高一数学必修一 第一章综合 教学课件PPT

合集下载

高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)

高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)
说出由我们班的同学组成的集合是由哪些元素组成?
表示方法:
一般采用大写英文字母A,B,C,…表示集合 小写英文字母a,b,c,… 表示集合的元素.
高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)【精品】
高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)【精品】 高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)【精品】
实数通常就是包含所有有理数和无
自然数集与非负理数整的数集集合 是相同的, 也就是说,自然数集包括数 0.
高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)【精品】
例1:2019年9月,我们踏入了心仪的高中校园,找到了自己的班
级.则下列对象中能构成一个集合的是哪些?并说明你的理由.
高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)【精品】 高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)【精品】
例2:用符号“”或“”填空: (1)1___N, 0___N, -4___N, 0.3___N; (2)1___Z, 0___Z, -4___Z, 0.3___Z; (3)1___Q, 0___Q, -4___Q, 0.3___Q; (4)1___R, 0___R, -4___R, 0.3___R.
(5)班级中体重超过75 kg的同学;“体重超过75 kg”是确定的,所以可以构成一个集合.
(6)学习成绩比较好的同学
高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)【精品】
“学习成绩比较好”无法衡量,所以对象不确定,所以不能构 成一个集合
高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)【精品】 高一数学【人教A版必修】1第一章1.1 集合的概念课件(共15张ppt)【精品】

高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时PPT课件

高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时PPT课件
方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方 形”组成的集合等等.
3.元素与集合的关系
“属于”和“不属于”分别用“∈”和“”表示.
-5-
4.集合元素的性质 (1)确定性:即任给一个元素和一个集合,那么这 个元素和这个集合的关系只有两种:这个元素要么属 于这个集合,要么不属于这个集合 (2)互异性:一个给定集合的元素是互不相同的, 即集合中的元素是不重复出现的 (3)无序性:集合中的元素是没有顺序的 (4)集合相等:如果两个集合中的元素完全相同 ,那么这两个集合是相等的.
解 : (1) 设 小 于 10 的 所 有 自 然 数 组 成 的 集 合 为 A, 那 么 A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}. (3) 设 由 1~20 以 内 的 所 有 质 数 组 成 的 集 合 为 C, 那 么 C={2,3,5,7,11,13,17给对象不能构成集合的是( ) A.一个平面内的所有点 B.所有大于零的正数 C.某校高一(4)班的高个子学生 D.某一天到商场买过货物的顾客
答案:C
-11-
2.用另一种形式表示下列集合: (1){绝对值不大于3的整数}; (2){所有被3整除的数}; (3){x|x=|x|,x∈Z且x<5}; (4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}; (5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.
-12-
3.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的 取值范围.
解:当 a=0 时,原方程为-3x+2=0 x= 2 ,符合题意; 3

高中必修一数学第一章集合间的基本关系ppt课件-人教版

高中必修一数学第一章集合间的基本关系ppt课件-人教版
高中数学
[导入新知] 子集的概念
任意一个
包含
A⊆B B⊇A
高中数学
⊆ ⊆
高中数学
[化解疑难] 对子集概念的理解
(1)集合 A 是集合 B 的子集的含义是:集合 A 中的 个元素都是集合 B 中的元素,即由 x∈A 能推出 x∈B.例 ⊆{-1,0,1},则 0∈{0,1},0∈{-1,0,1}.
(2)若两集合相等,则两集合所含元素完全相同,与 列顺序无关.
高中数学
真子集 [提出问题] 给出下列集合: A={a,b,c},B={a,b,c,d,e}. 问题1:集合A与集合B有什么关系? 提示:A⊆B. 问题2:集合B中的元素与集合A有什么关系? 提示:集合B中的元素a,b,c都在A中,但元素d,e不
高中数学
[导入新知] 集合相等的概念
如果集合 A 是集合 B 的 子集 (A⊆B),且集合 B A 的 子集 (B⊆A),此时,集合 A 与集合 B 中的元素 的,因此,集合 A 与集合 B 相等,记作 A=B .
高中数学
[化解疑难] 对两集合相等的认识
(1)若 A⊆B,又 B⊆A,则 A=B;反之,如果 A= ⊆B,且 B⊆A.这就给出了证明两个集合相等的方法,即 =B,只需证 A⊆B 与 B⊆A 同时成立即可.
(2)若 A 不是 B 的子集,则 A 一定不是 B 的真子集
高中数学
空集 [提出问题] 一个月有32天的月份组成集合T. 问题1:含有32天的月份存在吗? 提示:不存在. 问题2:集合T存在吗?是什么集合? 提示:存在,是空集.
高中数学
[导入新知]
空集的概念
定义 我们把 不含任何元素 的集合,叫做空
1 理解教 材新知
1.1.2

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集

Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.

