原函数与不定积分的概念教学案例

合集下载

不定积分的概念与性质ppt课件

不定积分的概念与性质ppt课件

例4 求 tan2 xdx
例6 求
1 sin2 x cos2 x dx
22
小结
一、不定积分的概念
(原函数、不定积分的定义及几何意义)
二、不定积分的性质
(互逆性质、线性性质)
三、直接积分法
可导函数F(x),使对任一 x I 都有F ( x) f ( x)
➢唯一性
(F(x)) f (x) (F(x) C) f (x)
若函数f(x)在区间I上存在原函数,则原函数不唯一
➢结构
F(x)的一个原函数
{f (x)的原函数} {F(x)+C} 设( x)是f (x)的另一个原函数任,则意常数( x) F( x) C
三、直接积分法举例
(8)
dx cos 2
x
sec2
xdx
tan x C
(9)
d sin
x
2
x
csc2
xdx
cot x C
(10) sec x tan xdx sec x C (11) csc x cot xdx csc x C (12) ex dx ex C (13) a xdx a x C
( k 为常数)
(2)
x dx
1
1
x
1
C
( 1)
(3)
dx x
ln
x
C
(4)
1
dx x
2
arctan
x
C
或 arc cot x C
(5)
dx arcsin x C 1 x2
或 arc cos x C
(6) cos xdx sin x C (7) sin xdx cos x C
ln a

不定积分-教案

不定积分-教案
4.1.2不定积分的几何意义
不定积分 的几何意义就是,其表示了 的一族积分曲线 .这族积分曲线可由积分曲线 向上或向下平移得到,且在相同的横坐标的点处,任一曲线的切线有相同的斜率,即有平行的切线.
4.1.3基本积分公式表
1.求原函数或不定积分与求导数或求微分互为逆运算.
(1) ,或 ;
(2) ,或 .
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
*(7) ;
*(8) ;
*(9) ;
*(10) .Biblioteka 授课序号03教 学 基 本 指 标
教学课题
第4章第3节分部积分法
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
分部积分法
教学难点
分部积分法
参考教材
作业布置
课后习题微积分标准化作业
例题讲解
例4.38求不定积分 .
例4.39求不定积分 .
例4.40求不定积分 .
注多次使用分部积分时, 和 的选取类型要与第一次的保持一致,否则将回到原积分.本例选取幂函数为 ,正(余)弦函数为 .并两次使用了分部积分法.
分部积分法的使用熟练后, 与 的选取不必写出,只要把被积表达式凑成 的形式,即可使用分部积分公式.
大纲要求
熟练掌握分部积分法.
教 学 基 本 内 容
定理4.4设 , 在区间 上都有连续的导数,则有 ,即 ,简记为 .
注1.分部积分法应用的基本步骤可归纳为:
= .
2. 和 的选取非常关键.选取 和 一般要遵循下面两个原则:
(1)由 要容易求得 ;
(2) 要比 容易积分.

数学分析不定积分

数学分析不定积分

8.1 不定积分概念与基本积分公式(2学时)【教学目的】深刻理解原函数与不定积分的概念;牢记基本积分表;掌握不定积分的线形运算法则。

【教学重点】不定积分的概念,基本积分表,不定积分的线形运算法则。

【教学难点】求不定积分的技巧。

【教学过程】一、原函数与不定积分(一) 原函数定义1 设函数与在区间)(x f )(x F I 上有定义。

若)()(x f x F =′, I x ∈,则称为在区间)(x F )(x f I 上的一个原函数。

如:331x 是在R 上的一个原函数;2x x 2cos 21−, 12cos 21+x ,,等都有是在R 上的原函数——若函数存在原函数,则其原函数不是唯一的。

x 2sin x 2cos −x 2sin )(x f 问题1 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个?)(x f 问题 2 若函数的原函数存在,如何将它求出?(这是本章的重点内容)。

)(x f 定理1 若在区间)(x f I 上连续,则在)(x f I 上存在原函数。

)(x F (证明在第九章中进行。

)说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。

(2)连续是存在原函数的充分条件,并非必要条件。

定理2 设是在在区间)(x F )(x f I 上的一个原函数,则(1)设是在在区间C x F +)()(x f I 上的原函数,其中C 为任意常量(若存在原函数,则其个)(x f数必为无穷多个)。

(2)在)(x f I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。

证:(i)这是因为[].),()()(I x x f x F C x F ∈=′=′+(ii)设F 和G 是f 在I 上的任意两个原函数,则有[]I x x f x f x G x F C x F ∈=−=′−′=′+,0)()()()()(根据第六章拉格朗日中值定理的推论,知道I x C x G x F ∈≡−,)()(. 口(二) 不定积分定义 2 函数在区间)(x f I 上的原函数的全体称为在)(x f I 上的不定积分,记作:∫dx x f )(其中∫积分号;被积函数; −−−−)(x f −−dx x f )(被积表达式;−−x 积分变量。

高职高等数学教案第四章不定积分

高职高等数学教案第四章不定积分

第四章 不定积分§4-1 不定积分的概念与性质一、不定积分的概念1.原函数定义定义1:如果在区间I 上,可导函数()F x 的导数为()f x ,即对任一xI ,都有()()F x f x 或()()dF x f x dx ,则称()F x 为()f x 在区间I 上的一个原函数。

例:(sin )cos x x ,则sin x 是cos x 的一个原函数;1(sin 1)(sin )(sin 3)cos 2x xx x ,则都是cos x 的原函数。

2.原函数性质定理1:如果()f x 在区间I 上连续,则在该区间原函数一定存在。

定理2:如果()F x 是()f x 的一个原函数,则()F x C 是()f x 的全体原函数,且任一原函数与()F x 只差一个常数。

例:验证2211cos 2,sin 2,cos 233x x x 都是sin 2x 的原函数 证:2211(cos 2)sin 233(sin 2)sin 2(cos 2)sin 2x x x x xx,则三个函数都是sin 2x 的原函数3.不定积分定义定义2:()f x 的全体原函数称为()f x 的不定积分,记作()f x dx ,其中称为积分号,()f x 称为被积函数,()f x dx 称为被积表达式,x 称为积分变量。

说明:如果()F x 是()f x 在区间I 上的一个原函数,则()F x C 就是()f x 的不定积分,即()()f x dxF x C例1:求23x dx解:因为32()3x x ,所以3x 是23x 的一个原函数则233x dx x C例2:求1dx x解:当0x时,1(ln )x x当0x 时,11ln()x xx 所以1 ln ||(0)dx x C xx4.不定积分几何意义在相同横坐标的点处切线是平行的,切线斜率都为()f x ,可由()yF x 沿y 轴平移得到。

例:一条积分曲线过点(1,3),且平移后与231y x x 重合,求该曲线方程解:设2()31f x x x C由于曲线过(1,3) 则3131C ,2C2()31f x xx二、不定积分性质性质1:[()()]()()f x g x dx f x dx g x dx性质2:()(0)()0(0)kf x dx k kf x dxdxC k性质3:(())(),()()f x dx f x f x dx f x C三、基本积分表(1)kdx kx C (k 是常数) (2)111ααx dxx C α(3)1ln ||dx x C x (4)x xe dx e C (5)ln x xa a dxC a(6)sin cos xdxxC(7)cos sin xdx x C (8)221sec tan cos dx xdx x C x(9)221csc cot sin dx xdx x C x (10)sec tan sec x xdx xC(11)csc cot csc x dx xC (12)21arctan 1dxx C x(13)21arcsin 1dx x C x例1:求51dx x解:55154111514dx x dxx CC x x例2:求x xdx解:313522223512x x xdx x dxCx C例3:求3(sin )xx dx解:433(sin )sin cos 4x x x dx xdxx dxxC例4:求2(1)x dx x解:22(1)211(2)x x x dx dx x dx xx x2122ln ||2x xdx dxdx xx C x注:根式或多项式函数需化成αx 形式,再利用公式。

