减环的数目,那么,封闭环的公差为( A ) A.T i i M =∑1+ Tjj N=∑1B.T i i M =∑1- Tjj N=∑1C.Tjj N=∑1+T ii M=∑1D. T ii M=∑13、工件在机床上或在夹具中装夹时,用来确定加工表面相对于刀具切削位置的面叫( D )。
机械工程材料+复习
疲劳强度 -1—无数次交变应力作用下不发生破坏的最 大应力。
⑶ 塑性:材料断裂前承受最大塑性变形的能力。指标 为伸长率、断面收缩率。
⑷ 硬度:材料抵抗局部塑性变形的能力。指标为HB、 HRC。
韧性:材料从变形到断裂整个过程所吸收的能量。
机械工程材料+复习
⑸ 冲击韧性:材料抵抗冲击破坏的能力。指标为αk. 材料的使用温度应在冷脆转变温度以上。
解;A成分均匀化。 奥氏体化后的晶粒度: 初始晶粒度:奥氏体化刚结束时的晶粒度。 实际晶粒度:给定温度下奥氏体的晶粒度。 本质晶粒度:加热时奥氏体晶粒的长大倾向。
机械工程材料+复习
2、冷却时的转变 ⑴ 等温转变曲线及产物
A1
650℃
600℃ 550℃
过冷A 过冷A 过冷A A→T
A→S
A→P
成的固溶体。多为金属元素之间形成的固溶体。
机械工程材料+复习
⑵ 间隙固溶体:溶质原子处于溶剂晶格间隙所形成 的固溶体。
为过渡族金属元素与小原子半径非金属元素组成。 铁素体:碳在-Fe中的固溶体。 奥氏体:碳在-Fe中的固溶体。 马氏体:碳在-Fe中的过饱和固溶体。 固溶强化:随溶质含量增加,固溶体的强度、硬度
机械工程材料+复习
⑶ 结晶晶粒度控制方法:①增加过冷度;②变质处 理;③机械振动、搅拌
2、纯金属中的固态转变
同素异构转变:物质在固态下晶体结构随温度而发 生变化的现象。
固态转变的特点:①形核部位特殊;②过冷倾向大; ③伴随着体积变化。 铁的同素异构转变:-Fe13⇄94℃-Fe9⇄12℃-Fe
机械工程材料+复习
⑵ 三种常见纯金属的晶体结构
体心立方
机械工程材料复习 个人总结
共 -11- 张 第 -3- 张
机械 104 班《机械工程材料》复习资料(个人总结)
工程材料试题
一、名词解释题(每题 3 分,共 30 分) 1、金属化合物;与组成元素晶体结构均不相同的固相 2、固溶强化;随溶质含量增加,固溶体的强度、硬度提高,塑性、韧性下降的现象。 3、 铁素体;碳在 a-Fe 中的固溶体 4、加工硬化;随冷塑性变形量增加,金属的强度、硬度提高,塑性、韧性下降的现象。 5、球化退火;将工件加热到 Ac1 以上 30——50 摄氏度保温一定时间后随炉缓慢冷却至 600 摄氏度后出炉空 冷。 6、金属键;金属离子与自由电子之间的较强作用就叫做金属键。 7、再结晶;冷变形组织在加热时重新彻底改组的过程. 8、枝晶偏析;在一个枝晶范围内或一个晶粒范围内成分不均匀的现象。 9、正火;是将工件加热至 Ac3 或 Accm 以上 30~50℃,保温一段时间后,从炉中取出在空气中冷却的金属热处理 工艺。 10、固溶体。合金在固态时组元间会相互溶解,形成一种在某一组元晶格中包含有其他组元的新相,这种新 相称为固溶体 二、简答题(每题 8 分,共 48 分) 1、金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?《 P16》
共 -11- 张 第 -1- 张
机械 104 班《机械工程材料》复习资料(个人总结)
回复:当加热温度较低时,冷变形金属的显微组织无明显变化,力学性能也变化不大,单残余应力显著降低, 物理和化学性能部分恢复到变形前的情况,这一阶段称为回复。 再结晶:冷变形金属加热到更高温度后,在原变形金属中会形成无畸变的等轴晶,直至完全取代其冷组织的 过程。 再结晶温度:通常指再结晶开始的温度。P132 临街变形量:变形达到某一变形值时,由于金属变形度不大而且不均匀,再结晶时形核数目少,获得比较粗 大晶粒的变形度。P135 冷加工:冷加工则指在低于再结晶温度下使金属产生塑性变形的加工工艺 热加工:在金属学中,把高于金属再结晶温度的加工叫热加工。
