专题18 圆的对称性
2023年高考数学真题实战复习(2022高考+模考题)专题18 解析几何中的双曲线问题(解析版)
专题18 解析几何中的双曲线问题【高考真题】1.(2022·北京) 已知双曲线221x y m +=的渐近线方程为y =,则m =__________. 1.答案 3- 解析 对于双曲线221x y m +=,所以0m <,即双曲线的标准方程为221x y m-=-,则1a =,b =,又双曲线221x ym +=的渐近线方程为y =,所以a b =,=解得3m =-;故答案为3-.2.(2022·全国甲理) 若双曲线2221(0)x y m m -=>的渐近线与圆22430x y y +-+=相切,则m =_________.2.答案解析 双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =. 3.(2022·全国甲文) 记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________. 3.答案 2(满足1e <≤) 解析 2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为by x a=±, 结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”,所以c e a ===1e >,所以1e <≤2(满足1e <≤4.(2022·全国乙理) 双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )A B .32 C D4.答案 C 解析 依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ⊥, 因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,sin a c β=,cos bcβ=,在21F F N 中,()()12sin sin sin F F N παβαβ∠=--=+4334sin cos cos sin 555b a a bc c cαβαβ+=+=⨯+⨯=,由正弦定理得211225sin sin sin 2NF NF c c F F N αβ===∠,所以112553434sin 2252c c a b a b NF F F N c ++=∠=⨯=,2555sin 222c c a a NF c β==⨯=,又12345422222a b a b aNF NF a +--=-==,所以23b a =,即32b a =,所以双曲线的离心率c e a ==.故选C .5.(2022·浙江)已知双曲线22221(0,0)x y a b ab-=>>的左焦点为F ,过F 且斜率为4ba的直线交双曲线于点 ()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.5.答案 解析 过F 且斜率为4b a 的直线:()4b AB y x c a =+,渐近线2:b l y x a =,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a=,所以离心率e =. 【知识总结】1.双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹. (2)符号表示:||MF 1|-|MF 2||=2a (常数)(0<2a <|F 1F 2|).(3)焦点:两个定点F 1,F 2. (4)焦距:两焦点间的距离,表示为|F 1F 2|. 2.双曲线的标准方程和简单几何性质F (-c ,0),F (c ,0)F (0,-c ),F (0,c )【题型突破】题型一 双曲线的标准方程1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=11.答案 B 解析 由y =52x 可得b a =52,①.由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+ b 2=9,②.由①②可得a 2=4,b 2=5.所以C 的方程为x 24-y 25=1.故选B .2.(2016·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A .x 24-y 2=1B .x 2-y 24=1C .3x 220-3y 25=1D .3x 25-3y 220=12.答案 A 解析 依题意得b a =12,①,又a 2+b 2=c 2=5,②,联立①②得a =2,b =1.∴所求双曲线 的方程为x 24-y 2=1.3.(2018·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=13.答案 C 解析 因为双曲线的离心率为2,所以ca =2,c =2a ,b =3a ,不妨令A (2a,3a ),B (2a ,-3a ), 双曲线其中一条渐近线方程为y =3x ,所以d 1=|23a -3a |(3)2+(-1)2=23a -3a 2,d 2=|23a +3a |(3)2+(-1)2=23a +3a 2;依题意得:23a -3a 2+23a +3a 2=6,解得:a =3,b =3,所以双曲线方程为:x 23-y 29=1.4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=14.答案 D 解析 根据题意画出草图如图所示⎝⎛ 不妨设点A⎭⎫在渐近线y =ba x 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线的渐近线y =b a x 上,∴b a =tan 60°=3.又a 2+b 2=4,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1,故选D5.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A .x 24-3y 24=1 B .x 24-4y 23=1 C .x 24-y 24=1 D .x 24-y 212=15.答案 D 解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,选D . 6.已知双曲线E 的中心为原点,(3, 0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中 点为(12, 15)N --,则E 的方程式为( )A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=6.答案 B 解析 设双曲线方程为22222222221, x y b x a y a b a b-=-=即,1122(,),(,)A x y B x y ,由221b x -221a y =2222222222, a b b x a y a b -=得,2212121212()()()0()y y b x x a y y x x -+-+=-,1215AB PN N k k =又中点(-,-),,212b ∴-+222150, 45a b a ==即,22+9b a =,所以224, =5a b =.7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A .x 26-y 25=1B .x 28-y 212=1C .x 28-y 24=1D .x 24-y 26=17.答案 D 解析 不妨设B (0,b ),由BA →=2AF →,F (c ,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得 49×c 2a 2-19=1,即49·a 2+b 2a 2=109,所以b 2a 2=32,①.又|BF →|=b 2+c 2=4,c 2=a 2+b 2,所以a 2+2b 2=16,②.由①②可得,a 2=4,b 2=6,所以双曲线C 的方程为x 24-y 26=1,故选D .8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM的面积为5,其中O 为坐标原点,则双曲线的方程为( ) A .x 2-4y 25=1 B .x 22-2y 25=1 C .x 24-y 25=1 D .x 216-y 220=1 8.答案 C 解析 由题意可知e =c a =32,可得b a =52,取双曲线的一条渐近线为y =ba x ,可得F 到渐近线y =b a x 的距离d =bca 2+b2=b ,在Rt △FOM 中,由勾股定理可得|OM |=|OF |2-|MF |2=c 2-b 2=a ,由题意可得12ab =5,联立⎩⎨⎧b a =52,12ab =5,解得⎩⎨⎧a =2,b =5,所以双曲线的方程为x 24-y25=1.故选C .9.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐 标为-23,则此双曲线的方程是( ).A .x 23-y 24=1B .x 24-y 23=1C .x 25-y 22=1D .x 22-y 25=19.答案 D 解析:设所求双曲线方程为x 2a 2-y 27-a 2=1.由⎩⎪⎨⎪⎧x 2a 2-y 27-a 2=1,y =x -1,得x 2a 2-(x -1)27-a 2=1,(7-a 2)x 2-a 2(x -1)2=a 2(7-a 2),整理得(7-2a 2)x 2+2a 2x -8a 2+a 4=0.又MN 中点的横坐标为-23,故x 0=x 1+x 22=-2a 22(7-2a 2)=-23,即3a 2=2(7-2a 2),所以a 2=2,故所求双曲线方程为x 22-y 25=1.10.双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率为3,左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( ) A .x 22-y 2=1 B .x 2-y 22=1 C .x 2-y 23=1 D .x 23-y 2=110.答案 B 解析 ∵∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,∴|PF 1|=|P Q|,P ,F 2,Q 三点共线,而|PF 1|-|PF 2|=2a ,∴|P Q|-|PF 2|=2a ,即|F 2Q|=2=2a ,解得a =1.又e =c a =3,∴c =3,∴b 2=c 2-a 2=2,∴双曲线的方程为x 2-y 22=1.故选B . 题型二 双曲线中的求值11.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A .32 B .3 C .23 D .411.答案 B 解析 由已知得双曲线的两条渐近线方程为y =±13x .设两渐近线的夹角为2α,则有tan α =13=33,所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt △ONF 中,|OF |=2,则|ON |=3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan60°=3.故选B .12.(2019·全国Ⅰ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A .324 B .322C .22D .3212.答案 A 解析 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 13.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,与x 轴平行的直线交Γ于B ,C 两点,记∠BAC=θ,若Γ的离心率为2,则( )A .θ∈⎝⎛⎭⎫0,π2B .θ=π2C .θ∈⎝⎛⎭⎫3π4,πD .θ=3π413.答案 B 解析 ∵e =ca=2,∴c =2a ,∴b 2=c 2-a 2=a 2,∴双曲线方程可变形为x 2-y 2=a 2.设B (x 0,y 0),由对称性可知C (-x 0,y 0),∵点B (x 0,y 0)在双曲线上,∴x 20-y 20=a 2.∵A (a ,0),∴AB →=(x 0-a ,y 0),AC →=(-x 0-a ,y 0),∴AB →·AC →=(x 0-a )·(-x 0-a )+y 20=a 2-x 20+y 20=0,∴AB →⊥AC →,即θ=π2.故选B .14.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 14.答案 34 解析 化双曲线的方程为x 22-y 22=1,则a =b =2,c =2,因为|PF 1|=2|PF 2|,所以点P 在双曲线的右支上,则由双曲线的定义,知|PF 1|-|PF 2|=2a =22,解得|PF 1|=42,|PF 2|=22,根据余弦定理得cos ∠F 1PF 2=(22)2+(42)2-162×22×42=34.15.如图,双曲线的中心在坐标原点O ,A ,C 分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F为双曲线的左焦点,直线AB 与FC 相交于点D .若双曲线的离心率为2,则∠BDF 的余弦值是________.15.答案 714 解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由e =ca=2知,c =2a ,又c 2=a 2+b 2,故b =3a ,所以A (0,3a ),C (0,-3a ),B (-a ,0),F (-2a ,0),则BA →=(a ,3a ),CF →=(-2a ,3a ),结合题图可知,cos ∠BDF =cos <BA →,CF →>=BA →·CF →|BA →|·|CF →|=-2a 2+3a 22a ·7a =714.16.