第一节 不定积分的概念与性质

第一节 不定积分的概念与性质

第一节 不定积分的概念与性质一.原函数与不定积分的概念1.原函数的概念引例 设x x f cos )(=',求)(x f . 解 因为x x cos )(sin =',所以c x x f +=sin )(.此时称x sin 为x cos 的一个原函数.定义 如果在区间I 上,可导函数)(x F 的导函数为)(x f ,即I x ∈∀,有 )()(x f x F =' (或dx x f x dF )()(=)则称)(x F 为)(x f (或))(dx x f 在区间I 上的一个原函数.如x arctan 是211x +的原函数;211x +是)1ln(2x x ++的原函数.什么样的函数具有原函数呢?有定理(原函数存在定理) 连续函数必有原函数.即如果函数)(x f 在区间I 上连续,则在区间I 上存在可导函数)(x F ,使得对I x ∈∀,有 )()(x f x F ='即)(x F 为)(x f 在区间I 上的一个原函数.其证明见289P . 注意 (1)由原函数的定义可知:如果)(x F 为)(x f 在区间I 上的原函数,则C x F +)(也是)(x f 的原函数,即)(x f 若有原函数,则)(x f 有无限多个原函数.(2)设)(x F 和)(x Φ都是)(x f 在区间I 上的原函数,则)(x F =C x +Φ)(.事实上 0)()()()(])()([=-=Φ'-'='Φ-x f x f x x F x x F所以)(x F C x =Φ-)(,即)(x F =C x +Φ)(.2.不定积分的概念 定义 在区间I 上, )(x f 的原函数的全体,称为)(x f (或))(dx x f 在区间I 上的不定积分,记作⎰dx x f )(.其中:‘⎰’——积分符号; )(x f ——被积函数;dx x f )(—被积表达式;x ——积分变量.显然,如果)(x F 是)(x f 的一个原函数,则 ⎰dx x f )(C x F +=)(.因此,求)(x f 的不定积分归结于求)(x f 的一个原函数)(x F .如x arctan 是211x +的一个原函数,所以 ⎰+=+C x dx x arctan 112. 又如211x +是)1ln(2x x ++的一个原函数,则=+⎰dx x 211C x x +++)1ln(2.例1 求⎰dx x 1.解 当),0(+∞∈x 时,x x 1)(ln =',所以C x dx x +=⎰ln 1. 当)0,(-∞∈x 时, x x 1])[ln(='-,所以C x dx x +-=⎰)ln(1. 综上,有 C x dx x +=⎰ln 1.例2 设,2cos )(sin x x f ='求)(x f .解 ,c o s 21)(s i n 2x x f -='故221)(t t f -='.因为 2321)32(t t t -='- 所以332t t -是221t -的一个原函数,故 ⎰+-=-C t t dt t 3232)21( 即)(x f =C x x +-332. 例3 设曲线过点)2,1(,且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.解 设曲线方程为)(x f y =,则x dxdy 2=. 所以C x y +=2.又2|1==x y ,所以C +=12,从而1=C .故所求曲线方程为12+=x y .3.不定积分与微分的关系(1)⎰=dx x f dx x f d )()( 或⎰=')(])([x f dx x f ; (2)⎰+=C x F x dF )()( 或⎰+='C x F dx x F )()(. 即先积后微,形式不变;先微后积,添个常数.二.基本积分表1.⎰+=C kx kdx (k 是常数);2.⎰++=+C x dx x 111μμμ (1-≠μ); 3. C x dx x +=⎰ln 1; 4. ⎰+=+C x dx x arctan 112; 5.⎰+=-C x dx x arcsin 112; 6.⎰+=C x xdx sin cos ;7.⎰+=C x xdx cos sin ; 8.⎰⎰+==C x xdx dx x tan sec cos 122; 9.⎰⎰+-==C x xdx dx x cot csc sin 122;10.⎰+=C x xdx x sec tan sec ;11.⎰+-=C x xdx x csc cot csc ; 12.⎰+=C e dx e x x ; 13.⎰+=C a a dx a x x ln ; 14.⎰+=C chx shxdx ;15.⎰+=C shx chxdx .例4 ⎰⎰+==C x dx x dx x x 2725272.三.不定积分的性质性质1 ⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([. 性质2 ⎰⎰=dx x f k dx x kf )()( (k 是常数).例5 求dx xx ⎰-23)1(. 解 原式⎰⎰⎰⎰⎰-+-=-+-=dx xdx x dx xdx dx x x x 221133)133( C xx x x +++-=1ln 3322. 例6 ⎰⎰++=+==C e C e e dx e dx e xx x x x x 12ln 2)2ln()2()2(2. 例7 ⎰⎰⎰++=+++=+++dx x x dx x x x x dx x x x x )111()1()1()1(122222 ⎰⎰++=++=C x x dx x dx x arctan ln 1112. 例8 ⎰⎰⎰++-=++-=+dx xx dx x x dx x x )111(11)1(1222424 C x x x ++-=arctan 313.例9 ⎰⎰+-=-=C x x dx x xdx tan )1(sec tan 22.例10 ⎰⎰⎰+-=-=-=C x x dx x dx x dx x )sin (21)cos 1(212cos 12sin2. 例11 ⎰⎰⎰+-====C x xdx dx x dx x x cot 4csc 4sin 142cos 2sin 12222.例12 ⎰⎰⎰+=+=dx x x dx x x x x dx x x )sec (csc sin cos sin cos sin cos 122222222C x x +-=cot tan .。

不定积分的概念和性质教案13

不定积分的概念和性质教案13
2=1+C,解得C=1。
因此所求曲线方程为y=x2+1。
二、不定积分的性质
性质1不定积分与求导或微分互为逆运算。
(1)[∫f(x)dx]′=f(x)或d[∫f(x)dx]=f(x)dx
(2)∫F′(x)dx=F(x)+C或∫dF(x)=F(x)+C
性质2被积分式中的非零常数因子可以移到积分号前。
∫kf(x)dx=k∫f(x)dx(k≠0,k为常数)
性质3两个函数代数和的不定积分等于两个函数积分的代数和。
∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
三、基本积分表
(1)∫kdx=kx+C (k是常数);
(2)∫xαdx=+C (α∈R,α≠-1);
(3)∫dx=ln|x|+C;
(4)∫axdx=+C(a>0,a≠1);
(5)∫exdx =ex+C;
3.不定积分的几何意义
通常我们把一个原函数F(x)的图象称为f(x)的一条积分曲线,其方程为y=F(x),因此,不定积分∫f(x)dx在几何上就表示全体积分曲线所组成的积分曲线族,它们的方程是y=F(x)+C。
例2设曲线过点(1,2),且斜率为2x,求曲线方程。
解设所求曲线方程为y=y(x)。
依题意,有=2x,故y=∫2xdx=x2+C.又因为曲线过点(1,2),故点(1,2)适合此方程,于是
2.不定积分
Байду номын сангаас定义2
若F(x)是f(x)在区间I上的一个原函数,则F(x)+C(C为任意常数)称为f(x)在该区间上的不定积分,记为∫f(x)dx,即∫f(x)dx=F(x)+C。
其中符号“∫”称为不定积分号,f(x)称为被积函数,f(x)dx称为被积表达式,或称被积分式,x称为积分变量,C称为积分常数。