材料部分.答docx
《工程材料及成形工艺基础》习题集—北京科技大学机制及自动化系班级姓名学号北京科技大学机械工程学院2012.10习题一班级姓名成绩一、什么是应力?什么是应变?答: 应力——试样单位截面上的作用力。
σ应变——试样单位长度上的变形量。
ε二、填表回答:三、金属材料随所受外力的增加,其变形过程一般分为几个阶段?各阶段的特点是什么?弹性变形和塑性变形阶段。
弹性变形阶段:应力与应变成正比;去掉外力恢复原状。
塑性变形阶段:应力与应变不成正比;去掉外力不能恢复原状。
四、何谓金属的工艺性能?主要包括哪些内容?答:工艺性能是指金属材料对不同加工工艺方法的适应能力,它包括铸造性能、锻造性能、焊接性能、热处理性能和切削加工性能等。
五、何谓交变载荷?何谓疲劳破坏?其产生的原因是什么?答:交变载荷——大小和方向随时间呈周期性变化的作用载荷。
疲劳破坏——材料在循环应力和应变作用下,在一处或几处产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。
产生原因——由于材料内部有气孔、疏松、夹杂等组织缺陷,表面有划痕、缺口等引起应力集中的缺陷,导致产生微裂纹,随着循环次数的增加微裂纹逐渐扩展,最后造成工件突然断裂破坏。
六、常用的金属晶格类型有哪几种?其晶胞特征怎样?举例说明。
答:常见的晶格类型有体心立方晶格、面心立方晶格和密排六方晶格三种。
α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;七、固溶体和金属间化合物在结构和性能上有什么主要差别?答:在结构上:固溶体的晶体结构与溶剂的结构相同,而金属间化合物的晶体结构不同于组成它的任一组元,它是以分子式来表示其组成。
在性能上:形成固溶体和金属间化合物都能强化合金,但固溶体的强度、硬度比金属间化合物低,塑性、韧性比金属间化合物好,也就是固溶体有更好的综合机械性能。
八、什么叫固溶强化?什么弥散强化?比较二者的异同。
机械工程材料期末总结
机械工程材料期末总结
机械工程材料是机械工程学科中的重要内容,涉及到材料的选择、设计与应用等方面。
在期末总结中,可以从以下几个方面进行总结:
1. 材料的分类与特性:总结常见的机械工程材料,包括金属材料、陶瓷材料、聚合物
材料等,并阐述它们的特性和应用范围。
例如,金属材料具有良好的导电性和导热性,适用于制造机械零件;陶瓷材料具有良好的耐高温和耐磨损性能,适用于高温工作环境。
2. 材料的选择与设计:总结机械工程师在选择材料和设计机械零件时需要考虑的因素。
例如,考虑到机械零件的强度和刚度要求,需要选择强度高、刚度大的材料;考虑到
机械零件的重量要求,需要选择密度小的材料。
3. 材料的加工与表面处理:总结机械工程师在材料加工和表面处理过程中的常见方法
和技术。
例如,常见的加工方法有切削、冲压、焊接等;常见的表面处理方法有热处理、电镀、喷涂等。
4. 材料的故障与保护:总结机械工程师在材料使用过程中可能出现的故障和保护方法。
例如,金属材料可能出现疲劳、腐蚀等问题,可以通过增加零件的强度、防腐涂层等
方式进行保护。
5. 材料的环境与可持续性:总结机械工程师在材料选择和设计中需要考虑的环境和可
持续性因素。
例如,选择可再生材料、减少材料浪费等方式可以提高材料的可持续性。
最后,总结机械工程材料的知识点和技能,以及在期末考试中的学习心得和体会。
同时,对未来的学习和应用提出展望和规划。
北京科技大学机械工程材料与成形工艺(机械)期末复习总结
工程材料与成形技术基础概念定义原理规律小结一、材料部分材料在外力作用下抵抗变形和断裂的能力称为材料的强度。
材料在外力作用下显现出的塑性变形能力称为材料的塑性。
拉伸过程中,载荷不增加而应变仍在增大的现象称为屈服。
拉伸曲线上与此相对应的点应力σ,S称为材料的屈服点。
称为材料的抗拉强度,它表明了试样被拉断前所能承载的最大应力。
拉伸曲线上D点的应力σb硬度是指材料抵抗其他硬物压入其表面的能力,它是衡量材料软硬程度的力学性能指标。
