高中数学第一章 空间几何体章末复习提升课课件 新人教A版必修2

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S=2r·x=2·2-x3·x=-23x2+4x(0<x<6).
(2)S=-23x2+4x=-23(x2-6x)=-23(x-3)2+6(0<x<6), 所以当 x=3 时,S 取最大值 6.
Βιβλιοθήκη Baidu 几何体的截面问题
一个平面与几何体相交所得到的几何图形(包括边界及内部)叫 做几何体的截面.常见的截面有对角面、轴截面、直截面、平行 于底面的截面以及其他具有某种特性的截面(如平行或垂直于棱、 规定角度的截面等等).我们可以利用截面把立体几何中的元素 集中到平面图形中来,利用“降维”的思想,实现立体几何问题 向平面几何问题的转化.在解有关截面问题时要注意:(1)截面 的位置;(2)截面的形状及有关性质;(3)截面的元素及其相互关 系;(4)截面的有关数量.
几何体中的内外切接问题
根据几何体的内外切接关系,利用数形结合与转化化归思想, 使问题变成平面几何问题和代数问题.
一个圆锥的底面半径为 2,高为 6,在它的内部有一个高 为 x 的内接圆柱. (1)用 x 表示圆柱的轴截面面积 S; (2)当 x 为何值时,S 最大? [解] 画出圆柱和圆锥的轴截面,如图所示. 设圆柱的底面半径为 r, 则由三角形相似可得x6=2-2 r,解得 r=2-x3. (1)圆柱的轴截面面积为
大家好
1
第一章 空间几何体
章末复习提升课
空间几何体的三视图与直观图
三视图是立体几何中的基本内容,能根据三视图识别其所表示的 立体模型,并能根据三视图与直观图所提供的数据解决问题.
空间几何体的面积和体积 面积和体积的计算是本章的重点,熟记各种简单几何体的表面积 和体积公式是基础,复杂几何体常用割补法、等积法求解,具体 问题具体分析,灵活转化是解题策略.
相关文档
最新文档