41原函数与不定积分

41原函数与不定积分

第一节 不定积分的概念及其性质教学目的:使学生掌握原函数与不定积分的概念及性质;基本积分公式.教学重点:基本积分公式的推导及应用. 教学过程:一、原函数与不定积分的概念定义1 如果在区间I 上 可导函数F (x )的导函数为f (x ) 即对任一x ∈I 都有F '(x )=f (x )或dF (x )=f (x )dx那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数例如 因为(sin x )'=cos x 所以sin x 是cos x 的原函数又如当x ∈(1 +∞)时因为xx 21)(=' 所以x 是x21的原函数提问:cos x 和x21还有其它原函数吗?原函数存在定理 如果函数f (x )在区间I 上连续 那么在区间I 上存在可导函数F (x ) 使对任一x ∈I 都有F '(x )=f (x )简单地说就是 连续函数一定有原函数两点说明 第一 如果函数f (x )在区间I 上有原函数F (x ) 那么f (x )就有无限多个原函数F (x )+C 都是f (x )的原函数 其中C 是任意常数第二 f (x )的任意两个原函数之间只差一个常数 即如果Φ(x )和F (x )都是f (x )的原函数 则Φ(x )-F (x )=C (C 为某个常数) 定义2 在区间I 上 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分 记作⎰dx x f )(其中记号⎰称为积分号 f (x )称为被积函数 f (x )dx 称为被积表达式 x 称为积分变量 根据定义 如果F (x )是f (x )在区间I 上的一个原函数 那么F (x )+C 就是f (x )的不定积分 即⎰+=C x F dx x f )()(因而不定积分dx x f )(⎰可以表示f (x )的任意一个原函数例1因为sin x 是cos x 的原函数所以C x x d x +=⎰s i n c o s因为x 是x21的原函数所以C x dx x +=⎰21例2. 求函数xx f 1)(=的不定积分 解:当x >0时(ln x )'x1=C x dx x+=⎰ln 1(x >0)当x <0时[ln(x )]'xx1)1(1=-⋅-=C x dx x+-=⎰)ln( 1(x <0)合并上面两式得到C x dx x+=⎰||ln 1(x ≠0)例3 设曲线通过点(1 2) 且其上任一点处的切线斜率等于这点横坐标的两倍 求此曲线的方程解 设所求的曲线方程为y =f (x ) 按题设 曲线上任一点(x y )处的切线斜率为y '=f '(x )=2x ,,即f (x )是2x 的一个原函数 因为 ⎰+=C x x d x22故必有某个常数C 使f (x )=x 2+C 即曲线方程为y =x 2+C因所求曲线通过点(1 2) 故2=1+C C =1于是所求曲线方程为y =x 2+1积分曲线 函数f (x )的原函数的图形称为f (x )的积分曲线从不定积分的定义 即可知下述关系 ⎰=)(])([x f dx x f dxd或 ⎰=dx x f dx x f d )(])([ 又由于F (x )是F '(x )的原函数 所以⎰+='C x F dx x F )()(或记作 ⎰+=C x F x dF )()(由此可见 微分运算(以记号d 表示)与求不定积分的运算(简称积分运算以记号⎰表示)是互逆的 当记号⎰与d 连在一起时 或者抵消 或者抵消后差一个常数二、基本积分表(1)C kx kdx +=⎰(k 是常数) (2)C x dx x ++=+⎰111μμμ(3)C x dx x+=⎰||ln 1 (4)C e dx e x x +=⎰(5)C aa dx a xx+=⎰ln (6)C x xdx +=⎰sin cos(7)C x xdx +-=⎰cos sin (8)C x xdx dx x+==⎰⎰tan sec cos 122(9)C x xdx dx x +-==⎰⎰cot csc sin 122 (10)C x dx x+=+⎰arctan 112 (11)C x dx x +=-⎰arcsin 112(12)C x xdx x +=⎰sec tan sec(13)C x dx x +-=⎰csc cot csc例4 ⎰⎰-=dx x dx x 331C x C x +-=++-=+-21321131例5 ⎰⎰=dxx dx x x 252C x ++=+1251251C x +=2772C x x +=372例6 ⎰⎰-=dxx xx dx 343Cx ++-=+-134134Cx +-=-313C x+-=33三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和 即⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([这是因为, ])([])([])()(['+'='+⎰⎰⎰⎰dx x g dx x f dx x g dx x f =f (x )+g (x ).性质2 求不定积分时 被积函数中不为零的常数因子可以提到积分号外面来即⎰⎰=dx x f k dx x kf )()((k 是常数 k ≠0)例7. ⎰⎰-=-dx x x dx x x )5()5(21252 ⎰⎰-=dxx dx x 21255⎰⎰-=dxx dx x 21255C x x +⋅-=232732572例8 dx xx x dx xx x x dx x x )133(133)1(222323-+-=-+-=-⎰⎰⎰ C x x x x dx x dx x dx dx x +++-=-+-=⎰⎰⎰⎰1||ln 3321113322例9 ⎰⎰⎰-=-xdx dx e dx x e x x cos 3)cos 3(C x e x +-=sin 3例10 C e C e e dx e dx e x x xxxx ++=+==⎰⎰2ln 12)2ln()2()2(2例11 dx xx dx x x x x dx x x x x )111()1()1()1(122222++=+++=+++⎰⎰⎰ C x x dx x dx x++=++=⎰⎰||ln arctan 1112. 例12 dx x x x dx x x dx x x ⎰⎰⎰++-+=++-=+222242411)1)(1(1111⎰⎰⎰⎰++-=++-=dx x dx dx x dx x x 222211)111(C x x x ++-=a r c t a n 313例13 ⎰⎰⎰⎰-=-=dx xdx dx x dx x 222sec )1(sec tan = tan x - x + C例14 ⎰⎰⎰-=-=dx x dx x dx x )cos 1(212cos 1 2sin 2 C x x +-=)s i n (21例15 C x dx x dx xx +-==⎰⎰cot 4sin 142cos 2sin 1222.。

教案4-不定积分new

教案4-不定积分new

第四章不定积分§ 4.1不定积分概念微分学的基本问题是:已知一个函数,求它的导数。

但是,在科学技术领域中往往还会遇到与此相反的问题:已知一个函数的导数,求原来的函数,由此产生了积分学。

''积分'是•微分、旳逆运算一、原函数1、原函数定义我们在讨论导数的槪念时,解决了这样一个问题:已知某物体作直线运动时,路程随时间/变化的规律为S = s(t),那么,在任意时刻/物体运动的速度为V(r) = s\t)。

现在提岀相反的问题:例1 已知某物体运动的速度随时间/变化的规律为V = V(r),要求该物体运动的路程随时间变化的规律S = s(0。

显然,这个问题就是在关系式V(r) = S f(t)中,当W/)为已知时,要求$(/)的问题。

例2 已知曲线y = /(x)上任意点(x,y)处的切线的斜率为2x,要求此曲线方程,这个问题就是要根拯关系式y = 2x ,求出曲线y = /(A)。

从数学的角度来说,这类问题是在关系式F\x) = /(x)中,当函数/(x)已知时,求出函数F(x) o由此引岀原函数的槪念。

定义4.1 :设f(x)是左义在某区间/内的已知函数,如果存在一个函数F(x),对于每一点xe/,都有:F3 = f(x)或dFg = f\x) • dx则称函数F(x)为已知函数f(x)在区间/内的一个原函数例如,由于(sinx)' = cosx,所以在(YO,+S)内,sinx是cosx的一个原函数:又因为(sinx + 2)'= cosx ,所以在(Y>,+s)内,sinx+2是cosx的一个原函数:更进一步,对任意常数C,有(sinx + C)'= cosx,所以Id在(Y\+8)内,sinx+C都是cosx的原函数。

2、原函数性质(1)如果函数/(x)在区间/内连续,则/(兀)在区间/内一定有原函数;(2)若F f(x) = /(x),则对于任意常数C, F(A)+C都是/(X)的原函数“即如果/(X)在/上有原函数,则它有无穷多个原函数;(3)若F(x)和G(x)都是/(X)的原函数,则F(x) - G(x) = C,(C为任意常数)。

不定积分的概念与性质2

不定积分的概念与性质2




x
6


x5,
6
x5dx x6 C .
6
例2


1
1 x2
dx.


arctan
x

1
1 x2
,


1
1 x
2
dx

arctan
x

C
.
不定积分的几何意义
函 数 f ( x) 的 任 意 一 个 原 函 数 F(x) 的 图 形 称 为 f ( x)的一条积分曲线.其方程是 y=F(x).若函数有

g( x)dx
f (x)
g( x).
等式成立.
(此性质可推广到有限多个函数之和的情况)
(2) kf ( x)dx k f ( x)dx.
(k 是常数,k 0)
求不定积分的方法1:直接法积分法
例1 求积分 x2 xdx.
5
解 x2 xdx x 2dx
例8
求积分

1

1 cos2ຫໍສະໝຸດ xdx.解

1

1 cos
2x
dx


1

1 2 cos 2
x

dx 1

1 2

1 cos2
x
dx

1 2
tan
x

C.
说明: 以上几例中的被积函数都需要进行恒等变形,
代数运算(将假分式化为多项式与真分式之
和,将真分式拆成几个简单真分式之和)或
三角恒等变换,才能使用基本积分表.

不定积分的概念和性质教案

不定积分的概念和性质教案
定义2:在区间 上,函数 的全体原函数称为 在区间 上的不定积分,记作 ,即 ,其中记号 称为积分号, 称为积分变量, 称为被积函数, 称为被积表达式.
注意:原函数和不定积分是个体与全体的关系(强调常数 的重要性).
三、举例利用定义求简单积分
例1:求 .
解:由于 ,所以 是 的一个原函数.因此
例2:求 .
结论:微分运算与积分运算是互逆的(给出基本积分表).
例4:求 .(积分表的应用)
解:
五、不定积分的性质
(1)性质1:设函数 的原函数存在,则 .
性质2:设函数 的原函数存在, 为非零常数,则 .
(2)利用不定积分的性质去求简单函数的不定积分
例4:求
解:
例5:求
解:
四、根据微分运算与积分运算是互逆的性质给出基本的积分,并尝试应用其求一些积分.
定理1:……
定理2:……
例4:求
例5:求
例6:求
课堂小结:……
不定积分
已知 ,求函数 ,使得 .
定义1:(原Leabharlann 数的定义)…….(1)(2) 与 的关系?
的全体原函数
定义2:(不定积分的定义)……
例1:求 .
例2:求 .
例3:设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.
五、尝试利用不定积分的性质去求简单函数的不定积分
教学过程
例6:求
解:
六、课堂小结
(1)原函数及不定积分的概念
(2)能够利用不定积分的定义求简单积分
(3)基本积分表
(4)不定积分的性质
六、与教师一起进行总结
板书设计
;
由于 是 的原函数,则有