高中数学必修一全册课件人教版(共99张PPT)

高中数学必修一全册课件人教版(共99张PPT)
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5

2

3

5

6

7

8

二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};

高中数学必修一必修1全章节ppt课件幻灯片

高中数学必修一必修1全章节ppt课件幻灯片
2020/12/3
4.元素与集合的关系
aA aA
2020/12/3
判断:(正确的打“√”,错误的打“×”) (1)在一个集合中可以找到两个相同的元素.( ) (2)漂亮的花组成集合.( ) (3)本班所有的姓氏组成集合.( ) (4)由3个不同的元素进行排序可以构成6个不同的集合.( )
2020/12/3
符号
__N_
__N_*_或__N_+_ _Z_
_Q_
_R_
2020/12/3
思考:N与N+(或N*)有何区别? 提示:N+是所有正整数组成的集合,而N是由0和所有的正整 数组成的集合,所以N比N+(或N*)多一个元素0.
2020/12/3
【知识点拨】 1.对集合相关概念的理解 (1)集合的含义:集合是数学中不加定义的原始概念,我们只 对它进行描述性说明,其本质是某些确定元素组成的总体. (2)元素:集合中的“元素”所指的范围非常广泛,现实生活 中我们看到的、听到的、所触摸到的、所能想到的各种各样 的事物或一些抽象符号等,都可以看作集合的元素.
2020/12/3
类型 二 元素和集合的关系 【典型例题】 1.(2013·临沂高一检测)下列所给关系中正确的个数是( ) ①π∈R;② 3 ∉Q;③0∈N*;④|-4|∉N*. A.1 B.2 C.3 D.4 2.设直线y=2x+3上的点集为P,点(2,7)与点集P的关系为 (2,7)_________P(填“∈”或“∉”).
2020/12/3
【变式训练】1.下列对象能组成集合的是( ) A.充分小的负数全体 B.爱好音乐的一些人 C.某班本学期视力较差的同学 D.某校某班某一天所有课程 【解析】选D.A,B,C的对象不确定,唯有D某校某班某一 天所有课程是确定的,故能形成集合的是D.

高一数学必修一第一章课堂ppt课件.ppt

高一数学必修一第一章课堂ppt课件.ppt
如果函数y=f(x)在区间[a,b]上单调递减,在区 间[b,c]上单调递增则函数y=f(x)在x=b处有最小值 f(b);
25
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
26
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
1.最大值 一般地,设函数y=f(x)的定义域
为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最大值
22
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(2) 描述法-用集合所含元素的共同特征表示 集合的方法.
5
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(2) 描述法-用集合所含元素的共同特征表示集合 的方法.
具体方法:在花括号内先写上表示这个集合 元素的一般符号及以取值(或变化)范围,再画 一条竖线,在竖线后写出这个集合中元素所具 有的共同特征.
一般地,我们有: 设A、B是非空集合,如果按照某种确定的
对应关系f,使对于集合A中的任意一个数x,在 集合B中都有唯一确定的数y和它对应,那么称f: A→B为从集合A到集合B的一个映射。
18
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目