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A ,B 两点,若P 为AB 的中点,则|AB |=( )A .22B .23C .33D .4316.答案 D 解析 法一:由已知可得点P 的位置如图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,由⎩⎪⎨⎪⎧y =k x -4+2,x 22-y 2=1,消去y 得(1-2k 2)x 2+(16k 2-8k )x -32k 2+32k -10=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=-16k 2+8k1-2k 2,x 1x 2=-32k 2+32k -101-2k 2,因为P (4,2)为AB 的中点,所以-16k 2+8k 1-2k 2=8,解得k =1,满足Δ>0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .法二:由已知可得点P 的位置如法一中图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21-2y 21-2=0,x 22-2y 22-2=0,所以(x 1+x 2)(x 1-x 2)=2(y 1+y 2)(y 1-y 2),因为P (4,2)为AB 的中点,所以k =y 1-y 2x 1-x 2=1,所以AB 的方程为y =x -2,由⎩⎪⎨⎪⎧y =x -2,x 22-y 2=1,消去y 得x 2-8x +10=0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .17.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A 、B 两点,若P 为AB 中点,则|AB |=( )A .22B .23C .33D .4317.答案 D 解析 易知直线AB 不与y 轴平行,设其方程为y -2=k (x -4),代入双曲线C :x 22-y 2=1,整理得(1-2k 2)x 2+8k (2k -1)x -32k 2+32k -10=0,设此方程两实根为x 1,x 2,则x 1+x 2=8k (2k -1)2k 2-1,又P (4,2)为AB 的中点,所以8k (2k -1)2k 2-1=8,解得k =1,当k =1时,直线与双曲线相交,即上述二次方程的Δ>0,所求直线AB 的方程为y -2=x -4化成一般式为x -y -2=0,x 1+x 2=8,x 1x 2=10,|AB |=2|x 1-x 2|=2·82-40=43.故选D .18.已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为()A .1B .3C .5D .1218.答案 A 解析 在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A .19.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( )A .215a 2B .15a 2C .30a 2D .15a 2 19.答案 B 解析 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =ca=2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a ,∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a ,∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin∠F 1AF 2=12×4a ×2a ×154=15a 2.20.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .-220.答案 B 解析 由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2,又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|·cos ∠PF 2F 1=2×4×14=2.故选B .题型三 双曲线的离心率21.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线的夹角为60°,则双曲线C 的离心率为( )A .2B .3C .3或233D .233或221.答案 D 解析 秒杀 ∵两条渐近线的夹角为60°,∴一条渐近线的倾斜角为30°,斜率为33.∴e =1+k 2=233.或一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.故选D .通法 ∵两条渐近线的夹角为60°,且两条渐近线关于坐标轴对称,∴b a =tan 30°=33或ba =tan 60°=3.由b a =33,得b 2a 2=c 2-a 2a 2=e 2-1=13,∴e =233(舍负);由b a =3,得b 2a 2=c 2-a 2a 2=e 2-1=3,∴e =2(舍负).故选D .22.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40° C.1sin 50° D.1cos 50°22.答案 D 解析 秒杀 由题意可得-ba =tan 130°,所以e =1+b 2a 2=1+tan 2130°=1+sin 2130°cos 2130°=1|cos 130°|=1cos 50°.故选D .23.(2019·全国Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________.23.答案 2 解析 秒杀 由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.∴一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.通法一:由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.如图所示,不妨设B 为⎝⎛⎭⎫c 2,-32c .∵点B 在直线y=-b a x 上,∴b a =3,∴离心率e =ca=2.通法二:∵F 1B →·F 2B →=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c .如图,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=ba ,且|BH |2+|OH |2=|OB |2=c 2,∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c ,0).又∵F 1A →=AB →,∴A 为F 1B 的中点.∴OA ∥F 2B ,∴b a =b c -a ,∴c =2a ,∴离心率e =c a =2.24.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A .2B .32C .3D .224.答案 A 解析 秒杀 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13=2.故选A .通法 因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义,得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca =2.故选A .25.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线C 上第二象限内一点,若直线y =ba x 恰为线段PF 2的垂直平分线,则双曲线C 的离心率为( )A .2B .3C .5D .625.答案 C 解析 秒杀 由已知△F 1PF 2是直角三角形,∠F 2PF 1=90°,sin ∠PF 1F 2=b c ,∠PF 2F 1=ac,∴e =c a =sin90°|sin ∠PF 1F 2+sin ∠PF 2F 1|=1|b c -a c|.即b a=2,所以e =1+⎝⎛⎭⎫b a 2=5.故选C .通法 如图,直线PF 2的方程为y =-a b (x -c ),设直线PF 2与直线y =ba x 的交点为N ,易知N ⎝⎛⎭⎫a 2c ,abc .又线段PF 2的中点为N ,所以P ⎝⎛⎭⎫2a 2-c 2c ,2ab c .因为点P 在双曲线C 上,所以(2a 2-c 2)2a 2c 2-4a 2b 2c 2b 2=1,即5a 2=c 2,所以e =ca =5.故选C .26.已知O 为坐标原点,点A ,B 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,且关于坐标原点O 对称.若双曲线C 上与点A ,B 横坐标不相同的任意一点P 满足k P A ·k PB =3,则双曲线C 的离心率为( ) A .2 B .4 C .10 D .10 26.答案 A 解析 秒杀 ∵k 1·k 2=e 2-1.∴3=e 2-1.∴e =2.故选A .通法 设A (x 1,y 1),P (x 0,y 0)(|x 0|≠|x 1|),则B (-x 1,-y 1),则k P A ·k PB =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21.因为点P ,A 在双曲线C 上,所以b 2x 20-a 2y 20=a 2b 2,b 2x 21-a 2y 21=a 2b 2,两式相减可得y 20-y 21x 20-x 21=b 2a 2,故b 2a 2=3,于是b 2=3a 2.又因为c 2=a 2+b 2,所以双曲线C 的离心率e =1+⎝⎛⎭⎫b a 2=2.故选A .27.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2B .32C .355D .5227.答案 B 解析 秒杀 由题意得,k 0·k =e 2-1.∴e =32.故选B .通法 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),则x 1+x 2=24,y 1+y 2=30,由⎩⎨⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2=(y 1+y 2)(y 1-y 2)b 2,则y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=4b 25a 2,由直线AB 的斜率k =15-612-3=1,所以4b 25a 2=1,则b 2a 2=54,双曲线的离心率e =ca = 1+b 2a 2=32,所以双曲线C 的离心率为32.故选B .28.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A .52 B .62 C .233D .3 28.答案 A 解析 秒杀 由题可知,|31||cos ||31|e θ-=+,即1||2c b a c ⋅=,即12b a =所以e=52,故选B .通法 由题意得直线l 的方程为x =ba y +c ,不妨取a =1,则x =by +c ,且b 2=c 2-1.将x =by +c 代入x 2-y 2b 2=1,(b >0),得(b 4-1)y 2+2b 3cy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 3cb 4-1,y 1y 2=b 4b 4-1.由AF →=3FB →,得y 1=-3y 2,所以⎩⎨⎧-2y 2=-2b 3cb 4-1-3y 22=b 4b 4-1,得3b 2c 2=1-b 4,解得b 2=14,所以c =b 2+1=54=52,故该双曲线的离心率为e =c a =52,故选A .29.已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0),过双曲线Γ的右焦点F ,且倾斜角为π2的直线l 与双曲线Γ交于A ,B 两点,O 是坐标原点,若∠AOB =∠OAB ,则双曲线Γ的离心率为( ) A .3+72 B .11+332 C .3+396 D .1+17429.答案 C 解析 由题意可知AB 是通径,根据双曲线的对称性和∠AOB =∠OAB ,可知△AOB 为等边三角形,所以tan ∠AOF =b 2a c =33,整理得b 2=33ac ,由c 2=a 2+b 2,得c 2=a 2+33ac ,两边同时除以a 2,得e 2-33e -1=0,解得e =3+396.故选C . 30.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,且FN →=3FM →,若OM ⊥FN ,则C 的离心率为( )A .2B .7C .3D .1030.答案 B 解析 设双曲线的右焦点为F ′,取MN 的中点P ,连接F ′P ,F ′M ,F ′N ,如图所示,由FN →=3FM →,可知|MF |=|MP |=|NP |.又O 为FF ′的中点,可知OM ∥PF ′.∵OM ⊥FN ,∴PF ′⊥FN .∴PF ′为线段MN 的垂直平分线.∴|NF ′|=|MF ′|.设|MF |=t ,由双曲线定义可知|NF ′|=3t -2a ,|MF ′|=2a +t ,则3t -2a =2a +t ,解得t =2a .在Rt △MF ′P 中,|PF ′|=|MF ′|2-|MP |2=16a 2-4a 2=23a ,∴|OM |=12|PF ′|=3a .