不定积分教案

不定积分教案

第三章 一元函数积分学一、 不定积分(一)、 不定积分的概念已知一个函数的导数(或微分),求此函数。

例如:已知)(t f s =则)(t f v '=反之,若已知)(t f v '=,则?=s 这是积分学的基本问题。

1、原函数的定义:若在某区间上)()(x f x F =',则在某区间上)(x F 叫做)(x f 的原函数。

例如:x x F sin )(=是x x f cos )(=的原函数。

又如3)(x x F =是23)(x x f =的原函数。

若)(x f 有原函数)(x F ,则一共有几个?)()(x f x F ='显而易见)(]1)([x f x F ='+)(])([x f c x F ='+其中C 為任意的常数即函数族:c x F +)(是)(x f 的原函数。

一个函数若有原函数就必有无穷多个,它们之间相差一个常数。

2、不定积分的定义)(x f 所有原函数的全体,叫做)(x f 的不定积分。

记为⎰dx x f )(其中⎰叫做积分号,)(x f 叫被积函数,dx x f )(叫被积表达式,x 叫积分变量;设)(x f 的原函数)(x F ,则c x F dx x f +=⎰)()(其中c 是任意常数(c 叫做积分常数)。

例如:c x xdx +=⎰sin cosc x dx x +=⎰323 )(]100)([x f x F ='+例31-1、⎰dx x 2解: 23)31(x x ='c x dx x +=∴⎰3231 例31-2、⎰+dx x 211解: ]11)[(arctan 2xx +=' c x dx x+=+∴⎰arctan 1123、不定积分的几何意义设)(x f 的原函数)(x F ,)()(x f x F ='c x F dx x f +=⎰)()()(])([x f c x F ='+即沿y 轴上下移动的全部积分曲线所形成的积分族。

不定积分(公式大全)省优质课赛课获奖课件市赛课一等奖课件

不定积分(公式大全)省优质课赛课获奖课件市赛课一等奖课件
两边积分得 u(x)·v(x)=∫u'(x)v(x)dx+∫u(x)v'(x)dx
于是有 ∫u(x)·v'(x)dx=u(x)·v(x)-∫u'(x)·v(x)dx
或表达成 ∫u(x)dv(x)=u(x)·v(x)-∫v(x)du(x)
这一公式称为分部积分公式。
二、讲解例题
例1 求∫xexdx
解:令 u(x)=x,v'(x)=ex 则原式为∫u(x)·v'(x)dx旳形式
例1 求下列函数旳一种原函数:
⑴ f(x)=2x
⑵ f(x)=cosx
解:⑴∵(x2)'=2x
∴x2是函数2x旳一种原函数
⑵∵(sinx)'=cosx
∴sinx是函数cosx旳一种原函数
这里为何要强调是一种原函数呢?因为一种函数
旳原函数不是唯一旳。
例如在上面旳⑴中,还有(x2+1)'=2x,
(x2-1)'=2x
C
例5 求 2xex2 dx
解:设u=x2,则du=2xdx
2xex2 dx ex2 2xdx eudu eu C ex2 C
例7 求 tan xdx

:
tan
xdx
sin cos
x x
dx
设u=cosx,则du=-sinxdx
tan
xdx
1 cos
x
(
sin
x)dx
1 u
1 x3 x2 x C
3
再如

(x
1)( x 2 3x2
3)
dx
解:
(x 1)(x2 3)
3x2
dx
x3 x2 3x 3

高等数学教案ch 4 不定积分.

高等数学教案ch 4 不定积分.