人教A版高一数学必修一第一章综合复习 PPT课件 图文

人教A版高一数学必修一第一章综合复习 PPT课件 图文

必修1 第一章 集合与函数的概念
栏目导引
2.函数及其表示
(1)本节是函数部分的起始部分,以考查函数的概念 、三要素及表示法为主,同时考查实际问题中的建 模能力.
(2)以多种题型出现在高考试题中,要求相对较低, 但很重要.特别是函数的表达式,对以后函数应用 起非常重要的作用.
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的 子集.
②在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集 合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定 子集的补集.
B.{x|x≥0}
C.{x|x≥1 或 x≤0} D.{x|0≤x≤1}
解析:
1-x≥0, x≥0
⇔0≤x≤1.故选 D.
答案: D
必修1 第一章 集合与函数的概念
栏目导引
3.若定义在R上的函数f(x)满足:对任意x1,x2∈R 有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确 的是( )
当 x<0 时,函数 f(x)=(x+1)2-2 的最小值为-2,
最大值为 f(-3)=2.故函数 f(x)的值域为[-2,2].
必修1 第一章 集合与函数的概念
栏目导引
1.已知集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是( )

A.a≥2
B.a<1
C.a≤2
解析: 假设存在x,使得B∪(∁AB)=A, 即B A.
①若x+2=3,则x=1,此时A={1,3,-1},B= {1,3},符合题意.

人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)

人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)
如:(1)小于5的答自案然:数{1组,成-的1}集合可表示为____. (2)方程x2-1=0的解集可表示为_{_x_∈__R_|_x_2-.1=0}
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.

高中数学新教材必修一第一章 《集合与常用逻辑用语》全套课件PPT

高中数学新教材必修一第一章 《集合与常用逻辑用语》全套课件PPT
是不同的对象,相同的对象归入一个集合时,仅算一个元
素. 如:应把集合{1,2,2}改写成 {1,2}
(3)无序性:集合中的元素是平等的,没有先后顺序,因
此判定两个集合是否一样,仅需比较它们的元素是否一 样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
注:集合的相等:构成两个集合的元素完全一样
新课引入
问题:
温故而知新
3.在初中我们学过哪些集合?
代数:整数的集合、实数的集合、有理数的集合、 不等式(如x-7>3)的解集等;
几何:点的集合等。 4.在初中,我们用集合描述过什么? 在初中几何中, 如线段AB的中垂线是……
圆是……。
学习新知
1、集合的含义:
(1)1~20以内的所有质数;
(2)我国从2000~2019年所发射的所有人造卫星;
集合的分类:(1)有限集 (2)无限集
当堂达标
练习巩固 提高能力
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
练习:课本P5第2题.
学习新知
5、集合的常用表示方法:
5、集合的常用表示方法:
记作:
规定:空集是任何集合的子集;
空集是任何非空集合的真子集。
例题示范
运用知识,注重规范
例1、写出集合{a, b}的所有子集,并指出哪些是它
的真子集. ,{a},{b},{a, b}
练习:课本第8页第1题
推广:设一个有限集A中的元素个数为n个,则集 合A的子集的个数为2n个。 其中真子集的个数为 2n-1 个, 非空子集的个数为 2n-1 个, 非空真子集的个数为 2n-2 个。

最新高中数学必修课件-第一章综合

最新高中数学必修课件-第一章综合
最新高中数学必修课件-第一章综合
已知函数 f(x)=m3xx2++n2是奇函数,且 f(2)=53. (1)求实数 m 和 n 的值; (2)判断函数 f(x)在(-∞,0)上的单调性,并加以证 明. [思维点击] 由 f(2)=53及 f(-x)=-f(x),列出关于 m、n 的方程组可求出 m、n.
最新高中数学必修课件-第一章综合
已知集合 M={y|y=x2+1,x∈R},N={y|y=x+1,
x∈R},则 M∩N 等于( )
A.(0,1),(1,2)
B.{(0,1),(1,2)}
C.{y|y=1 或 y=2} D.{y|y≥1}
[思维点击] 解答本题首先要分清集合中的第一章综合
设函数 f(x)=x2-2|x|-1(-3≤x≤3). (1)证明:f(x)是偶函数; (2)指出函数 f(x)的单调区间,并说明在各个单调区 间上 f(x)是增函数还是减函数; (3)求函数的值域.
则 A∩B=______;
(2)集合 A={(x,y)|x+y≤1,x∈N,y∈N}中元素
的个数是( )
A.1
B.2
C.3
D.4
最新高中数学必修课件-第一章综合
解析: (1)集合 A 中的元素为数,即表示二次函 数 y=x2 自变量的取值集合;集合 B 中的元素为点, 即表示抛物线 y=x2 上的点的集合.这两个集合不 可能有相同的元素,故 A∩B=∅. (2)集合 A 中的元素是点集, ∵x∈N,y∈N,x+y≤1 ∴满足条件的点为(0,0)、(0,1)、(1,0)共 3 个.即集 合 A 中元素的个数为 3. 答案: (1)∅ (2)C
解得-2≤k<-32或 k>6.
综上所述,k 的取值范围为kk<-32