在Rt △MFO 中,|MF |2+|OM |2=|OF |2,∴4a 2+3a 2=c 2⇒e =7.故选B . 题型四 双曲线的渐近线31.(2018·全国Ⅰ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 31.答案 A 解析 法一:由题意知,e =c a =3,所以c =3a ,所以b =c 2-a 2=2a ,所以ba=2,所以该双曲线的渐近线方程为y =±ba x =±2x ,故选A .法二:由e =ca =1+⎝⎛⎭⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x ,故选A .32.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,P 是双曲线在第一象限上的点,直线PO 交双曲线C 左支于点M ,直线PF 2交双曲线C 右支于点N ,若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±2x D .y =±22x 32.答案 A 解析 由题意得,|PF 1|=2|PF 2|,|PF 1|-|PF 2|=2a ,∴|PF 1|=4a ,|PF 2|=2a ,由于P ,M 关于原点对称,F 1,F 2关于原点对称,∴线段PM ,F 1F 2互相平分,四边形PF 1MF 2为平行四边形,PF 1∥MF 2,∵∠MF 2N =60°,∴∠F 1PF 2=60°,由余弦定理可得4c 2=16a 2+4a 2-2·4a ·2a ·cos60°,∴c =3a ,∴b =c 2-a 2=2a .∴ba =2,∴双曲线C 的渐近线方程为y =±2x .故选A .33.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F (1,0)作x 轴的垂线,与双曲线交于A ,B 两点,O 为坐标原点,若△AOB 的面积为83,则双曲线的渐近线方程为________.33.答案 y =±22x 解析 由题意得|AB |=2b 2a ,∵S △AOB =83,∴12×2b 2a ×1=83,∴b 2a =83①,又a 2+b 2=1②,由①②得a =13,b =223,∴双曲线的渐近线方程为y =±bax =±22x .34.已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( )A .y =±xB .y =±2xC .y =±2xD .y =±3x34.答案 A 解析 由双曲线方程可得渐近线为:y =±b a x ,A (a,0),F (c,0),则点A 到渐近线距离d 1=|ab |a 2+b2=ab c ,点F 到渐近线距离d 2=|bc |a 2+b 2=bc c =b ,∴d 1∶d 2=ab c ∶b =a ∶c =1∶2,即c =2a ,则ba =c 2-a 2a =aa =1,∴双曲线渐近线方程为y =±x .故选A .35.双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,F 为其一个焦点,若F 关于l 1的对称点在l 2上,则双曲线的渐近线方程为( )A .y =±2xB .y =±3xC .y =±3xD .y =±2x35.答案 B 解析 不妨取F (c ,0),l 1:bx -ay =0,设其对称点F ′(m ,n )在l 2:bx +ay =0,由对称性可得⎩⎨⎧b ·m +c 2-a ·n 2=0n m -c ·ba =-1,解得⎩⎪⎨⎪⎧m =a 2-b 2a 2+b2cn =2abca 2+b2,点F ′(m ,n )在l 2:bx +ay =0,则a 2-b 2a 2+b 2·bc +2a 2bca 2+b2=0,整理可得b 2a 2=3,∴b a =3,双曲线的渐近线方程为:y =±bax =±3x .故选B.36.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( )A .y =±2xB .y =±12xC .y =±22x D .y =±2x36.答案 D 解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎪⎨⎪⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x .37.已知F 2,F 1是双曲线y 2a 2-x 2b2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±6x D .y =±66x 37.答案 D 解析 根据双曲线的定义,可得|BF 1|-|BF 2|=2a ,∵△ABF 2为等边三角形,∴|BF 2|=|AB |,∴|BF 1|-|AB |=|AF 1|=2a ,又∵|AF 2|-|AF 1|=2a ,∴|AF 2|=|AF 1|+2a =4a ,∵在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos 120°,即4c 2=4a 2+16a 2-2×2a ×4a ×⎝⎛⎭⎫-12=28a 2,亦即c 2=7a 2,则b =c 2-a 2=6a 2=6a ,由此可得双曲线C 的渐近线方程为y =±66x .38.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A .2x ±y =0B .x ±2y =0C .x ±2y =0D .2x ±y =038.答案 A 解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±ba x =±2x ,即2x ±y =0. 题型五 双曲线中的最值与范围39.P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A .1 B .2+155 C .4+155D .22+1 39.答案 D 解析 如图所示,设双曲线右焦点为F 2,则|PF 1|+|PQ |=2a +|PF 2|+|PQ |,即当|PQ |+|PF 2|最小时,|PF 1|+|PQ |取最小值,由图知当F 2,P ,Q 三点共线时|PQ |+|PF 2|取得最小值,即F 2到直线l 的距离d =1,故所求最值为2a +1=22+1.故选D .40.双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线上在第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( )A .8B .10C .4+37D .3+317 40.答案 B 解析 由已知得⎩⎪⎨⎪⎧a b =233,c =7,c 2=a 2+b 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,c 2=7,则双曲线C 的方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,又点P 在第一象限,则|PF ′|+|P A |的最小值为|AF ′|=3,故△P AF 的周长的最小值为10. 41.过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1作切线, 切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .1941.答案 B 解析 由题意可知,|PM |2-|PN |2=(|PC 1|2-4)-(|PC 2|2-1),因此|PM |2-|PN |2=|PC 1|2-|PC 2|2-3=(|PC 1|-|PC 2|)(|PC 1|+|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|-3=13.故选B . 42.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上 的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4B .5C .6D .742.答案 C 解析 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C .43.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为________.43.答案 [3+23,+∞) 解析 由题意,得22=a 2+1,即a =3,设P (x ,y ),x ≥3,FP →=(x +2, y ),则OP →·FP →=(x +2)x +y 2=x 2+2x +x 23-1=43⎝⎛⎭⎫x +342-74,因为x ≥3,所以OP →·FP →的取值范围为[3+23,+∞).44.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,如果|PF 1|=t |PF 2|(t ∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.44.答案 (0,3] 解析 由双曲线的定义及题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=t |PF 2|,解得⎩⎨⎧|PF 1|=2att -1,|PF 2|=2a t -1.又|PF 1|+|PF 2|≥2c ,∴|PF 1|+|PF 2|=2at t -1+2a t -1≥2c ,整理得e =c a ≤t +1t -1=1+2t -1,∵1<t ≤3,∴1+2t -1≥2,∴1<e ≤2.又b 2a 2=c 2-a 2a 2=e 2-1,∴0<b 2a 2≤3,故0<ba ≤3.∴双曲线经过一、三象限的渐近线的斜率的取值范围是(0,3].45.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),P 是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则PF 1→·PF 2→的最小值的取值范围是________.45.答案 ⎣⎡⎦⎤-1516,-34 解析 设P (m ,n ),则m 2a 2-n 2b 2=1,即m 2=a 2⎝⎛⎭⎫1+n 2b 2.又F 1(-1,0),F 2(1,0),则PF 1→=(-1-m ,-n ),PF 2→=(1-m ,-n ),PF 1→·PF 2→=n 2+m 2-1=n 2+a 2⎝⎛⎭⎫1+n 2b 2-1=n 2⎝⎛⎭⎫1+a 2b 2+a 2-1≥a 2-1,当且仅当n =0时取等号,所以PF 1→·PF 2→的最小值为a 2-1.由2≤1a ≤4,得14≤a ≤12,故-1516≤a 2-1≤-34,即PF 1→·PF 2→的最小值的取值范围是⎣⎡⎦⎤-1516,-34.。
中考数学《圆的有关概念及性质》专题复习
中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。
圆的对称性、垂径定理 知识点+例题+练习(非常好 分类全面)
知识点2:圆的对称性圆是中心对称图形,对称中心是圆心;圆也是轴对称图形,对称轴是经过圆心的任意一条直线。
注意:(1)圆的对称轴有无数条。
(2)圆还具有旋转不变性,即圆绕圆心旋转任何角度后,仍与自身重合。
知识点 3:圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等例1如图,⊙O 的半径O A、OB 分别交弦C D 于点E、F,且C E=DF.试问:(1) OE 等于O F 吗?(2) AC 与 B D 有怎样的数量关系?例2如图,AB 是⊙O 的直径.(1)若 OD//AC, C D 与 B D 的大小有什么关系?为什么?(2) 把(1)中的条件和结论交换一下,还能成立吗?说明理由.知识点4:圆心角的度数与它所对的弧的度数的关系1.10的弧:将顶点在圆心的周角等分成360 份时,每一份的圆心角是10的角。
因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360 份,我们把10的圆心角所对的弧叫做10的弧。
2.圆心角的度数与它所对的弧的度数的关系:圆心角的度数与它所对的弧的度数相等。
注意:(1)圆心角的度数与它所对的弧的度数相等,不是指角与弧相等(角与弧是两个不同的图形)(2)度数相等的角为等角,但度数相等的弧不一定是等弧。
例1如图,在☉O 中,弦A D∥BC,DA=DC,∠AOC=1600,则∠BCO 的度数() A.200B.600 C. 400D.500例 2 如图,在△ABC 中,∠A=700,☉O 截△ABC 的三边所得的弦长相等,则∠BOC的度数为例3如图,AB,CD 是⊙O 的两条直径,过点A作A E//CD 交⊙O 于点E,连接B D,DE.求证:BD=DE.例4如图,点O在∠MPN 的平分线上,☉O 分别交P N、PM 于点A、B 和点C、D.求证:∠PCO=∠NAO.知识点5:垂径定理及垂径定理的推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
圆的轴对称性课件
圆的轴对称性的基本元素
圆
圆是一个闭合的曲线,由一系列 等距离于圆心的点组成。
对称轴
对称轴是一个直线,将圆分成两 个对称的部分。
对称中心
对称中心是指图形中心点关于对 称轴的镜像对称点。
圆的轴对称性的性质
性质一
对称轴上的任意两点,在旋转180度后仍然保持 重合。
性质三
通过使用圆的轴对称性,可以轻松地构建出美 丽而复杂的图形和图案。
3
数学与几何
圆的轴对称性是几何学中一个重要的概念,用于研究图形的对称性和相似性。
练习题和答案解析
1 题目一
如何判断一个图形是否具有圆的轴对称性?