一般情况下,材料的硬度越高,其耐磨性就越好。
韧性是指材料在塑性变形和断裂的全过程中吸收能量的能力,它是材料塑性和强度的综合表现。
材料在交变应力作用下发生的断裂现象称为疲劳断裂。
疲劳断裂可以在低于材料的屈服强度的应力下发生,断裂前也无明显的塑性变形,而且经常是在没有任何先兆的情况下突然断裂,因此疲劳断裂的后果是十分严重的。
工艺性能是指金属材料接受某种加工过程的难易程度。
主要是铸造性能;锻造性;焊接性;热处理性能;切削加工性。
晶体的结构:在晶体中,原子(或分子)按一定的几何规律作周期性地排列;晶体表现出各向异性;具有的凝固点或熔点。
而在非晶体中,原子(或分子)是无规则地堆积在一起。
常见的有体心立方晶格、面心立方晶格和密排六方晶格。
体心立方晶格的致密度比面心立方晶格结构的小。
晶体的缺陷(低要求):1)点缺陷2)线缺陷3)面缺陷1)点缺陷—空位和间隙原子在实际晶体结构中,晶格的某些结点,往往未被原子所占据,这种空着的位置称为空位。
同时又可能在个别空隙处出现多余的原子,这种不占有正常的晶格位置,而处在晶格空隙之间的原子称为间隙原子。
2)线缺陷—位错晶体中,某处有一列或若干列原子发生有规律的错排现象,称为位错。
其特征是在一个方向上的尺寸很长,而另两个方向的尺寸很短。
晶体中位错的数量通常用位错密度表示,位错密度是指单位体积内,位错线的总长度。
3)面缺陷——晶界和亚晶界实际金属材料是多晶体材料,则在晶体内部存在着大量的晶界和亚晶界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程材料与成形技术基础概念定义原理规律小结一、材料部分材料在外力作用下抵抗变形和断裂的能力称为材料的强度。
材料在外力作用下显现出的塑性变形能力称为材料的塑性。
拉伸过程屮,载荷不增加而应变仍在增大的现象称为屈月氐拉伸曲线上与此相对应的点应力0 称为材料的屈服点。
拉伸曲线上D 点的应力。
匕称为材料的抗拉强度,它表明了试样被拉断前所能承载的最大应力。
硬度是指材料抵抗其他硬物压入其表面的能力,它是衡量材料软硬程度的力学性能指标。
一般情 况下,材料的硬度越高,其耐磨性就越好。
y/k韧性是指材料在塑性变形和断裂的全过程中吸收能量的能力,它是材料槊性和强度的综合表现。
材料在交变应力作用下发生的断裂现象称为疲劳断裂。
疲劳断裂可以在低于材料的屈服强度的应力下 发生,断裂前也无明显的塑性变形,而且经常是在没有任何先兆的情况下突然断裂,因此疲劳断裂的 后果是十分严重的。
<\、' 工艺性能是指金属材料接受某种加工过程的难易程度。
主要是铸造性能;锻造性;焊接性;热处 理性能;切削加工性。
A\ z晶体的结构:在晶体中,原子(或分子)按一定的几何规律作周期性地排列;晶体表现出各向异性; 具有的凝固点或熔点。
而在非晶体中,原子(或分子)是无规则地堆积在一起。
常见的有体心立方晶格、 面心立方晶格和密排六方晶格。
体心立方晶格的致密度比面心立方晶格结构的小。
晶体的缺陷(低要求):1)点缺陷2)线缺陷33)面缺陷 1)点缺陷—空位和间隙原子 卞、 在实际晶体结构中,品格的某些结点,往程未被原子所占据,这种空着的位置称为空位。
同 时又可能在个别空隙处出现多余的原子,这种不占有正常的品格位置,而处在晶格空隙之间的原子称 为间隙原子。
■1卜八 2) 线缺陷一位错 晶体中,1上的尺寸很长,而另两个方向的尺寸很短。
晶体中位错的数量通常用位错密度表示,位错密度是指单 位体积内,位错线的总长度。
I3) 面缺陷 实际金属材料是多晶体材料,则在晶体内部存在着大量的晶界和亚晶界。
晶界和亚晶界实际 上是一个原子排列不规则的区域,该处晶体的晶格处于畸变状态,能量高于晶粒内部,在常温下强度 和硬度较高,在高温下则较低,晶界容易被腐蚀等。
结晶概念:1、凝固:物质由液态转变成固态的过程;2、结品:物质由液态转变成固态品体的过 程;3、理论结晶温度与实际结晶温度之差成为过冷度。
(实际液态金属的结晶总是在有过冷度的条件 下才进行的。