人教版高中数学必修一第一章1.1.3补集及综合运用PPT教学课件

人教版高中数学必修一第一章1.1.3补集及综合运用PPT教学课件

人教版高中数学必修一精品课件
[规律方法] 解决集合交、并、补运算的技巧
1 如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义 来求解.在解答过程中常常借助于 Venn 图来求解.
2 如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、 补集的运算.解答过程中要注意边界问题.
(1)C (2){x|0<x<2,或 x≥6} [(1)因为 A={x∈N*|x≤6} ={1,2,3,4,5,6},B={2,4},所以∁AB={1,3,5,6}.故选 C. (2)如图,分别在数轴上表示两集合,则由补集的定义可知,∁UA={x|0<x<2,或 x≥6}.]
人教版高中数学必修一精品课件
人教版高中数学必修一精品课件
(1){2,3,5,7} (2){x|x<-3 或 x=5} [(1)法一(定义法) 因为 A={1,3,5,7},∁UA={2,4,6},所以 U= {1,2,3,4,5,6,7}. 又∁UB={1,4,6}, 所以 B={2,3,5,7}. 法二(Venn 图法) 满足题意的 Venn 图如图所示.
集,记作______∁_U_ A
∁UA={x{|xx|∈x∈UU,,且且x——A}——A}
人教版高中数学必修一精品课件
[基础自测]
1.思考辨析
(1)全集一定含有任何元素.( )
(2)集合∁RA=∁QA.(
)
(3)一个集合的补集一定含有元素.(
)
[答 案 ] (1)×(2)×(3)×
人教版高中数学必修一精品课件
由图可知 B={2,3,5,7}.
人教版高中数学必修一精品课件
(2)将集合 U 和集合 A 分别表示在数轴上,如图所示. 由补集的定义可知∁UA={x|x<-3 或 x=5}.]

新版高一数学必修第一册第一章全部课件

新版高一数学必修第一册第一章全部课件
1.列举法
把集合的元素 一一列举出来,并用花括号“{ }”括起来表示集合的方
法叫做列举法.
[点睛] 列举法表示集合时的 4 个关注点
(1)元素与元素之间必须用“,”隔开.
(2)集合中的元素必须是明确的.
(3)集合中的元素不能重复.
(4)集合中的元素可以是任何事物.
2.描述法
(1)定义:用集合所含元素的 共同特征 表示集合的方法.
[解]
(1)因为不大于 10 是指小于或等于 10,非负是大于或
等于 0 的意思,所以不大于 10 的非负偶数集是{0,2,4,6,8,10}.
(2)方程 x3=x 的解是 x=0 或 x=1 或 x=-1,所以方程的
解组成的集合为{0,1,-1}.
(3)将 x=0 代入 y=2x+1,得 y=1,即交点是(0,1),
所以 17∈A.
7
令 3k+2=-5 得,k=- ∉Z.
3
所以-5∉A.
答案:∈ ∉
题型三 集合中元素的特性及应用
[ 例 3]
已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的
值为________.
[ 解析]
若 1∈A,则 a=1 或 a2=1,即 a=±1.
当 a=1 时,集合 A 有重复元素,不符合元素的互异性,
(
A.0
B.1
C.-1
)
D.0 或 1
答案:A
4.方程 x2 -1=0 与方程 x+1=0 所有解组成的集合中共有
________个元素.
答案:2
题型分析
举一反三
题型一 集合的含义
[ 例 1]
考查下列每组对象,能构成一个集合的是( B

人教A版高中数学必修一第一章: 1.1.1 集合的含义与表示 课件(共30张PPT)

人教A版高中数学必修一第一章: 1.1.1  集合的含义与表示 课件(共30张PPT)