2 答案一
如果一个图形可以沿着一条直线旋转180度后 与原图形重合,那么它具有圆的轴对称性。
3 题目二
请举例说明圆的轴对称性在日常生活中的应 用。
4 答案二
圆的轴对称性的特点
1 无限的对称轴
圆具有无数个对称轴,因为每条通过圆心的 直线都是它的对称轴。
2 完美的平衡
圆的轴对称性使得图形在旋转时能够保持完 美的平衡和和谐。
3 不变的形状
无论如何旋转圆,它的形状始终保持完全不 变。
4 多样化的图案
通过使用不同的对称轴和图案,可以创造出 各种美丽的圆形图案。
圆的轴对称性ppt课件
欢迎来到本次精彩的PPT课件!在这个课件中,我们将深入探讨圆的轴对称性, 了解它的定义、特点、基本元素、性质以及应用。通过练习题和答案解析, 巩固你的知识,并最终总结要点。让我们一起来领略圆的轴对称性的魅力吧!
什么是轴对称性?
轴对称性是指一个图形具有对称轴,当图形沿着这个轴旋转180度时,能够完全重合。
圆的轴对称性在日常生活中的应用包括对称 的艺术品、建筑结构的平衡设计,以及判断 图形的相似性等。
初三培优专题18 圆的对称性
AC
DB
(第 6 题图)
O
B
A
EC
DF
(第 7 题图)
A
E CP F D
B (第 8 题图)
7.如图,AB 为⊙O 的直径,CD 是弦.若 AB=10cm,CD=8cm,那么 A,B 两点到直线 CD 的距离之和
为( )
A.12cm
B.10cm
C.8cm
D.6cm
8.如图,半径为 2 的⊙O 中,弦 AB 与弦 CD 垂直相交于点 P,连结 OP.若 OP=1,求 AB2+CD2 的
AP
BE
C
O
F
D 图3
⑵ 如图 2,若弦 BC 经过半径 OA 的中点 E,F 是 C»D 的中点,G 是 F»B 的中点,⊙O 的半径为 1,求弦
FG 的长; ⑶ 如图 3,在⑵中若弦 BC 经过半径 OA 的中点 E,P 为劣弧上一动点,连结 PA,PB,PD,PF,求证:
PA PF
的定值.
PB PD
【例 4】如图,已知圆内接△ABC 中,AB>AC,D 为 B¼AC 的中点,DE⊥AB 于 E.求证:BD2-AD2=AB g
AC. (天津市竞赛试题)
解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明. D A E C
B
圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形
⑴如图 1,PA+PB= 3 PH;
⑵如图 2,PA+PB=PH;
⑶ 进 一 步 , 如 图 3 , 若 ∠ APB=α , PH 平 分 ∠ APB , 则 PA+PB=2PHcos 为 定
《圆的对称性》圆PPT课件教学课件
●O
垂足为M,OM=3,则CD= 8 .
5.在⊙O中,CD ⊥AB于M,AB为直径,若
CD=10,AM=1,则⊙O的半径是 13 .
B
3、过⊙O内一点M的最长弦长为10cm,最短弦长为
8cm,那么OM长为( )A.3 B.6cm C.41 cm D.9cm
4、如图,⊙O的直径为10,弦AB长为8,M是弦AB上
2
2
37. 4C
OD OC DC R 7.2.
7.2
在Rt△OAD中,由勾股定理,得
A
D
B
OA2 AD2 OD 2 , R
即R2 18.72 (R 7.2)2.
解得 R≈27.9(m) O
答:赵州石拱桥的桥拱半径约为
27.9m.
垂径定理的逆定理
如图,在下列五个条件中:
① CD是直径, ② CD⊥AB, ③
B
平分线就能把⌒AB平分.
作法:
1.连结AB;
2.作AB的垂直平分线CD,交⌒AB与点E; ∴点E就是所求A⌒B的中点.
变式一: 求弧AB的四等分点.
E
C
G
错在哪里?
M
N
P
1.作AB的垂直平分线CD
A
2.作AT、BT的垂直平分线 EF、GH
F
T
B
DH
强调:等分弧时一定要作弧所对的弦的垂
直平分线.
变式一: 求弧AB的四等分点.
求证:PO平分∠BPD
若把上题改为:P
B
C 是⊙O内一点,
E
直线APB,CPD
A 分别交⊙O于A、
P O
F
B和C、D,已知 AB=CD,
结论还成立吗?
24.2圆的对称性2
.O
A CED B
∟
解得:R≈27.9(m)
O
∴赵州桥的主桥拱半径约为27.9m.
练习
1、如图,在⊙O中,AB、AC为互相垂直且相等的两 条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是 正方形.
C
E
·O
A
D
B
练习
2、已知:如图,在以O为圆心的两个同心圆中,大 圆的弦AB交小圆于C,D两点。你认为AC和BD有什么 关系?为什么?
24.2 圆的对称性(2)
O
一、圆的对称性
圆是轴对称图形吗? 如果是,它的对称轴是什么?你能找到多少条对 称轴? 你是用什么方法解决上述问题的?
圆是中心对称图形吗? 如果是,它的对称中心是什么?
O
你又是用什么方法解决这个 问题的?
圆的对称性
圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无 数条对称轴. 可利用折叠的方法即可解决上述问题.
圆也是中心对称图形. 它的对称中心就是圆心. 用旋转的方法即可解决这个 问题.
二、垂径定理
AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为E。
C
●O
E
∟
A
B
求证:AE=BE A⌒C=B⌒C, A⌒D=B⌒D
D
垂径定理 : 垂直于弦的直径平分这条弦,并且平分这条弦所对
的两条弧。
探索思考
AB是⊙O的一条弦,且AE=BE。过点E作直径CD.C求证CD⊥来自B●OEA
B
A⌒C=B⌒C, A⌒D=B⌒D
D
垂径定理的逆定理:
《圆的对称性》PPT课件2
∴ AM=BM,
在下列图形中,你能否利用垂径定理找到相等的线段或相等的圆弧?
同步训练:
探究二:垂径定理的应用
例1:如图,以△OAB的顶点O为圆心的⊙O交AB于点C、D,且AC=BD。求证:OA=OB。
例2:如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径。
连接OA,OB,
则Байду номын сангаасA=OB.