高等数学教案第四章不定积分教学目的:第四章不定积分1、理解原函数概念、不定积分的概念。

2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。

3、会求有理函数、三角函数有理式和简单无理函数的积分。

教学重点:1、不定积分的概念;2、不定积分的性质及基本公式;3、换元积分法与分部积分法。

教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。

§4. 1 不定积分的概念与性质一、原函数与不定积分的概念定义1 如果在区间I上, 可导函数F(x)的导函数为f(x), 即对任一x∈I, 都有F '(x)=f(x)或dF(x)=f(x)dx,那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数.例如因为(sin x)'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为(x)'=1, 所以x是1的原函数. 2x2x提问:cos x和1还有其它原函数吗? 2x原函数存在定理如果函数f(x)在区间I上连续, 那么在区间I上存在可导函数F(x), 使对任一x ∈I 都有F '(x)=f(x).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f(x)在区间I上有原函数F(x), 那么f(x)就有无限多个原函数,F(x)+C都是f(x)的原函数, 其中C是任意常数.第二, f(x)的任意两个原函数之间只差一个常数, 即如果Φ(x)和F(x)都是f(x)的原函数, 则Φ(x)-F(x)=C (C为某个常数).高等数学课程建设组1高等数学教案第四章不定积分定义2 在区间I上, 函数f(x)的带有任意常数项的原函数称为f(x)(或f(x)dx )在区间I上的不定积分, 记作⎰f(x)dx.其中记号⎰称为积分号, f(x)称为被积函数, f(x)dx称为被积表达式, x 称为积分变量. 根据定义, 如果F(x)是f(x)在区间I上的一个原函数, 那么F(x)+C就是f(x)的不定积分, 即⎰f(x)dx=F(x)+C.因而不定积分⎰f(x)dx可以表示f(x)的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以⎰cosxdx=sinx+C.因为x是1的原函数, 所以 2x例2. 求函数f(x)=1的不定积分. x解:当x>0时, (ln x)'=1, x⎰1dx=lnx+C(x>0); x当x<0时, [ln(-x)]'=1⋅(-1)=1, -xx⎰1dx=ln(-x)+C(x<0). x合并上面两式, 得到⎰1dx=ln|x|+C(x≠0). x例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解设所求的曲线方程为y=f(x), 按题设, 曲线上任一点(x, y)处的切线斜率为y'=f'(x)=2x,,即f(x)是2x 的一个原函数.因为⎰2xdx=x2+C,高等数学课程建设组2 ⎰1dx=x+C. x高等数学教案第四章不定积分故必有某个常数C使f(x)=x 2+C, 即曲线方程为y=x 2+C.因所求曲线通过点(1, 2), 故2=1+C, C=1.于是所求曲线方程为y=x2+1.积分曲线: 函数f(x)的原函数的图形称为f(x)的积分曲线.从不定积分的定义, 即可知下述关系: d[⎰f(x)dx]=f(x), dx或 d[⎰f(x)dx]=f(x)dx;又由于F(x)是F '(x)的原函数, 所以⎰F'(x)dx=F(x)+C,或记作⎰dF(x)=F(x)+C.由此可见, 微分运算(以记号d表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)⎰kdx=kx+C(k是常数), (2)⎰xμdx=1xμ+1+C, +1(3)⎰1dx=ln|x|+C, x(4)⎰exdx=ex+C, x(5)⎰axdx=a+C, lna(6)⎰cosxdx=sinx+C,(7)⎰sinxdx=-cosx+C, (8)⎰1dx=sec2xdx=tanx+C, ⎰cos2x(9)⎰12=⎰csc2xdx=-cotx+C, sinx高等数学课程建设组3高等数学教案第四章不定积分(10)⎰1=arctanx+C, 1+x(11)⎰1=arcsinx+C, -x2(12)⎰secxtanxdx=secx+C,(13)⎰cscxcotdx=-cscx+C,(14)⎰sh x dx=ch x+C,(15)⎰ch x dx=sh x+C.例4例5 ⎰xdx=⎰x-3dx=-3+1x-3+1+C=-2x+C.111⎰x2xdx=⎰5x2dx7+1122=x+C=x2+C=2x3+C. +17725例6 ⎰dx=⎰xx-4x3dx=-4+1x3-+13+C-1=-3x3+C=-3+C. 三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和, 即⎰[f(x)+g(x)]dx=⎰f(x)dx+⎰g(x)dx.这是因为, [⎰f(x)dx+⎰g(x)dx]'=[⎰f(x)dx]'+[⎰g(x)dx]'=f(x)+g(x).性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即⎰kf(x)dx=k⎰f(x)dx(k是常数, k ≠0).例7. ⎰x(x-5)dx=⎰5x2dx-725(x21-5x2)dx 5x2dx-51x2dx =⎰⎰15x2dx3=⎰⎰22 =x2-5⋅x2+C. 7332(x-1)3x-3x+3x-1=(x-3+3-1)dx 例8 ⎰dx=⎰⎰22xx2xx=⎰xdx-3⎰dx+3⎰1dx-⎰1=1x2-3x+3ln|x|+1+C. x2xx高等数学课程建设组4高等数学教案第四章不定积分例9 ⎰(ex-3cosx)dx=⎰exdx-3⎰cosxdx=ex-3sinx+C. 例10 ⎰2xexdx=⎰(2e)xdx=xx(2e)x+C=2e+C. ln(2e)1+ln22x+(1+x2)1+x+x 例11 ⎰=⎰=⎰(12+1)dx 22x(1+x)x(1+x)1+xx=⎰12dx+⎰1dx=arctanx+ln|x|+C. x1+x44(x2+1)(x2-1)+1xx-1+1 例12 ⎰=⎰=⎰dx 1+x21+x21+x2=⎰(x2-1+1dx=⎰x2dx-⎰dx+⎰11+x1+x=1x3-x+arctanx+C. 3例13 ⎰tan2xdx=⎰(sec2x-1)dx=⎰sec2xdx-⎰dx= tan x - x + C .例14 ⎰sin2x dx=⎰1-cosxdx=1⎰(1-cosx)dx 222=例15 1(x-sinx)+C. 2⎰1=4⎰12=-4cotx+C. sinxsin2cos222高等数学课程建设组5高等数学教案第四章不定积分 §4. 2 换元积分法一、第一类换元法设f(u)有原函数F(u), u=ϕ(x), 且ϕ(x)可微, 那么, 根据复合函数微分法, 有d F[ϕ(x) ]=d F(u)=F '(u)d u= F' [ϕ(x) ] dϕ(x)= F '[ϕ(x) ]ϕ'(x)d x ,所以 F '[ϕ(x)]ϕ'(x)dx= F '[ϕ(x)] dϕ(x)= F '(u)d u= d F(u)=d F[ϕ(x) ],因此⎰F'[ϕ(x)]ϕ'(x)dx=⎰F'[ϕ(x)]dϕ(x)=⎰F'(u)du=⎰dF(u)=⎰dF[ϕ(x)]=F[ϕ(x)]+C.即⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)=[⎰f(u)du]u=ϕ(x)=[F(u) +C] u = ϕ(x) = F[ϕ(x)]+C.定理1 设f(u)具有原函数, u=ϕ(x)可导, 则有换元公式⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)=⎰f(u)du=F(u)+C=F[ϕ(x)]+C .被积表达式中的dx 可当作变量x的微分来对待, 从而微分等式ϕ'(x)dx =du可以应用到被积表达式中.在求积分⎰g(x)dx时, 如果函数g(x)可以化为g(x)= f[ϕ(x)]ϕ'(x)的形式, 那么⎰g(x)dx=⎰f[ϕ(x)]ϕ'(x)dx=[⎰f(u)du]u=ϕ(x).例1. ⎰2cos2xdx=⎰cos2x⋅(2x)'dx=⎰cos2xd(2x)=⎰cosudu=sinu+C=sin 2x+C .例2. ⎰3+2x=2⎰3+2x(3+2x)'dx=2⎰3+2xd(3+2x) 11111=1⎰1dx=1ln|u|+C=1ln|3+2x|+C. 2u22例3. ⎰2xexdx=⎰ex(x2)'dx=⎰exd(x2)=⎰eudu=eu+C=ex+C.例4. ⎰x-x2dx=1⎰-x2(x2)'dx=1⎰-x2dx2 22=-1⎰-x2d(1-x2)=-1⎰u2du=-1u2+C 223=-1(1-x2)2+C. 3高等数学课程建设组6 3132222高等数学教案第四章不定积分例5. ⎰tanxdx=⎰sinxdx=-⎰1dcosx cosxcosx =-⎰1du=-ln|u|+C u=-ln|cos x|+C .=-ln|coxs|+C. 即⎰tanxdx类似地可得⎰cotxdx=ln|sinx|+C.熟练之后, 变量代换就不必再写出了.例6. ⎰a+xdx=a⎰111dx1+(2a=1⎰1x=1arctanx+C. a1+()2aaaa即 n+C. ⎰a2+x2=aarcta11x例7. ⎰chx=a⎰chxx=a shx+C. aaaa例8. 当a>0时,1=111xdx=⎰dx=arcs+C. ⎰aaaxxa2-x222-(-(aa⎰即⎰1=arcsx+C. 22a-x例9. ⎰x2-a2dx=2a⎰x-a-x+a)dx=2a[⎰x-adx-⎰x+adx] 1111111=1[⎰1d(x-a)-⎰1(x+a)] 2ax-ax+a=1[ln|x-a|-ln|x+a|]+C=1ln|x-a|+C. 2a2ax+a即⎰x-a=2aln|x+a|+C.⎰x(1+2lnx)=⎰1+2lnx=2⎰dxdlnx1d(1+2lnx) 1+2lnx11x-a 例10.=1ln|1+2lnx|+C. 2高等数学课程建设组7高等数学教案第四章不定积分例11. ⎰e=2⎰ed=2⎰e3xdx 3x=2e+C. 3含三角函数的积分:例12. ⎰sin3xdx=⎰sin2x⋅sinxdx=-⎰(1-cos2x)dcosx=-⎰dcosx+⎰cos2xdcosx=-cosx+1cos3x+C. 3例13. ⎰sin2xcos5xdx=⎰sin2xcos4xdsinx=⎰sin2x(1-sin2x)2dsinx=⎰(sin2x-2sin4x+sin6x)dsinx=1sin3x-2sin5x+1sin7x+C. 357例14. ⎰cos2xdx=⎰1+cos2xdx=1(⎰dx+⎰cos2xdx) 22=1⎰dx+1⎰cos2xd2x=1x+1sin2x+C. 2424例15. ⎰cos4xdx=⎰(cos2x)2dx=⎰[1(1+cos2x)]2dx 2=1⎰(1+2cos2x+cos22x)dx 4=1⎰3+2cos2x+1cos4x)dx 422=1(3x+sin2x+1sin4x)+C 428=3x+1sin2x+1sin4x+C. 8432例16. ⎰cos3xcos2xdx=1⎰(cosx+cos5x)dx 2=1sinx+1sin5x+C. 2101dx 例17. ⎰cscxdx=⎰1dx=⎰sinx2sincos22高等数学课程建设组8高等数学教案第四章不定积分dxdtanx=ln|tanx|+C=ln |csc x -cot x |+C . =⎰=⎰2tancos2tan222xdx 即⎰csc=ln |csc x -cot x |+C .