学以致用
1.判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流.
【提示】(1)是由4,6,8,10四个元素组成的集合. (2)由集合元素的确定性知其不能组成集合.
启示:任何集合的元素都不能违背确定性、互异性、
无序性.我们还可以用这些性质继续去探求集合与
元素的关系.
第一章 集合与函数概念
1.1.1 集合的含义与表示
2020/7/6
1
情景导学
情景1:“集合”是日常生活中的一个常用词,现代汉语
解释为:许多的人或物聚在一起.
康托尔(G.Cantor,1845-1918). 德国数学家,集合论创始人.人们把康 托尔于1873年12月7日给戴德金的信中 最早提出集合论思想的那一天定为集 合论诞生日.
2020/7/6
5
问题探究
探究1 :元素与集合的概念
看下面几个例子,概括它们有何共同特点? (1)100以内所有的偶数. (2)金星汽车厂2016年生产的所有汽车. (3)2017年1月1日之前与中华人民共和国建立 外交关系的所有国家.
2020/所有的正方形.
(5)到直线l的距离等于定长d的所有的点.
x2 ( 36)x 方2程 0
的所有实数根.
(7)南宫中学2017年8月入学的所有的高一学生.
共同特点:都指“所有”,即研究对象的全体.
2020/7/6
7
归纳总结
一般地, 我们把研究对象统称为元素(element). 通常用小写拉丁字母a,b,c,...来表示.
我们把一些元素组成的总体叫做集合(set)(简称为集). 通常用大写拉丁字母A,B,C,...来表示.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)无序性是指任意改变集合中元素的排列次序,它们仍
然表示同一个集合.
工具
必修1 第一章 集合与函数概念
栏目导引
2.解读集合表示的三种方法 集合常用的表示方法有三种,即列举法、描述法和 图示法,其中图示法包括 Venn 图法和数轴法两种. (1)列举法是把集合的元素Байду номын сангаас一列举出来,并用花括 号“{ }”括起来表示集合的方法. 使用列举法要注意:元素间用分隔号“,”且元素 不能重复. (2)描述法是用集合所含元素的共同特征表示集合 的方法. 使用描述法要注意:写清楚该集合中元素的代号(字 母或用字母表示的元素符号),准确说明该集合中元 素的特征.
工具
必修1 第一章 集合与函数概念
栏目导引
6.求函数定义域的注意点 (1)不对解析式化简变形,以免定义域变化. (2)求定义域的相关准则:①分式中分母不为零; ②偶次根式中被开方式非负;③x0 中 x≠0;④解 析式由几个式子构成时,定义域是使各式子有意 义的自变量的取值集合的交集.
(3)由实际问题建立的函数解析式,定义域要符合 实际.
课题导入
回顾所学知识
工具
必修1 第一章 集合与函数概念
栏目导引
第一章 综合复习课
工具
必修1 第一章 集合与函数概念
栏目导引
独立自学
1.第一章中我们主要学习了哪两块知识? 2.集合的性质有哪些?我们研究了函数
的哪些性质?
工具
必修1 第一章 集合与函数概念
栏目导引
引导探究一 知识点梳理
1.集合中元素特征的认识 确定性、互异性、无序性是集合中元素的三个特征. (1)确定性是指一个对象 a 和一个集合 A,a∈A 和 a∉A 必 居其一.它是确定一组对象能否构成集合的依据. (2)互异性是指同一个集合中的元素是互不相同的.相同 的对象归入同一集合时只能算作集合的一个元素.在解答 含参集合问题时,互异性是一个不可或缺的检验工具.
工具
必修1 第一章 集合与函数概念
栏目导引