∴AM=BM.
∴点A和点B关于CD对称.
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B重合,
∵CD⊥AB于M
证明:
自主学习:
能不能试着利用构造等腰三角形得出上面的等量关系?
探究一:垂径定理的三种语言
定理 垂直于弦的直径平分弦以及弦所对的两条弧.
CD⊥AB,
E
探究二:垂径定理的应用
利用折叠的方法即可解决上述问题.
2、按下面的步骤做一做:1)拿出一张圆形纸片,把这个圆对折,使圆的两半部分重合.2)得到一条折痕CD.3)在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足.4)将纸打开,新的折痕与圆交于另一点B,如上图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?它们为什么相等呢?
自主学习:
如图,小明的理由是:
连接OA,OB,
则OA=OB.
在Rt△OAM和Rt△OBM中,
∵OA=OB,OM=OM,
∴Rt△OAM≌Rt△OBM.
∴AM=BM.
∴点A和点B关于CD对称.
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B重合,
自主学习:
圆的对称性(1)精品PPT教学课件
连接圆上任意两点间的线段叫做弦 C (如弦AB).
D 经过圆心的弦叫做直径(如直径AC).
2020/12/6
5
巧手折一折
1.将刚才折出的直径记为CD。
2.你能折一条与直径CD垂直的弦吗?
3.将弦记为AB,将垂足记为M,则有
AB⊥CD于M。
C
4.你能发现图中有哪些等量关系? 请你说说它们相等的理由。
DB
11
巧手再来做一做
在⊙O内任取一点M,请你折出一条弦AB,使AB 经过点M,并且AM=BM. 你能说说这样找的理由?
●M ●O
2020/12/6
12
挑战自我
如果圆的两条弦互相平行,那么这两条弦所平的弧相 等吗?
E
A
N●O
B
└
C └M
D
F
垂径定理的推论 圆的两条平行弦所夹的弧相等.
2020/12/6
∴AM=BM,
A⌒C =B⌒C,
A⌒D
⌒
=BD.
圆中一个重 要的结论,三
种语言要相
D
③直径平分弦 条件 ①一条直径 结论
互转化,形成 整体,才能运 用自如.
②垂直于弦
④平分弦所对的弧
2020/12/6
8
1.在⊙O中,若CD ⊥AB于M,AB为
A直、径A⌒,C则=A⌒下D列结B论、不⌒BC正=⌒B确D的是(C)
B ∴ 重∴合当A⌒C,圆=⌒ A沿B⌒CC着和, AB⌒⌒直DC径重=B⌒合CDD,. 对⌒ AD折和时B⌒D,点重合A与. 点B
D
2020/12/6
7
垂径定理
驶向胜利 的彼岸
定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.
专题18 圆的对称性——初中数学培优
专题18 圆的对称性阅读与思考圆是一个对称图形.首先,圆是一个轴对称图形,任意一条直径所在的直线都是它的对称轴,圆的对称轴有无数条;同时,圆又是一个中心对称图形,圆心就是对称中心,圆绕其圆心旋转任意角度,都能够与本身重合,这是圆特有的旋转不变性.由圆的对称性引出了许多重要的定理:垂径定理及推论;在同圆或等圆中,圆心角、圆周角、弦、弦心距、弧之间的关系定理及推论.这些性质在计算和证明线段相等、角相等、弧相等和弦相等等方面有广泛的应有.一般方法是通过作辅助线构造直角三角形,常与勾股定理和解直角三角形相结合使用.熟悉以下基本图形和以上基本结论.我国战国时期科学家墨翟在《墨经》中写道:“圆,一中间长也.”古代的美索不达米亚人最先开始制造圆轮.日、月、果实、圆木、车轮,人类认识圆、利用圆,圆的图形在人类文明的发展史上打下了深深的烙印.例题与求解【例1】在半径为1的⊙O 中,弦AB ,ACBAC 度数为_______. (黑龙江省中考试题)解题思路:作出辅助线,解直角三角形,注AB 与AC 有不同位置关系.由于对称性是圆的基本特性,因此,在解决圆的问题时,若把对称性充分体现出来,有利于圆的问题的解决.【例2】如图,在三个等圆上各自有一条劣弧AB ,D C ,EF .如果AB +D C =EF ,那么AB +CD 与EF 的大小关系是()A .AB +CD =EF B .AB +CD >EFC .AB +CD <EFD .AB +CD 与EF 的大小关系不能确定(江苏省竞赛试题)解题思路:将弧与弦的关系及三角形的性质结合起来思考.ABCD【例3】⑴ 如图1,已知多边形ABDEC 是由边长为2的等边三角形ABC 和正方形BDEC 组成, ⊙O 过A ,D ,E 三点,求⊙O 的半径.⑵ 如图2,若多边形ABDEC 是由等腰△ABC 和矩形BDEC 组成,AB =AC =BD =2,⊙O 过A ,D ,E 三点,问⊙O 的半径是否改变?(《时代学习报》数学文化节试题)解题思路:对于⑴,给出不同解法;对于⑵,⊙的半径不改变,解法类似⑴.等边三角形、正方形、圆是平面几何图形中最完美的图形,本例表明这三个完美的图形能合成一个从形式到结果依然完美的图形.三个完美图形的不同组合可生成新的问题,同学们可参照刻意练习.【例4】如图,已知圆内接△ABC 中,AB >AC ,D 为BAC 的中点,DE ⊥AB 于E .求证:BD 2-AD 2=AB AC .(天津市竞赛试题) 解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明.圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形问题提供了新的途径和方法,善于促成同圆或等圆中的弦、弦心距、弧、圆周角、圆心角之间相等或不等关系的互相转化,是解圆相关问题的重要技巧.A BCDE图1图2【例5】在△ABC 中,M 是AB 上一点,且AM 2+BM 2+CM 2=2AM +2BM +2CM -3.若P 是线段AC 上的一个动点,⊙O 是过P ,M ,C 三点的圆,过P 作PD ∥AB 交⊙O 于点D .⑴ 求证:M 是AB 的中点;⑵ 求PD 的长. (江苏省竞赛试题)解题思路:对于⑴,运用配方法求出AM ,BM ,CM 的长,由线段长确定直线位置关系;对于⑵,促成圆周角与弧、弦之间的转化.【例6】已知AD 是⊙O 的直径,AB ,AC 是弦,且AB =AC .⑴ 如图1,求证:直径AD 平分∠BAC ;⑵ 如图2,若弦BC 经过半径OA 的中点E ,F 是CD 的中点,G 是FB 的中点,⊙O 的半径为1,求弦FG 的长;⑶ 如图3,在⑵中若弦BC 经过半径OA 的中点E ,P 为劣弧上一动点,连结P A ,PB ,PD ,PF ,求证:PA PFPB PD++的定值.(武汉市调考试题)解题思路:对于⑶,先证明∠BP A =∠DPF =300,∠BPD =600,这是解题的基础,由此可导出下列解题突破口的不同思路:①由∠BP A ==∠DPF =300,构建直角三角形;②构造P A +PF ,PB +PD 相关线段;③取BD 的中点M ,连结PM ,联想常规命题;等等.本例实质是借用了下列问题:⑴如图1,P A +PB; ⑵如图2,P A +PB =PH ;⑶进一步,如图3,若∠APB =α,PH 平分∠APB ,则P A +PB =2PHc o s2α为定值.图1A 600300300PHB PABH600 图2 PABH 图3C图1图2 图3能力训练A 级1.圆的半径为5cm ,其内接梯形的两底分别为6cm 和8cm ,则梯形的面积为_______cm 2.2.如图,残破的轮片上,弓形的弦AB 长是40cm ,高CD 是5cm ,原轮片的直径是________cm .第3题图第2题图A3.如图,已知CD 为半圆的直径,AB ⊥CD 于B .设∠AOB =α,则BA BD ta n 2=_________. (黑龙江省中考试题)4.如图,在Rt △ABC 中,∠C=900,AC BC =1,若BC =1,若以C 为圆心,CB 的长为半径的圆交AB 于P ,则AP =___________. (江苏省宿迁市中考试题)5.如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA —AB —BO 的路径运动一周.设OP 长为s ,运动时间为t ,则下列图形能大致地刻画s 与t之间的关系是( )(太原市中考试题)6.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB =10cm ,CD =6cm ,那么AC 的长为( )A .0.5c mB .1c mC .1.5c mD .2c m7.如图,AB 为⊙O 的直径,CD 是弦.