)金属的结晶都要经历晶核的形成和晶核的长大两个过程。
晶粒大小与性能之I'可的关系:一般情况下,晶粒越小,其强度、塑性、韧度越好。
晶粒大小的控制方法:1) 提高冷却速度,增加过冷度,2) 增加形核的数量,从而细化晶粒;3) 针对大体积的液态金属进行变质处理或者孕育,加入人工晶核(非自发形核);4) 采用机械振动、超声波振动、电磁搅拌等,使枝品破碎。
嬴二列或若干列原子发生有规律的错排嗽称为昭轴征是在-个方向晶界和亚晶界有些金属(铁、钛等)在固态下,其晶体结构会随温度变化而变化。
这种固态金属在一定的温度下, 由一种晶体结构转变成另一种晶体结构的过程,称为金属的同素异晶转变。
纯铁的同素异晶转变反应式:L Q 5— Fe Q /— Fe Q a— Fe(液体)1538°C (体心)1394°C (面心)912°C (体心)合金:由两种或两种以上的金属、或金属与非金属,经熔炼、烧结或其他方法组合而成并具有金属特性的物质称为合金;合金中具有同一化学成分且结构相同的均匀部分称为相。
通过溶入溶质元素形成固溶体,使金属材料的变形抗力增大,强度、硬度升髙的现象称为固溶强化,它是金属材料强化的重要途径之一。
(马氏体型转变、合金化)/ 邙0金属自液态经冷却转变为固态的过程是原子从排列不规则的液态转变为排列规则的晶态的过程,称为金属的结晶过程。
金属从一种固态过渡为另-•种固态的转变即相变,称为二次结晶或重结晶。
实验证明,在一般的情况下,晶粒长大对材料力学性能不利,使强度、塑性、韧性下降。
晶粒越细,金属的强度、塑性和韧性就越好。
因此,晶粒细化是提高金属力学性能的最重要途径Z—。
相图:是表示合金在缓慢冷却的平衡状态下相或组织与温度、成分间关系的图形,乂称为平衡相图或状态图。
二元合金系中两组元在液态和固态下均能无限互溶,并由液相结品出单相固溶体的相图称为二元匀晶相图。
在一定温度下,rti—定成分的液相同时结晶鸟成分甲定的两个固相的过程称为共晶转变。
合金系的两组元在液态下无限互溶,在固态下有限互溶,并在凝固过程中发生共晶转变的相图称为二元共晶1 1 4 0°「相图。
共晶反应:L c<>厶〃(A簷?C F)在一定温度下,己结晶的一定成分的固相与剩余的一定成分的液相发生转变生成另一固相的过程称为包晶转变。
两组元在液态下无限互溶,固态下有限互溶,并发生包晶转变的构成的相图,叫二元包晶相图。
在恒定的温度下,+个有特定成分的固相分解成另外两个与母相成分不相同的固相的转变称为777°C共析转变,发生共析转变的相图称为共析相图。
共析反应:“"(F P + F^C K)铁碳相图:(要掌握)铁素体-碳溶于a-Fe中的间隙固溶体,以符号F表示。
体心立方晶格>奥氏体-碳溶于Y-Fe中的间隙固溶体,以符号A表示。
面心立方品格,此时他的硬度,强度因为碳含量高而提高,塑性和韧性由于晶体结构而很高,所以此时的钢材适合变形,加工。
渗碳体-是一种具有复杂晶格结构的间隙化合物,分子式为FesCo强化片珠光体一是铁素体和一次渗碳体(F+M3C)组成的两相机械混合物,常用符号P表示。
是由A, 稳定高温状态冷却至727°C。
不同含碳量(0.02-2.11)的A会先生成P,再根据剩余的C Fe比例决定生成铁素体还是二次渗碳体。
基体为铁素体莱氏体-是奥氏体和渗碳体(A+Fe3C)组成的两相机械混合物,常用符号5表示。
是A+L或是L+ 一次渗碳体冷却到1148°C生成。
不同含碳量(0. 02-2.11)组分的会先生成Ld,再根据剩余的C Fe 比例决定生成只有Ld还是加上二次渗碳体。
基体为渗碳体马氏体-是由奥氏体急速冷却(淬火)形成的,很多淬火工艺通过淬火后获得过量的马氏体,然后通过回火去减少马氏体含量,直到获得合适的组织,从而达到性能要求。
钢的分类:按化学成分有:碳素钢和合金钢。
按用途分有:结构钢、工具钢和特殊性能钢按质量分有:普通钢(P< 0.045%, S< 0.050%)、优质钢(P 、S 均 W 0.035%)、高级优质钢(PW0.035%, S<0.030%)1538 10912TC GF e :. C+Le 0.02 0.77 2.06 4.3------ ► C%2•在锻造中应用:确保钢在奥氏体区内变形。