例18. ⎰secxdx=⎰csc(x+πdx=ln|csc(x+ π)-cot(x+ π)|+C 222=ln |sec x + tan x | + C.xdx 即⎰sec=ln |sec x + tan x | + C.二、第二类换元法定理2 设x =ϕ(t)是单调的、可导的函数, 并且ϕ'(t)≠0. 又设f [ϕ(t)]ϕ'(t)具有原函数F(t), 则有换元公式⎰f(x)dx=⎰f[ϕ(t)]ϕ'(t)dt=F(t)=F[ϕ-1(x)]+C.其中t=ϕ-1(x)是x=ϕ(t)的反函数.这是因为{F[ϕ-1(x)]}'=F'(t)dt=f[ϕ(t)]ϕ'(t)1=f[ϕ(t)]=f(x). dxdt例19. 求⎰2-x2dx(a>0).解: 设x=a sin t , - π<t< π, 那么a2-x2=2-a2sin2t=acost, 22dx =a cos t d t , 于是⎰a2-x2dx=⎰acost⋅acostdt=a2⎰cos2tdt=a21t+1sin2t)+C. 24因为t=arcsin22x, sin2t=2sintcost=2x⋅a-x, 所以 aaa⎰2a11a-xdx=a(t+sin2t)+C=arcsinx+1xa2-x2+C. 2a224222解: 设x=a sin t , - π<t< π, 那么 22高等数学课程建设组9高等数学教案第四章不定积分⎰a2-x2dx=⎰acost⋅acostdt2 =a2⎰cos2tdt=a21t+1sin2t)+C=aarcsinx+1xa2-x2+C. 2a224提示:2-x2=a2-a2sin2t=acost, dx=acos tdt .22提示: t=arcsinx, sin2t=2sintcost=2x⋅-x. aaa例20. 求⎰dx(a>0). x2+a2解法一: 设x=a tan t, - π<t< π, 那么 22x2+a2=2+a2tan2t=a+tan2t=a sec t , dx=a sec 2t d t , 于是⎰2dxasect=sectdt= ln |sec t + tan t |+C . =⎰⎰asectx2+a222因为sect=x+a, tant=x, 所以 aa⎰dx= ln |sec t + tan t |+C=ln(x+x2+a2)+C=ln(x+x2+a2)+C, 1aax2+a2其中C 1=C-ln a .解法一: 设x=a tan t, - π<t< π, 那么 22⎰dx=asec2tdt=sectdt=ln|sect+tant|+C ⎰asect⎰x2+a222xx+a =+)+C=ln(x+x2+a2)+C1, aa其中C 1=C-ln a .提示:x2+a2=2+a2tan2t=asect , dx=a sec 2t dt ,22提示:sect=x+a, tant=x. aa解法二: 设x=a sh t , 那么高等数学课程建设组10高等数学教案第四章不定积分⎰dx=⎰ach t=⎰dt=t+C=arshx+C ach tax2+a2 ⎛⎫ =ln x+(x)2+1⎪+C=ln(x+x2+a2)+C1, a⎝a⎭其中C 1=C-ln a .提示: x2+a2=2sh2t+a2=a ch t , dx =a ch t d t .例23. 求⎰dx(a>0). x2-a2解: 当x>a 时, 设x=a sec t (0<t< π), 那么 2x2-a2=a2sec2t-a2=a2t-1=a tan t ,于是⎰dx=⎰asecttant=⎰sectdt= ln |sec t + tan t |+C . atantx2-a222因为tant=x-a, sect=x, 所以 aa⎰dx= ln |sec t + tan t |+C =ln|x+x2-a2|+C=ln(x+x2-a2)+C, 1aax2-a2其中C 1=C-ln a .当x<a 时, 令x=-u , 则u>a, 于是⎰dx=-⎰du=-ln(u+2-a2)+C x2-a22-a2=-ln(-x+x2-a2)+C=ln(-x-x2-a2)+C1,22-x-x-a=ln+C=ln(-x-x2-a2)+C1, a其中C 1=C-2ln a .综合起来有⎰dx=ln|x+x2-a2|+C. x2-a2解: 当x>a 时, 设x=a sec t (0<t< π), 那么 2高等数学课程建设组11高等数学教案第四章不定积分⎰dx =⎰asecttant=⎰sectdt22atantx-a22 =ln|sect+tatn|+C=lnx+x-a)+C aa(+x2-a2)+C, =lnx其中C 1=C-ln a .当x<-a 时, 令x=-u , 则u>a, 于是⎰dx=-⎰du=-ln(u+2-a2)+C x2-a22-a22222-x-x-a =-ln(-x+x-a)+C=ln+C a =ln(-x-x2-a2)+C1,其中C 1=C-2ln a .提示:x2-a2=2sec2t-a2=a2t-1=atant .22x-a提示:tant=, sect=x. aa综合起来有⎰dx=ln|x+x2-a2|+C. x2-a2补充公式:(16)⎰tanxdx=-ln|cosx|+C,(17)⎰cotxdx=ln|sinx|+C,(18)⎰secxdx=ln|secx+tanx|+C,(19)⎰cscxdx=ln|cscx-cotx|+C, (20)⎰(21)⎰(22)⎰(23)⎰1=1x+C, aaa+x221=1ln|x-a|+C,2ax+ax-a1=arcsinx+C, aa2-x2 dx=ln(x+x2+a2)+C, x2+a2高等数学课程建设组12高等数学教案第四章不定积分(24)⎰dx=ln|x+x2-a2|+C. x2-a2§4. 3 分部积分法设函数u=u(x)及v=v(x)具有连续导数. 那么, 两个函数乘积的导数公式为(uv)'=u'v+uv',移项得 uv'=(uv)'-u'v.对这个等式两边求不定积分, 得⎰uv'dx=uv-⎰u'vdx, 或⎰udv=uv-⎰vdu,这个公式称为分部积分公式.分部积分过程:⎰uv'dx=⎰udv=uv-⎰vdu=uv-⎰u'vdx= ⋅⋅⋅.例1 ⎰xcosxdx=⎰xdsinx=xsinx-⎰sinxdx=x sin x-cos x+C .例2 ⎰xexdx=⎰xdex=xex-⎰exdx=xex-ex+C.例3 ⎰x2exdx=⎰x2dex=x2ex-⎰exdx2=x2ex-2⎰xexdx=x2ex-2⎰xdex=x2ex-2xex+2⎰exdx=x2ex-2xex+2ex+C =ex(x2-2x+2 )+C.例4 ⎰xlnxdx=1⎰lnxdx2=1x2lnx-1⎰x2⋅1dx 222x=1x2lnx-1⎰xdx=1x2lnx-1x2+C. 2224例5 ⎰arccosxdx=xarccosx-⎰xdarccosx=xarccosx+⎰x1 -x21- =xarccosx-1⎰(1-x2)d(1-x2)=xarccosx--x2+C. 2例6 ⎰xarctanxdx=1⎰arctanxdx2=1x2arctanx-1⎰x2⋅1dx 2221+x=1x2arctanx-1⎰(1-1dx 221+x高等数学课程建设组13高等数学教案第四章不定积分 =1x2arctanx-1x+1arctanx+C. 222例7 求⎰exsinxdx.解因为⎰exsinxdx=⎰sinxdex=exsinx-⎰exdsinx=exsinx-⎰excosxdx=exsinx-⎰cosxdex=exsinx-excosx+⎰exdcosx=exsinx-excosx+⎰exdcosx=exsinx-excosx-⎰exsinxdx,所以⎰exsinxdx=1ex(sinx-cosx)+C. 2例8 求⎰sec3xdx.解因为⎰sec3xdx=⎰secx⋅sec2xdx=⎰secxdtanx=secxtanx-⎰secxtan2xdx=secxtanx-⎰secx(sec2x-1)dx=secxtanx-⎰sec3xdx+⎰secxdx=secxtanx+ln|secx+tanx|-⎰sec3xdx,cxdx=1(secxtanx+ln|secx+tanx|)+C. 所以⎰se32例9 求In=⎰dx, 其中n为正整数. (x+a) 解 I1=⎰2dx2=1x+C; ax+aa当n>1时,用分部积分法, 有2dxxx ⎰=+2(n-1)⎰ (x+a)(x+a)(x+a)高等数学课程建设组14高等数学教案第四章不定积分 =x1a2dx, +2(n-1)[-⎰(x+a)(x+a)(x+a)x+2(n-1)(In-1-a2In), 22n-1(x+a)即 In-1=于是 In=1[x+(2n-3)In-1]. 2a(n-1)(x+a)以此作为递推公式, 并由I1=例10 求⎰edx. 1xarctan+C即可得In. aa解令x =t 2 , 则 , dx=2tdt. 于⎰edx=2⎰tetdt=2et(t-1)+C=2e(x-1)+C.⎰edx=⎰ed(x)2=2⎰xed=2⎰xdex=2xex-2⎰exdx=2xe-2e+C=2e(x-1)+C.第一换元法与分部积分法的比较:共同点是第一步都是凑微分⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)令ϕ(x)=u⎰f(u)du,⎰u(x)v'(x)dx=⎰u(x)dv(x) =u(x)v(x)-⎰v(x)du(x).哪些积分可以用分部积分法?⎰xcosxdx, ⎰xexdx, ⎰x2exdx;⎰xlnxdx, ⎰arccosxdx, ⎰xarctanxdx;⎰exsinxdx, ⎰sec3xdx.⎰2xexdx=⎰exdx2=⎰eudu= ⋅⋅⋅ ,⎰x2exdx=⎰x2dex=x2ex-⎰exdx2= ⋅⋅⋅ .高等数学课程建设组15 22高等数学教案第四章不定积分 §4. 4 几种特殊类型函数的积分一、有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数:P(x)a0xn+a1xn-1+⋅⋅⋅+an-1x+an , =Q(x)b0xm+b1xm-1+⋅⋅⋅+bm-1x+bm其中m和n都是非负整数; a0, a1, a2, ⋅⋅⋅ , an及b0, b1, b2, ⋅⋅⋅ , bm都是实数, 并且a0≠0, b0≠0. 当n<m时, 称这有理函数是真分式; 而当n≥m时, 称这有理函数是假分式.假分式总可以化成一个多项式与一个真分式之和的形式. 例如x3+x+1=x(x2+1)+1=x+1. x2+1x2+1x2+1真分式的不定积分:求真分式的不定积分时, 如果分母可因式分解, 则先因式分解, 然后化成部分分式再积分. 例1 求⎰解 x+3dx. x2-5x+6x+3⎰x-5x+6dx=⎰(x-2)(x-3)dx=⎰(x-3-x-2)dx x+365=⎰6dx-⎰5dx=6ln|x-3|-5ln|x-2|+C. x-3x-2提示: (A+B)x+(-2A-3B)x+3, =A+B=(x-2)(x-3)x-3x-2(x-2)(x-3)A+B=1, -3A-2B=3, A=6, B=-5.分母是二次质因式的真分式的不定积分:例2 求⎰解 x-2dx. x+2x+32⎰x2+2x+3dx=⎰2x2+2x+3-3x2+2x+3)dx x-212x+21=1⎰22x+2-3⎰21 2x+2x+3x+2x+3d(x2+2x+3)d(x+1)1 =⎰2 -3⎰2x+2x+3(x+1)2+()2=1ln(x2+2x+3)-3arctanx+1+C. 21(2x+2)-3x-2=1⋅x-2-3⋅1=提示: .x+2x+3x+2x+32x+2x+3x+2x+3例3 求⎰1dx. x(x-1)2高等数学课程建设组16高等数学教案第四章不定积分解⎰x(x-1)2dx=⎰[x-x-1+(x-1)2dx 1111=⎰1dx-⎰1dx+⎰12dx=ln|x|-ln|x-1|-1+C. xx-1x-1(x-1)提示: 1=1-x+x=-1+1 x(x-1)(x-1)2x(x-1)2x(x-1)2=-1-x+x+12=1-1+12. x(x-1)(x-1)xx-1(x-1)二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数, 其特点是分子分母都包含三角函数的和差和乘积运算. 