若AB =10cm ,CD =8cm ,那么A ,B 两点到直线CD 的距离之和为( )A .12cmB .10cmC .8cmD .6cmtttOAE CD FBABC DF EP (第6题图)(第4题图)(第7题图)(第8题图)8.如图,半径为2的⊙O中,弦AB与弦CD垂直相交于点P,连结OP.若OP=1,求AB2+CD2的值.(黑龙江省竞赛试题)9.如图,AM是⊙O的直径,过⊙O上一点B作BN⊥AM于N,其延长线交⊙O于点C,弦CD交AM于点E.⑴如果CD⊥AB,求证:EN=NM;⑵如果弦CD交AB于点F,且CD=AB,求证:CE2=EF•ED;⑶如果弦CD,AB的延长线交于点F,且CD=AB,那么⑵的结论是否仍成立?若成立,请证明;若不成立,请说明理由.(重庆市中考试题)10.如图,⊙O的内接四边形ABMC中,AB>AC,M是BC的中点,MH⊥AB于点H.求证:BH=1 2(AB-AC).(河南省竞赛试题)11.⑴如图1,圆内接△ABC中,AB=BC=CA,OD,OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G.求证:阴影部分四边形OFCG的面积是△ABC面积的13.⑵如图2,若∠DOE保持0120角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的13.AB CDOEFM(第9题图)AHB MC(第10题图)图2图1ADA12.如图,正方形ABCD 的顶点A ,D 和正方形JKLM 的顶点K ,L 在一个以5为半径的⊙O 上,点J ,M 在线段BC 上.若正方形ABCD 的边长为6,求正方形JKLM 的边长.(上海市竞赛试题)B 级1.如图,AB 是⊙O 的直径,CD 是弦,过A ,B 两点作CD 的垂线,垂足分别为E ,F .若AB =10,AE =3,BF =5,则EC =__________.2.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC =5,则折痕在△ABC 内的部分DE 长为________. (宁波市中考试题)3.如图,已知⊙O 的半径为R ,C ,D 是直径AB 同侧圆周上的两点,AC 的度数为960,BD 的度数为360.动点P 在AB 上,则CP +PD 的最小值为__________.(陕西省竞赛试题)O A E CD FBABCDE A ′ABCDPO (第1题图)(第2题图)(第3题图)A D CB NOJ M K L(第12题图)4.如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径是( ) AB.2C .54D5.如图,AB 是半圆O 的直径,C 是半圆圆周上一点,M 是AC 的中点,MN ⊥AB 于N ,则有()A .MN =12AC B .MN=2AC C .MN =35AC D .MN(武汉市选拔赛试题)第4题图第5题图A O6.已知,AB 为⊙O 的直径,D 为AC 的中点,DE ⊥AB 于点E ,且DE =3.求AC 的长度.7.如图,已知四边形ABCD 内接于直径为3的⊙O ;对角线AC 是直径,对角线AC 和BD 的交点为P ,AB =BD ,且PC =0.6,求四边形ABCD 的周长.(全国初中数学联赛试题)AD O BE GFN ACBDO P(第7题图)(第6题图)C8.如图,已知点A ,B ,C ,D 顺次在⊙O 上,AB BD =,BM ⊥AC 于M .求证:AM =DC +CM .(江苏省竞赛试题)9.如图,在直角坐体系中,点B ,C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,CD AO =,如果AB =10,AO >BO ,且AO ,BO 是x 的二次方程0482=++kx x 的两个根.⑴ 求点D 的坐标;⑵ 若点P 在直径AC 上,且AP =14AC ,判断点(-2,10)是否在过D ,P 两点的直线上,并说明理由. (河南省中考试题)10.⑴如图1,已知P A ,PB 为⊙O 的弦,C 是劣弧AB 的中点,直线CD ⊥P A 于点E ,求证:AE =PE +PB . ⑵如图2,已知P A ,PB 为⊙O 的弦,C 是优弧AB 的中点,直线CD ⊥P A 于点E ,问:AE ,PE 与PB 之间存在怎样的等量关系?写出并证明你的结论.x(第9题图)ABC D O M (第8题图)A图1CPBDEO A图2C PB D EO11.如图,已知弦CD 垂直于⊙O 的直径AB 于L ,弦AE 平分半径OC 于H .求证:弦DE 平分弦BC 于M . (全俄奥林匹克竞赛试题)12.如图,在△ABC 中,D 为AC 边上一点,且AD =DC +CB ,过D 作AC 的垂线交△ABC 的外接圆于M ,过M 作AB 的垂线MN ,交圆于N .求证:MN 为△ABC 外接圆的直径.专题18 圆的对称性 例1 15°或75° 提示:分AB 、AC 在圆心O 同侧、异侧两种情况讨论.例2 B例3 (1)解法一:如图,将正方形BDEC 上的等边△ABC 向下平移,使其底边与DE 重合,得等边△ODE .∵A 、B 、C 的对应点是O 、D 、E ,∴OD =AB ,OE =AC ,AO =BD .∵等边△ABC 和正方形BDEC 的边长都是2,∴AB =BD =AC =2,∴OD =OA =OE =2.∵A 、D 、E 三点确定一圆,O 到A 、D 、E 三点的距离相等.∴O 点为圆心,OA 为半径,∴该圆的半径为2.解法二:如图,将△ABC 平移到△ODE 位置,并作AF ⊥BC ,垂足为F ,延长交DE 于H .∵△ABC 为等边三角形,∴AF 垂直平分BC ,∵四边形BDEC 为正方形,∴AH 垂直平分正方形边DE .又∵DE 是圆的弦,∴AH 必过圆心,记圆心为O 点,并设⊙O 的半径为r .在Rt △ABF 中,∵∠BAF =30°,∴AF =AB ·cos 30°=OH =AF +FH -OA2-r .在Rt △ODH 中,OH 2+DH 2=OD 2,∴2r -)2+12=r 2,解得r =2. (2)⊙O 的半径不变,因为AB =AC =BD =2,此题求法和(1)一样,⊙O 的半径为2.例4 提示:BD 2-AD 2=(BE 2+ED 2)-(AE 2+ED 2)=(BE +AE )(BE -AE )=AB (BE -AE ),只需要证明AC =BE -AE 即可.在BA 上截取BF =AC .连DF 可证明△DBF ≌△DCA ,则DF =AD ,AE =EF . 例5 (1)由条件,得(AM -1)2+(BM -1)2+(CM -1)2=0,∴AM =BM =CM =1.因此,M 是AB 中点,且∠ACB =90°. (2)由(1)知,∠A =∠PCM ,又PD ∥AB ,∴∠A =∠CPD ,∠PCM =∠CPD ,因此,,CD PM CPM DCP ==,于是有DP =CM =1.例6 (1)连结BD 、CD ,∵AD 是直径,所以∠ABD =∠ACD =90°,又∵AB =AC ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠DAC ,∴AD 平分∠BAC .(2)连结OB 、OC ,则OA ⊥BC ,又AE =OE ,得ABAC O LE BDMH(第11题图)AC M N ODB(第12题图)=BO =OA =OC ,△AOB ,△AOC 都为等边三角形,连结OG ,则∠GOF =90°,FG (3)取BD 的中点M ,过M 作MS ⊥P A 于S ,MT ⊥PF 于T ,连AM ,FM .∠BPM =∠DPM =30°,∠APM =∠FPM =60°,则MS =MT ,MA =MF ,Rt △ASM ≌Rt △FTM ,Rt △PMS ≌Rt △PMF .∴PS =12PM .∴P A+PF =2PS =2PT =PM .同理可证:PB +PD .∴PA PF PB PD +==+为定值.A 级 1.49或7 2.85 3.1 4 5.C 6.D 7.D 8.过O 点作OE ⊥AB 于E ,OF ⊥CD 于F ,连结OD ,OA ,则AE =BE ,CF =DF ,∵OE 2=AO 2-AE 2=(4214AB -),OF 2=OD 2-FD 2=414-CD 2,∴OE 2+OF 2=(4214AB -)+(4214CD -)=PF 2+OF 2=OP 2=12,即4214AB -+4214CD -=1,故AB 2+CD 2=28.得x 1=-3(舍去),x 2=75,∴正方形JKLM 的边长为145..26-3 提示:作OM ⊥CD 于M ,则EC =12(EF -CD). 