7.分段函数的深入理解 (1)分段函数是一个函数,而它的解析式表现为多个, 依据定义域来分段.分段函数的定义域是各段定义 域的并集,值域是各段值域的并集. (2)分段函数的图象由几个不同部分组成,画分段函 数的图象要将各段图象画在同一坐标系中,并注意 各图象端点的虚实. (3)求函数值要“对号入座”,即先确定自变量所在 定义域,再按对应解析式求值;求函数值对应的 x 值,要将函数值代入各解析式一一确定.
意义外,在研究集合与集合之间的关系和运算时, 必须予以单独考虑.
(1)空集是任何一个集合的子集,是任何一个非空集 合的真子集.因此∅⊆{0}和∅ {0}都成立. (2)对于任意集合 A,都有 A∩∅=∅,A∪∅=A,∁AA =∅,∁A∅=A 成立.
工具
必修1 第一章 集合与函数概念
栏目导引
4.集合之间的关系与运算的注意点 (1)正确判断元素与集合、集合与集合之间的关系. 元素与集合之间的关系是属于与不属于的关系,集 合与集合之间的关系是包含、真包含、相等的关系, 要按照定义仔细区别. (2)灵活运用集合与集合之间关系与运算的判断方 法. 可将集合中的元素一一列举,直接观察得到;也可 以根据定义判断;还可以借助数轴(集合中元素以不 等式形式描述时)或 Venn 图判断.
工具
必修1 第一章 集合与函数概念
栏目导引
(3)Venn图法是指对给定的集合用封闭曲线的内部 (常见的有圆和矩形)表示的方法. Venn图表示集合时,要清楚集合中的元素是什么. (4)数轴通常用来表示不等式的解集.使用时要注意 空心点与实心点的区别.
工具
必修1 第一章 集合与函数概念
栏目导引
3.空集的透析 空集是不含有任何元素的集合.除了它本身的实际
工具
必修1 第一章 集合与函数概念
栏目导引
8.细解函数的单调性与奇偶性 单调性与奇偶性是函数的两个珠联璧合的重要性 质.它们之间的关系非常密切,相辅相成,但两者 之间既有联系又有区别. (1)单调性与奇偶性的区别 ①函数的单调性是对定义域内的某个区间而言的, 函数在某个区间上单调,并不能说明函数在其整个 定义域上也单调;函数的奇偶性是对整个定义域而 言的,是函数的整体性质.
工具
必修1 第一章 集合与函数概念
栏目导引
(3)单调性与奇偶性应用的注意点 ①若一个函数在两个不同的区间上具有相同的单 调性,则区间之间应用“和”连接,而不能用 “∪”. ②函数奇偶性的判断中应先求定义域,若定义域 关于原点对称,再依据定义判断奇偶性.
③对于奇函数,若它在 x=0 处有意义,则它的图
象必过原点,即 f(0)=0.
工具
必修1 第一章 集合与函数概念
栏目导引
引导探究二
专题例题讲解
工具
必修1 第一章 集合与函数概念
栏目导引
5.把握函数概念,重视构成要素 函数的三要素是定义域、对应关系、值域. (1)定义域是使函数表达式有意义的自变量的取值 集合. (2)对应关系 f 可以是解析式、表格、图象,对应函 数的三种表示方法——解析法、列表法、图象法. (3)函数的值域由自变量和对应关系确定.
工具
必修1 第一章 集合与函数概念
栏目导引
②函数的单调性反映了图象的增减变化;函数的 奇偶性反映了图象的对称性:奇函数的图象关于 原点对称,偶函数的图象关于 y 轴对称. ③函数的单调性是在一定区间上讨论的,而对函 数的奇偶性而言,其定义域可能是区间,也可能 是离散的点. (2)单调性与奇偶性的联系 奇函数在其定义域内关于原点对称的两个区间上 的单调性相同,偶函数在其定义域内关于原点对 称的两个区间上的单调性相反.
工具
必修1 第一章 集合与函数概念
栏目导引
(3)巧用性质简化解题过程: ①关系:A⊆A;A⊆B,B⊆A⇔A=B;A⊆B,B ⊆C⇒A⊆C; A B,B C⇒A C. ②并集:A⊆B∪A,B⊆B∪A;A∪A=A;A∪∅ =∅∪A=A; A⊆B⇔A∪B=B. ③交集:A∩B=B∩A;A∩A=A;A∩∅=∅∩A= ∅;A⊆B⇔A∩B=A. ④补集:∁UU=∅,∁U∅=U;∁U(∁UA)=A;A∪(∁UA) =U,A∩(∁UA)=∅;A⊆B⇔∁UA⊇∁UB;A=B⇔∁UA =∁UB.
相关文档
最新文档