由于各种三角函数都可以用sin x 及cos x 的有理式表示, 故三角函数有理式也就是sin x 、cos x 的有理式.用于三角函数有理式积分的变换:把sin x、cos x表成tanx的函数, 然后作变换u=tanx: 222tanx2tanx==2u, sinx=2sinxcosx=22sec21+tan21+u2221-tan2x=1-u2. cosx=cos2x-sin2x=22sec21+u2变换后原积分变成了有理函数的积分.例4 求⎰1+sinxdx. sinx(1+cosx)2x2u2du. 1-u 解令u=tan, 则sinx=, cosx=, x=2arctan u , dx=2221+u1+u1+u2(1+2u)2du=1(u+2+1)du 于是⎰1+sinxdx=⎰sinx(1+cosx)2⎰u2u(1+1-u1+u1+u1+u21u=(+2u+ln|u|)+C=1tan2x+tanx+1ln|tanx|+C. 2242222解令u=tanx, 则 2高等数学课程建设组17高等数学教案第四章不定积分(1+2u2 ⎰1+sinxdx=⎰⋅22du 2sinx(1+cosx)2u(1+1-u1+u1+u21+u22 =1u+2u+ln|u|)+C=1⎰(u+2+1du 222u=1tan2x+tanx+1ln|tanx|+C. 42222说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如, 三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去.例5 求⎰x-1dx. x解设x-1=u, 即x=u2+1, 则⎰1+sinxdx=⎰1+sinxd(1+sinx)=ln(1+sinx)+C. cosx1⎰x-1dx=u⋅2udu=2u2⎰u2+1⎰u2+1x=2⎰(1-1)du=2(u-arctanu)+C 1+u=2(x-1-arctanx-1)+C.例6 求⎰dx. 1+x+2 解设x+2=u. 即x=u3-2, 则dx=1⋅3u2du=3u2-1+1du ⎰1++2⎰1+u⎰1+u2 =3⎰(u-1+1du=3(u-u+ln|1+u|)+C 1+u2=3x+2)2-x+2+ln|1+x+2|+C. 2例7 求⎰dx. (1+x)x 解设x=t 6, 于是dx =6t 5d t , 从而高等数学课程建设组18高等数学教案第四章不定积分 dx6t5dt=6t2=6(1-1)dt=6(t-arctant)+C=⎰(1+x)x⎰(1+t2)t3⎰1+t2⎰1+t2=6(x-arctanx)+C.例8 求⎰1+xdx. xx解设+x=t, 即x=21, 于是 xt-1-2t ⎰1+xdx=⎰(t2-1)t⋅xx(t-1)2 =-2⎰tdt=-2⎰(1+1)dt t-1t-1=-2t-ln|t-1|+C t+1=-2+x-ln+x-x+C. x+x+练习1. 求⎰dx. 2+cosx1-t2x2 解: 作变换t=tan, 则有dx=, x=dt, cos1+t221+t22dt221tdx1=⎰1+t2=2⎰⎰ =ddt⎰2t1-t2+cosx3+t31+()22+1+t23=2arctant3+C=231xtan)+C. 232. 求⎰sin5xdx. 4cosx4(1-co2sx)2sin5xsinx 解: ⎰dx=-⎰dcosx=-⎰dcosx cos4xco4sxco4sx21 =-⎰(1-+)dcosx cos2xcos4x=-cosx-3. 求⎰3x+1dx. x2-3x+221++C. 3cosx3cosx高等数学课程建设组19高等数学教案第四章不定积分解: ⎰3x+13x+174=dxdx=(-⎰(x-2)(x-1)⎰x-2x-1)dx x2-3x+211dx-4⎰dx x-2x-1=7ln|x-2|-4ln|x-1|+C.§4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂. 为了实用的方便, 往往把常用的积分公式汇集成表, 这种表叫做积分表. 求积分时, 可根据被积函数的类型直接地或经过简单变形后, 在表内查得所需的结果.积分表一、含有ax+b的积分 =7⎰1.⎰dx=1ln|ax+b|+C ax+ba2.⎰(ax+b)μdx=3.⎰1(ax+b)μ+1+C(μ≠-1) a(μ+1)xdx=1(ax+b-bln|ax+b|)+C ax+ba224.⎰xdx=13[1(ax+b)2-2b(ax+b)+b2ln|ax+b|]+C ax+ba25.⎰6.⎰7.⎰8.⎰9.⎰dx=-1lnax+b+C x(ax+b)bxdx1+alnax+b+C =-x2(ax+b)bxb2xx1(ln|ax+b|+b)+C dx=(ax+b)2a2ax+bx2dx=1ax+b-2bln|ax+b|-b2)+C (ax+b)2a3ax+bdx11lnax+b+C =-x(ax+b)2b(ax+b)b2xxdx. (3x+4)2例1求⎰解: 这是含有3x+4的积分, 在积分表中查得公式x1b⎰(ax+b)2dx=a2(ln|ax+b|+ax+b)+C.高等数学课程建设组20高等数学教案第四章不定积分现在a=3、b=4, 于是x14⎰(3x+4)2dx=9ln|3x+4|+3x+4)+C. 二、含有+b的积分1.⎰ax+bdx=2ax+b)3+C 3a2.⎰x+bdx=22(3ax-2b)ax+b)3+C 15a3.⎰x2+bdx=4.⎰5.⎰2(15a2x2-12abx+8b2)ax+b)3+C 105a3xdx=2(ax-2b)+b+C 3a2+bx2dx=2(3a2x2-4abx+8b2)+b+C 15a3+b1ln+b-+C (b>0)ax+b+ 2arctanax+b+C (b<0)-b-b⎧⎪6.⎰dx=⎨x+b⎪⎩7.⎰dx=-+b-a⎰dx bx2bx+bx2+b8.⎰+bdx=+b+b⎰dx xx+b9.⎰2+bdx=-+b+a⎰dx xx2x+b三、含x2±a2的积分1.⎰2.⎰3.⎰x2+a2dx=1arctanx+C aadxx2n-3dx =+⎰(x2+a2)n2(n-1)a2(x2+a2)n-12(n-1)a2(x2+a2)n-1dx=1lnx-a+C x2-a22ax+aax+C (b>0)b x-b+C (b<0)x+b四、含有ax2+b(a>0)的积分⎧1arctandx=⎪1.⎰2⎨ax+b⎪1ln⎩2ab2.⎰xdx=1ln|ax2+b|+C ax2+b2a高等数学课程建设组21高等数学教案第四章不定积分 3.⎰4.⎰5.⎰6.⎰7.⎰x2dx=x-bdx ⎰2ax+baaax2+bdx1lnx2+C =x(ax2+b)2b|ax2+b|dxx2(ax2+b)1dx =-1-a⎰2bxbax+bdxaln|ax2+b|-1+C =x3(ax2+b)2b2x22bx2dx=x11dx+⎰(ax2+b)22b(ax2+b)2bax2+b五、含有ax2+bx+c (a>0)的积分六、含有x2+a2 (a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰7.⎰8.⎰dx=arshx+C=ln(x+x2+a2)+C a1x2+a2dxx+C x2+a2)3a2x2+a2x=x2+a2+Cx2+a2x1dx=-+C x2+a2)3x2+a2x2=xx2+a2-a2ln(x+x2+a2)+C 22x2+a2x2xdx=-+ln(x+x2+a2)+C 22322x+a)x+a22dx=1lnx+a-a+C |x|xx2+a2ax22+a2dx=-x2+C ax2+a2 9.⎰x2+a2dx=xx2+a2+aln(x+x2+a2)+C 222例3求⎰dx. xx2+9dxdx=1⎰, xx2+92xx2+(322解: 因为⎰所以这是含有x2+a2的积分, 这里a=3. 在积分表中查得公式 2高等数学课程建设组22高等数学教案第四章不定积分 dx1ln2+a2-a+C. =⎰xx2+a2a|x|x2+(3)2-3dx+C=1lnx2+9-3+C. 于是⎰=1⋅2ln|x|32|x|xx2+923七、含有x2-a2(a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰7.⎰8.⎰dx=xarch|x|+C=ln|x+x2-a2|+C 1ax2-a2|x|dxx=-+C x2-a2)3a2x2-a2xdx=x2-a2+C 22x-ax1dx=-+C x2-a2)3x2-a2x2dx=xx2-a2+a2ln|x+2-a2|+C 22x2-a2x2xdx=-+ln|x+x2-a2|+C x2-a2)3x2-a2dx=1arccosa+C |x|xx2-a2ax222dx=x2-a+C ax2-a29.⎰2-a2dx=xx2-a2-aln|x+x2-a2|+C 222八、含有2-x2(a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰dx=arcsinx+C a2-x2dxx=-+C a2-x2)3a22-x2xdx=2-x2+C 22-xx1dx=+C a2-x2)32-x2x2dx=-x2-x2+a2arcsinx+C 22a2-x2x2xdx=-arcsinx+C aa2-x2)32-x2高等数学课程建设组23高等数学教案第四章不定积分 7.⎰8.⎰22dx=1lna--x+C |x|x2-x2ax222dx=-2-x+C ax2-x229.⎰a2-x2dx=x2-x2-aarcsinx+C 22a九、含有ax2+bx+c(a>0)的积分十、含有±x-a或x-a)(x-b)的积分 x-b十一、含有三角函数的积分1.⎰secxdx=ln|secx+tanx|+C2.⎰cscxdx=ln|cscx-cotx|+C3.⎰secxtanxdx=secx+C4.⎰cscxcotxdx=-cscx+C5.⎰sin2xdx=x-1sin2x+C 246.⎰cos2xdx=x+1sin2x+C 247.⎰sinnxdx=-1sinn-1xcosx+n-1⎰sinn-2xdx nn8.⎰cosnxdx=1cosn-1xsinx+n-1⎰cosn-2xdx nn9.⎰sinaxcosbxdx=-1cos(a+b)x-1cos(a-b)x+C 2(a+b)2(a-b)1sin(a+b)x+1sin(a-b)x+C 2(a+b)2(a-b)10.⎰sinaxsinbxdx=-11.⎰cosaxcosbxdx=1sin(a+b)x+1sin(a-b)x+C 2(a+b)2(a-b)atanx+bdx2=arctan+C (a2>b2) 12.⎰2222a+bsinxa-b-b高等数学课程建设组24高等数学教案第四章不定积分atanx+b-2-a2dx=213.⎰ln+C (a2<b2) a+bsinx2-a2atan+b+2-a2214.⎰dxa+barctan(a-btanx)+C (a2>b2) =2a+bcosxa+ba-ba+b2a+b+C (a2<b2) a+bb-atanx+dxa+bln14.⎰=2a+bcosxa+bb-atanx-2例2求⎰dx. 5-4cosxdx2a+barct(a-btax)+C (a2>b2). a-ba+b25+(-4)5-(-4)x)+C arct(ta5-(-4)5+(-4)2解: 这是含三角函数的积分. 在积分表中查得公式 =⎰a+bcoxsa+bdx2这里a=5、b=-4, a 2>b2, 于是 =⎰5-4coxs5+(-4)=2arctan(3tanx)+C. 32例4 求⎰sin4xdx.解: 这是含三角函数的积分. 在积分表中查得公式⎰sinnxdx=-1sinn-1xcosx+n-1⎰sinn-2xdx, ⎰sin2xdx=x-1sin2x+C. nn24这里n=4, 于是⎰sin4xdx=-1sin3xcosx+3⎰sin2xdx=-1sin3xcosx+3x-1sin2x)+C. 444424高等数学课程建设组25。