2.103 3.3R 提示:设D'是D 点关于直径AB 对称的点,连结CD'交AB 于P ,则P 点使CP +PD 最小,∠COD'=120°,CP +PD =CP +PD'=CD'=3R. 4.D 提示:如图:,得⎩⎪⎨⎪⎧a 2+12=r 2(2-a)2+(12)2=r 2 ,解得a =1316,r =51716 5.A 提示:连结OM ,则OM ⊥AC.6.解法一:连结OD 交AC 于点F ,∵D 为⌒AC 的中点,∴AC ⊥OD ,AF =CF.又DE ⊥AB ,∴∠DEO =∠AFO.∴△ODE ≌△OAF.∴AF =DE.∵DE =3∴AC =6.解法二:延长DE 交⊙O 于点G ,易证⌒AC =2⌒AD =⌒AD +⌒AG =⌒DG ,则DG =AC =2DE =6.7.连结BO 并延长交AD 于H ,因AB =BD ,故BH ⊥AD ,又∠ADC =90°,则BH ∥CD ,从而△OPB ∽△CPD ,得CD BO =CP PO ,即CD 1.5=0.61.5-0.6,解得CD =1.于是AD =AC 2-CD 2=22,又OH =12CD =12,则AB =AH 2+BH 2=2+4=6,BC =AC 2-AB 2=9-6= 3.∴四边形ABCD 的周长为1+22+3+ 6.8.提示:延长DC 至N ,使CN =CM ,连结BN ,则∠BCN =∠BAD =∠BDA =∠BCA ,可证得△BCN ≌△BCM ,Rt △BAM ≌Rt △BDN.9.⑴AO =8,BO =6,AB =BC =10,AD =CO =16,DB =AD -AB =6,过D 作DE ⊥BC 于E ,由Rt △DEB ∽Rt △AOB ,得DE =245,BE =185,EO =6+185=485.∴D(-485,245).⑵A(0,-8),C(-16,0),P(-4,-6),经过D ,P 两点的直线为y =-2714x -967,点(2,-10)不在直线DP 上.10.⑴在AE 上截取AF =BP ,连结AC ,BC ,FC ,PC ,可证明△CAF ≌△CBP ,CF =CP.又CD ⊥PA ,则PE =FE ,故AE =PB +PE.⑵AE =PE -PB ,在PE 上截取PF =PB ,连结AC ,BC ,FC ,PC ,可证明△CPF ≌△CPB ,CF =CB =CA.又CD ⊥AP ,则FE =AE ,故AE =PE -PB.11.连结BD ,∠CBA =∠DBA ,CB =BD ,由∠AOC =∠CBD ,∠A =∠BDE ,得△AOH ∽△DBM ,∴OH OA=BMBD=12,即BM=12BC.12.延长AC至点E,使CE=BC,连结MA,MB,ME,BE.∵AD=DC+BC=DC+CE=DE,又MD ⊥AE,∴MA=ME,∠MAE=∠MEA.∵∠MAE=∠MBC,,又由CE=BC得∠CEB=∠CBE,∴∠MEB=∠MBE,得MA=ME=MB,即M为优弧⌒AB的中点,而MN⊥AB,∴MN是⊙O的直径.。
圆的对称性(3)PPT优选课件
●O′
┏
A′ D′ B′
①∠⌒AOB⌒=∠A′O′B′
②AB=A′B′ ④ OD=O′D′ ①∠AOB=∠A′O′B′ ③AB=A′B′ ④ OD=O′D′
①∠⌒AOB⌒=∠A′O′B′
②AB=A′B′ ③AB=A′B′
? 8
推论:
在同圆或等圆中,如果①两个圆心角,②两弧, ③两条弦,④两条弦心距中,有一组量相等, 那么它们所对应的其余各组量都分别相等.
2020/10/18
5
弦心距的概念 A C
O·
B
弦心距 过圆心作弦的垂线,圆心与垂足之间的距离 (如线段OC).
2020/10/18
6Hale Waihona Puke 想一想,在⊙O中,若圆心角∠AOB和∠A′OB′相等,则对 应的弦心距OD与OD′相等吗?
B
A′
D A
D′ ●O
B′
由条件: ①∠AOB=∠A′O′B′
可推出
⌒⌒
BB′
A′
●O
AA′ B′
将其中的一个旋转一个角度,使得OA和O′A′重合.
你能发现那些等量关系?说一说你的理由.
⌒⌒
AB=A′B′
AB=A′B′
2020/10/18
4
B
A′
●O
A B′
由条件: ①∠AOB=∠A′O′B′
可推出
⌒⌒
②AB=A′B′ ③AB=A′B′
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦相等。
②AB=A′B′ ③AB=A′B′
④ OD=OD′
• 在同圆或等圆中,相等的圆心角所对的弧相等所对的 弦相等,所对的弦的弦心距相等.
2020/10/18
圆的对称性课件
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-讲
例3 如图, AB,DE是⊙O的直径,C是⊙O上的一点,且 AD=CE . BE与CE的大小有什么关系?为什么?
解:BE=CE. 理由是 ∵ ∠AOD=∠BOE, ∴ AD=BE . 又∵ AD=CE, ∴ BE=CE . ∴ BE=CE.
图形的个数是( )
A.2个
B.3个
C.4个
D.5个
知1-练
3 下列说法中,不正确的是( ) A.圆既是轴对称图形,又是中心对称图形 B.圆绕着它的圆心旋转任意角度,都能与自身重合 C.圆的对称轴有无数条,对称中心只有一个 D.圆的每一条直径都是它的对称轴
知识点 2 圆心角、弧、弦之间的关系
知2-导
总结
知1-讲
将一个图形绕一个定点旋转时, 具有下列特性:一 是旋转角度、方向相同,二是图形的形状、大小保持 不变,因此本题圆中变换位置前后对应的弧、角、线 段都相等.
知1-练
1 (202X·徐州)下列图案中,是轴对称图X·凉山州)在线段、平行四边形、矩形、等腰三角 形、圆这几个图形中,既是轴对称图形又是中心对称
知2-讲
要点精析:(1)上述三种关系成立的前提条件是“在同圆 或等圆中”,否则不成立.
(2)由于一条弦对着两条弧,“弦相等,所对的弧相等”中 的“弧相等”指的是“劣弧相等”或“优弧相等”.
拓展:(1)弦心距:圆心到圆的一条弦的距离叫做弦心距. 弦与弦心距的关系:在同一个圆中,两条弦相等,则它 们的弦心距相等,反之亦成立;在同一个圆中,弦越长, 则其弦心距越小.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“专题 18 圆的对称性阅读与思考圆是一个对称图形.首先,圆是一个轴对称图形,任意一条直径所在的直线都是它的对称轴,圆的对称轴有无数条;同 时,圆又是一个中心对称图形,圆心就是对称中心,圆绕其圆心旋转任意角度,都能够与本身重合,这 是圆特有的旋转不变性.由圆的对称性引出了许多重要的定理:垂径定理及推论;在同圆或等圆中,圆心角、圆周角、弦、 弦心距、弧之间的关系定理及推论.这些性质在计算和证明线段相等、角相等、弧相等和弦相等等方面 有广泛的应有.一般方法是通过作辅助线构造直角三角形,常与勾股定理和解直角三角形相结合使用.熟悉以下基本图形和以上基本结论.我国战国时期科学家墨翟在《墨经》中写道: 圆,一中间长也.”古代的美索不达米亚人最先开始 制造圆轮.日、月、果实、圆木、车轮,人类认识圆、利用圆,圆的图形在人类文明的发展史上打下了 深深的烙印.例题与求解【例 1】在半径为 1 的⊙O 中,弦 AB ,AC 的长分别为 3 和 2 ,则∠BAC 度数为_______.(黑龙江省中考试题)解题思路:作出辅助线,解直角三角形,注 AB 与 AC 有不同位置关系.由于对称性是圆的基本特性,因此,在解决圆的问题时,若把对称性充分体现出来,有利于圆的问 题的解决.【例 2】如图,在三个等圆上各自有一条劣弧 A B ,CD , E F .如果 AB + CD = EF ,那么 AB +CD与 EF 的大小关系是()BDFAA .AB +CD =EFC .AB +CD <EF CEB .AB +CD >EFD .AB +CD 与 EF 的大小关系不能确定(江苏省竞赛试题)解题思路:将弧与弦的关系及三角形的性质结合起来思考.【例3】⑴如图1,已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,⊙O过A,D,E三点,求⊙O的半径.⑵如图2,若多边形ABDEC是由等腰△ABC和矩形BDEC组成,AB=AC=BD=2,⊙O过A,D,E三点,问⊙O的半径是否改变?(《时代学习报》数学文化节试题)AB CO D E图1AB COD E图2解题思路:对于⑴,给出不同解法;对于⑵,⊙的半径不改变,解法类似⑴.等边三角形、正方形、圆是平面几何图形中最完美的图形,本例表明这三个完美的图形能合成一个从形式到结果依然完美的图形.三个完美图形的不同组合可生成新的问题,同学们可参照刻意练习.【例4】如图,已知圆内接△ABC中,AB>AC,D为BAC的中点,DE⊥AB于E.