始锻温度不得过高以免氧化严重八•般在固相线下100〜200 °C 。
终止温度■■…也不能过低,以免塑性太差,产生裂纹。
一般800°C 左右。
F®C K6.67 L+ Fe^C i 1147V AFe 3C+Le727 TC+ A按脱氧程度分有:镇静钢乙沸腾钢F等。
具体牌号看作业。
复习看17-4一般机械零件和建筑结构主要选用低碳钢和中碳钢制造。
如果需要塑性、韧性好的材料,就应选用碳质量分数小于0. 25%的低碳钢;若需要强度、塑性及韧性都好的材料,应选用碳质量分数为0.3% 〜0.55%的屮碳钢;而一般弹簧应选用碳质量分数为0.6%〜0.85%的钢。
对于各种工具,主要选用高碳钢来制造,其中需要具有足够的硕度和一定的韧性的冲压工具,可选用碳质量分数为0.7%〜0.9%的钢制造;需要具有很高硬度和耐磨性的切削工具和测量工具,一般可选用碳质量分数为1.0%〜1.3% 的钢制造。
钢在高温时为奥氏体组织,而奥氏体的强度低、塑性好,有利于塑性变形。
因此钢材的轧制或锻压,一般都是选择在奥氏体区的适当温度范围内进行。
热处理过程:加热,保温,冷却/钢在热处理吋,首先要将工件加热,使之转变成奥氏体组织,这一过程也称为奥氏体化。
奥氏体晶粒越细,其冷却产物的强度、塑性和韧性越好。
加热温度不宜太高、时间不宜太长。
组织过程:A晶核形成;A晶核长大;FesC溶解于A; A晶粒成分均匀化。
随着合金屮碳质量分数的增加,合金的熔点越来越低,铁咼得多。
共晶成分的铁碳合金,不仅其结晶温度最低,其结晶温度范围亦最小(为零)。
因此,共晶合金有良好的铸造性能。
V热处理是将金屈或合金在固态下经过加热、保温和冷却等三个步骤,以改变其整体或表面的组织,从而获得所需性能的一种工艺。
C曲线(等温转变曲线,也称为绥计曲)表明了过冷奥氏体转变温度、转变时间和转变产物之间的关系。
左边一条为转变开始线,右边一条为转变终了线。
1.珠光体型转变一一高温转变(A]〜550°C):珠光体(P)、索氏体(S)和托氏体(T)。
2.贝氏体型转变——中温转变(55O°C〜Ms)下贝氏体强度和硬度高(50—60HRC),并且具有良好的塑性和韧度' X3.马氏体型转变一一低温转变(Ms~Mf)马氏体是碳在a-Fe中的过饱和固溶体。
产生很强的固溶强化效应,使马氏抵具有很高的硬度。
成分和A无区别在c曲线的下面还有两条水平线,上面一条为马氏体转变开始的温度线(以Ms表示),下面一条为马氏体转变终了的温度线(以Mf表示)。
铸钢的熔化温度与浇注温度都要比铸过冷奥氏体的连续冷却转变曲线(CCT曲线)PS和pf分别为过冷奥氏体转变为珠光体的开始线和终了线,两线之间为转变的过度区,KK线为转变的终止线,当冷却到达此线时, 过冷奥氏体便终止向珠光体的转变,一直冷到Ms点又开始发生马氏体转变。
X相当于炉冷(退火),转变产物为珠光体。
V2和V3相当于以不同速度的空冷(正火),转变产物为索氏体和托氏体。
V4相当于油冷,转变产物为托氏体、马氏体和残余奥氏体。
V5相当于水冷,转变产物为马氏体和残留奥氏体。
水冷油冷时间lgr退火:将钢加热到一定温度并保温一定时间.然后随炉缓慢登却的热处理工艺。
降低硬度、改善切削加工性能,消除残余应力。
(炉冷)完全退火:细化晶粒或是亚共析钢的焊接,锻造,铸造处理球化退火:使渗碳体球化,为淬火做准奢去应力退火:消除在加工过程中产生的内应力扩散退火:用于钢锭,铸件,锻件的组织均匀化正火:将钢加热到Ac3(对于亚共析钢)或役昭对于过共析钢)点以上30・50°C,保温一定时间后,在空气屮冷却,从而得珈龙淤类组绅热处理工艺。
提高钢的强度和硬度。
(空冷)可以提升切削性能,细化晶粒,■均匀组织。
正火处理后钢的性能提高更多-•般,正火优于退牛蓉择正火更好淬火是以获得马氏体组织为目的的热处理工艺,最常用的淬火冷却介质是水和油。