47 原函数与不定积分的教案

47 原函数与不定积分的教案
二、不定积分概念
定义如果 是 的一个原函数,那么 的全体原函数F(x)+C(C为任意常数)叫做 的不定积分,记作 ,即
其中,符号 称为积分号,f(x)称为被积函数,f(x)dx称为被积表达式,x称为积分变量,C称为积分数
根据定义可知,求不定积分的中心问题就是寻求被积函数f(x)的原函数.
显然,路程函数 ,
授课内容
第一节原函数与不定积分
教学方法
及教学工具
讲授法
授课日期
授课节次
授课地点
教学过程、教学内容(含板书设计)
一、原函数的概念
定义设 为定义在某个区间上的函数,若存在函数 ,使其在该区间上的任一点,都有

则称函数 是已知函数 在该区间上的一个原函数.
一般地,如果 是 的一个原函数,那么 就是 的全部原函数(称为原函数族).
不定积分 是一族函数,它对应的
图形是一族积分曲线,称它为积分曲线族。
积分曲线族的特点是:
(1)积分曲线族中的任意一条曲线都可由其中一条上
下平移得到;
(2)横坐标相同的点处,每条积分曲线的切线相互平
行,切线的斜率都等于 .如图所示.
例2已知曲线上任意点处的切线斜率等于其横坐标平方的3倍,且曲线通过点(1,3),求此曲线的方程.
作业
记忆积分公式
课后小结
重点、难点:
教学重点:教学难点:
1.原函数的概念与性质;1.原函数的性质;
2.不定积分的概念和性质;2.不定积分的性质.
解决方法:
例1用微分法验证下列各等式
(1) (2)
三、不定积分的性质
由不定积分的定义可以直接推出下面的性质:
性质1
性质2 或
显然,积分法与微分法互为逆运算,由性质可知对函数先积分后微分,则两者的作用互相抵消;对函数先微分后积分,则应在抵消后加上任意常数C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、原函数的概念
五、不定积分的概念
六、不定积分的应用简介
展示结束, 谢谢!
导数:函数的平均变化率的极限
微分:德尔塔X的线性倍数,即德尔塔Y的主要部分
不定积分概念是由牛顿和莱布尼兹针对黎曼所提出的定积分概 念而提出的,二者尽管只有一字之差,并且在运算的方法上也无 较大差异,却在含义上有本质的差别。今天,我们主要学习的是 不定积分,至于积分的内容,我们将在以后深入学习。
定积分的定义的解法
1.5.1原函数与不定积分 的概念
内容提要:
一、不定积分的引入
在前面的学习过程中,我们已经基本了解了有关导数和微分的 相关知识,初步的感受了高等数学和初等数学的不同,今天,我 们将学习一个全新的内容-------不定积分
正如加法与减法,乘法与除法互为逆运算,微分与积分也互为 逆运算。在此,作为比较我们先回顾一下导数和微分的定义:
(3)求和
21dx
1x
Sn
n i 1
f
1
i
n
1
x
n
1
1
i 1 1
i
1
n
n
n
1
i1 n i 1
Hale Waihona Puke 1nn1
1
n
1
2
1
2n 1
微积分基本原理的解法

因为 ln x '
1
x
,
所以 2 1dx
1x
ln x|12ln 2 ln 1 ln 2.
由此我们可以看出,不定积分对于定积分求解的重要作用, 这也是我们为什么要学习不定积分的原因。
相关文档
最新文档