求证:BD2-AD2=AB AC.(天津市竞赛试题)解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明.DAEBC 圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直BB O线形问题提供了新的途径和方法,善于促成同圆或等圆中的弦、弦心距、弧、圆周角、圆心角之间相等或不等关系的互相转化,是解圆相关问题的重要技巧.【例△5】在ABC中,M是AB上一点,且AM2+BM2+CM2=2AM+2BM+2CM-3.若P是线段AC 上的一个动点,⊙O是过P,M,C三点的圆,过P作PD∥AB交⊙O于点D.⑴求证:M是AB的中点;⑵求PD的长.(江苏省竞赛试题)解题思路:对于⑴,运用配方法求出AM,BM,CM的长,由线段长确定直线位置关系;对于⑵,促成圆周角与弧、弦之间的转化.AMPCODB 【例6】已知AD是⊙O的直径,AB,AC是弦,且AB=AC.A A A PCG EOCFB EOCFD 图1D图2D图3⑴如图1,求证:直径AD平分∠BAC;⑵如图2,若弦BC经过半径OA的中点E,F是CD的中点,G是FB的中点,⊙O的半径为1,求弦FG的长;⑶如图3,在⑵中若弦BC经过半径OA的中点E,P为劣弧上一动点,连结PA,PB,PD,PF,求证:P A+PFPB+PD的定值.(武汉市调考试题)解题思路:对于⑶,先证明∠BP A=∠DPF=300,∠BPD=600,这是解题的基础,由此可导出下列解题突破口的不同思路:①由∠BP A==∠DPF=300,构建直角三角形;②构造P A+PF,PB+PD相关线段;③取BD的中点M,连结PM,联想常规命题;等等.本例实质是借用了下列问题:⑴如图1,PA+PB=3PH;⑵如图2,P A+PB=PH;⑶进一步,如图3,若∠APB=α,PH平分∠APB,则PA+PB=2PHc o s α2为定图2H H BP P PA300300A600600BA值.H图1B图3能力训练A级1.圆的半径为5cm,其内接梯形的两底分别为6cm和8cm,则梯形的面积为_______cm2.2.如图,残破的轮片上,弓形的弦AB长是40cm,高CD是5cm,原轮片的直径是________cm.A CDBAC第2题图C O第3题图B D AP(第4题图)B3.如图,已知CD为半圆的直径,AB⊥CD于B.设∠AOB=α,则BAta n=_________.BD2(黑龙江省中考试题)4.如图,在△Rt ABC中,∠C=900,AC=2,BC=1,若BC=1,若以C为圆心,CB的长为半径的圆交AB于P,则AP=___________.(江苏省宿迁市中考试题)5.如图,AB是半圆O的直径,点P从点O出发,沿OA—AB—BO的路径运动一周.设OP长为s,运动时间为t,则下列图形能大致地刻画s与t之间的关系是()s s s sO A t O B t OCt O D t(太原市中考试题)6.如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点,AB=10cm,CD=6cm,那么AC的长为()A.0.5c m B.1c m C.1.5c m D.2c mCD BADFC P EC(第 8 题图)(第 7 题图)A BOEA F DB(第 6 题图)7.如图,AB 为⊙O 的直径,CD 是弦.若 AB =10cm ,CD =8cm ,那么 A ,B 两点到直线 CD 的距离 之和为( )A .12cmB .10cmC .8cmD .6cm8.如图,半径为 2 的⊙O 中,弦 AB 与弦 CD 垂直相交于点 P ,连结 OP .若 OP =1,求 AB 2+CD 2 的值.(黑龙江省竞赛试题)9.如图,AM 是⊙O 的直径,过⊙O 上一点 B 作 BN ⊥AM 于 N ,其延长线交⊙O 于点 C ,弦 CD 交 AM 于点 E .⑴ 如果 CD ⊥AB ,求证:EN =NM ;⑵ 如果弦 CD 交 AB 于点 F ,且 CD =AB ,求证:CE 2=EF •ED ;⑶ 如果弦 CD ,AB 的延长线交于点 F ,且 CD =AB ,那么⑵的结论是否仍成立?若成立,请证明; 若不成立,请说明理由.(重庆市中考试题)ADBFE OCM(第 9 题图)10.如图,⊙O 的内接四边形 ABMC 中,AB >AC ,M 是 BC 的中点,MH ⊥AB 于点 H .求证:BH =(AB-AC ).(河南省竞赛试题)12BM C (第 12 题图)LAHCBM(第 10 题图)11.⑴如图 △1,圆内接 ABC 中,AB =BC =CA ,OD ,OE 为⊙O 的半径,OD ⊥BC 于点 F ,OE ⊥AC于点 G .求证:阴影部分四边形 OFCG 的面积是△ABC 面积的 1 3.⑵如图 2,若∠DOE 保持120 0角度不变,求证:当∠DOE 绕着 O 点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC 的面积的13.AAEEOGOBF C BCD图1D图212.如图,正方形 ABCD 的顶点 A ,D 和正方形 JKLM 的顶点 K ,L 在一个以 5 为半径的⊙O 上, 点 J ,M 在线段 BC 上.若正方形 ABCD 的边长为 6,求正方形 JKLM 的边长.(上海市竞赛试题)ANDOJKB 级1.如图,AB 是⊙O 的直径,CD 是弦,过 A ,B 两点作 CD 的垂线,垂足分别为 E ,F .若 AB =10, AE =3,BF =5,则 EC=__________.2C .5D . 5 17(第 2 ′上2C .MN =32B .MN =25D .MN = 3ANB A第5题图GACAOBBD ECADO PBECDF (第 1 题图)A题图)(第 3 题图)2.如图,把正三角形 ABC 的外接圆对折,使点 A 落在 BC 的中点 A ′ ,若 BC △=5,则折痕在 ABC内的部分 DE 长为________.(宁波市中考试题)3.如图,已知⊙O 的半径为 R ,C ,D 是直径 AB 同侧圆周上的两点, AC 的度数为 960, BD 的度数为 360.动点 P 在 AB 上,则 CP +PD 的最小值为__________.(陕西省竞赛试题)4.如图,用 3 个边长为 1 的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径是( )A . 2B .5165.如图,AB 是半圆 O 的直径,C 是半圆圆周上一点,M 是 AC 的中点,MN ⊥AB 于 N ,则有()A .MN = 1 ACACAC3AC(武汉市选拔赛试题)MCCDFBE OA NOB第4题图(第6 题图) OP CD(第 7 题图)6.已知,AB 为⊙O 的直径,D 为 AC 的中点,DE ⊥AB 于点 E ,且 DE =3.求 AC 的长度., , ,7.如图,已知四边形 ABCD 内接于直径为 3 的⊙O ;对角线 AC 是直径,对角线 AC 和 BD 的交点 为 P ,AB =BD ,且 PC=0.6,求四边形 ABCD 的周长.(全国初中数学联赛试题)8.如图,已知点 A ,B ,C ,D 顺次在⊙O 上, AB = BD ,BM ⊥AC 于 M .求证:AM =DC +CM .(江苏省竞赛试题)BCMOAD(第 8 题图)9.如图,在直角坐体系中,点B ,C 在 x 轴的负半轴上,点 A 在 y 轴的负半轴上,以 AC 为直径的圆与 AB 的延长线交于点 D ,CD = AO 如果 AB =10 AO >BO ,且 AO BO 是 x 的二次方程 x 2 + kx + 48 = 0的两个根.⑴ 求点 D 的坐标;⑵ 若点 P 在直径 AC 上,且 AP =14AC ,判断点(-2,10)是否在过 D ,P 两点的直线上,并说明理由.(河南省中考试题),C CDBPyOAx (第9题图)10.⑴如图1,已知P A PB为⊙O的弦,是劣弧AB的中点,直线CD⊥P A于点E,求证:AE=PE+PB.⑵如图2,已知PA,PB为⊙O的弦,C是优弧AB的中点,直线CD⊥P A于点E,问:AE,PE与PB之间存在怎样的等量关系?写出并证明你的结论.C DA E P AEPO OB BD C图1图211.如图,已知弦CD垂直于⊙O的直径AB于L,弦AE平分半径OC于H.求证:弦DE平分弦BC于M.(全俄奥林匹克竞赛试题)CAHO LMEBD (第11题图)△12.如图,在ABC中,D为AC边上一点,且AD=DC+CB,过D作AC的垂线交△ABC的外接圆于M,过M作AB的垂线MN,交圆于N.求证:MN为△ABC外接圆的直径.MO CDA BN(第12题图)。