经济数学基础形成性考核册参考答案
(完整版)经济数学基础形成性考核册答案
![(完整版)经济数学基础形成性考核册答案](https://img.taocdn.com/s3/m/6f5262067c1cfad6185fa7ae.png)
电大经济数学基础形成性核查册及参照答案(一)填空题 1. limx sin x__________ _________ .答案: 0x 0x2. 设 f ( x) x 2 1, x0 0 处连续,则 k________ .答案: 1k ,x,在 x3. 曲线 yx 在 (1,1) 的切线方程是.答案: y1 x 12 24. 设函数 f ( x 1) x 2 2x 5 ,则 f ( x)__________ __ .答案: 2x5. 设 f ( x)x sin x ,则 f ( π __________ . 答案:π) 22(二)单项选择题1. 函数 y x 1的连续区间是(D )x 2x 2A . (,1) (1, )B . ( , 2) ( 2,)C . ( , 2) ( 2,1) (1,)D . (, 2)( 2, ) 或( ,1) (1, )2. 以下极限计算正确的选项是(B )x1B. limx1A. limx xxx 011D. lim sin x 1C. lim x sinxxxx3. 设 ylg2 x ,则 d y( B ).A .1dxB .1 dx C .ln10dxD .1dx2xx ln10xx4. 若函数 f ( x)在点 x 0 处可导,则 (B )是错误的.A .函数 f (x)在点 x 0 处有定义B . limf ( x)A,但A f (x 0 )xx 0C .函数 f (x) 在点 x 0 处连续D .函数 f (x) 在点 x 0 处可微5. 当 x0 时,以下变量是无量小量的是(C) .A . 2xB . sin xC . ln(1x) D . cos xx ( 三)解答题 1.计算极限( 1) limx 22 3x21x 1x12原式 lim( x1)( x 2)x 1( x 1)( x 1)limx2 x 1 x1 12( 2) lim x25x 6 1 x 2x26x 8 2原式 = lim(x - 2)(x - 3) x 2(x - 2)(x - 4)limx3 x2x 4 12( 3)lim1 x 11x2x原式 =lim(1 x 1)( 1 x 1) xx( 1 x 1)1= limx 01 x 11 =2x 23x5 1 ( 4) lim2x3x 2x4 31 351xx 2原式 == 3 3 4 3x x 2( 5)limsin 3x3 xsin 5x53sin 3x3lim 3x原式 =sin 5x=5 x55xx 2 44( 6) limx2sin( x 2)原式 =limx 22)x2sin( xx 2lim ( x 2)x 2= 4=lim sin( x 2)x 2x 2x sin1b, x 02.设函数 f (x)xx 0 ,a,sin xx 0x问:(1)当 a, b 为何值时,f ( x) 在 x 0处有极限存在?(2)当 a, b 为何值时, f ( x) 在x0处连续 .解: (1) limf ( x) b , lim f ( x)1xx当a b 1时,有 lim f(x)f(0) 1x(2). 当ab 1时, 有lim f(x)f(0) 1x函数 f(x) 在 x=0 处连续 .3.计算以下函数的导数或微分:( 1)yx22xlog 2 x22 ,求 y答案: y2x 2 x ln 21x ln 2( 2)yax bcx ,求 yd答案:ya(cx d )c(ax b) ad bc (cxd) 2(cx d )2( 3)y1,求 y3x 53(3x3答案: y5) 22( 4) yx xe x ,求 y答案:y 1 (e x xe x ) = 1 e x xe x2 x 2 x( 5)y eax sin bx ,求 dyy (e ax ) (sin bx e ax (sin bx)答案:∵ax axae sin bx be cosbxe ax (sin bx bcosbx)∴ dy e ax (a sin bx bcosbx)dx 1( 6)y e x x x ,求 dy1 1 3答案:∵ y e x xx2 2( 311∴ dy x e x )dx2 x2( 7)y cos x e x2 ,求 dy答案:∵ y sin x ( x) e x 2 (= sin x 2xe x22 x∴ dy ( sin x 2xe x2 )dx2 x( 8)y sin n x sin nx ,求 y答案: y nsin n 1 x cos x n cosnx ( 9)y ln( x 1 x2 ) ,求y答案: y 1 ( x 1 x 2 )x 1 x 2=1 1 x2 x=x2 x 2x 1 1cot 1 1 3 x 2 2x( 10)y 2 x ,求 yx x 2 )=1 (1 x )1 x2 1 x2x11x2111 1cos( x 2 x 6y 2xln 2 (cos ) 2) 答案:x12 cos11 112 x ln 2 sinxx 2x 3 6 x 54.以下各方程中y 是 x 的隐函数,试求 y 或dy(1) 方程两边对 x 求导:2x 2 y y y xy 3 0(2 y x) yy 2x 3所以 dyy 2x3dx2y x(2) 方程两边对 x 求导:cos(x y)(1 y ) e xy ( y xy )4[cos(x y)xe xy ] y4 cos(x y) ye xy所以y4 cos(x y) ye xy cos(x y)xe xy5.求以下函数的二阶导数:( 1)yln(1x 2 ) ,求 y答案: (1)y2x1 x2y 2(1 x 2 ) 2x 2x2 2x 2(1 22(1 22x )x )(2)y (xy3x41 11 x 2x 2 )25 321x 243 21 1x 223 1 1y (1)4 4作业(二)(一)填空题1.若f (x)dx 2 x 2x c ,则 f ( x) __________ _________ .答案: 2x ln 2 22.(sinx) dx ________.答案: sin x c3. 若f ( x) dxF ( x) c ,则 xf (1 x 2 )dx.答案:1F (1 x 2 ) cd24.设函数eln(1 x 2)dx ___________ .答案: 0dx 15. 若 P(x) 01dt ,则 P ( x) __________ .答案:1x 2x1 t 21 (二)单项选择题1. 以下函数中,( D2)是 xsinx的原函数.A .1cosx 2B .2cosx 2C .- 2cosx2D . -1cosx 2222. 以低等式成立的是(C ).A . sinxdxd(cosx)B . ln xdxd( 1)xC . 2 xdx1 d(2 x )D .1 dx d xln 2x3. 以下不定积分中,常用分部积分法计算的是(C ).A . cos(2x1)dx ,B .x 1 x 2 dxC . xsin 2xdxD .x 2 dx1 x4. 以下定积分计算正确的选项是(D).12 d216B .dx15x x11C .23D . sin d( xx )dx 0x x5. 以下无量积分中收敛的是( B ).A .1(三)解答题1dx B .112dx C .e x dxD .sinxdxxx 011.计算以下不定积分3x( 1) 3xdx 原式 =3 x dx = (e )c3x ce x(e ) ln 3e x (ln 3 1)e( 2)(1x) 213dx 答案:原式 = (x 2 2 x x 2 )dxx=14 32 5 c2x 23 x 2x 25x 24 (x 2)dx1 x 22x c( 3)dx 答案:原式 =( 4)1 1 dx答案:原式 = 1 d (1 2x)1ln 1 2x c 2x 2 1 2x 21 13( 5)x 2 x2dx答案:原式 = 2 x 2 d (2 x 2 ) = ( 2 x2) 2 c2 3( 6)sinxdx 答案:原式=2 sin xd x 2 cos x c x( 7)xdx xsin2答案:∵ (+) x sinx2(-) 1 2 cosx2(+) 0 4 sinx2∴原式 = 2x cosx4 sinxc2 2(8) ln( x 1)dx答案:∵ (+) ln( x 1) 1(-)1x x 1∴原式 = x ln( x 1) x dxx 1= x ln( x 1) (1 1 )dxx 1 = x ln( x 1) x ln( x 1) c 2.计算以下定积分2xdx( 1) 111x)dx 2 1)dx = 2 ( 1x2 x)12 2 5 9答案:原式 = (1 (x1 12 2 212e x( 2) x2 dx11112e xx 2)d112答案:原式 =2 ( = ex e e 21xxe3( 3)1dx1x 1 ln xe3x d(1 ln x) = 2 1 ln xe 3 答案:原式 =1 ln x 21x1( 4)2x cos2xdx答案:∵ (+) xcos2x (-)11sin 2x2(+)01cos2x4∴ 原式 = (1x sin 2x1cos2x) 0224=1 1 1442e( 5) x ln xdx 1答案:∵ (+)ln xx(-)1x 2x21 2ln x e1e∴ 原式 =x 12 xdx21 =e 2 1 x 21e1 (e2 1)2 444 xxx(1( 6)答案:∵原式 = 44 xe xdx(-)1 -e x (+)0e x4e x ) 04∴xe xdx ( xex 0=5e 4 1故:原式 =55e4作业三(一)填空题10 4 51.设矩阵 A32 32 ,则 A 的元素 a 23 __________ ________ .答案: 321612.设 A, B 均为 3 阶矩阵,且 A B3,则2AB T = ________. 答案: 723. 设 A, B 均为 n 阶矩阵,则等式 ( AB) 2 A 2 2 ABB 2 成立的充分必要条件是.答案: AB BA4. 设 A, B 均为 n 阶矩阵, ( IB) 可逆,则矩阵 A BXX 的解 X__________ ____ .答案:( IB) 1 A1 01 0 0 5. 设矩阵 A020 ,则 A1__________ .答案:A0 10 0 032 10 03(二)单项选择题1. 以下结论或等式正确的选项是( C ).A .若 A,B 均为零矩阵,则有 A B B .若 AB AC ,且 A O ,则 BCC .对角矩阵是对称矩阵D .若 AO, B O ,则 AB O2. 设 A 为 34 矩阵, B 为5 2矩阵,且乘积矩阵 ACB T 有意义,则 C T 为(A )矩阵.A . 2 4B . 4 2C . 3 5D . 533. 设 A, B 均为 n 阶可逆矩阵,则以低等式成立的是(C ).`A . ( A B) 1A 1B 1 ,B . ( A B) 1 A 1 B 14. 以下矩阵可逆的是(A).1 2 31 01 A .2 3 B .10 1 0 0 3123C .1 11 1 0 0D .222 2 25. 矩阵 A3 3 3 的秩是(B ).4 44A . 0B . 1C .2D .3三、解答题 1.计算2 1 0 1 1 2( 1)3 1 0 =553( 2)( 3)2.计算0 2 1 1 0 0 03 0 00 0312 5 4= 0121 2 3 1 2 4 2 4 51 2 2 1 4 3 6 1 01 32 23 1 3 2 71 2 3 1 2 4 2 4 5 7 19 7 2 4 5 解1 221 4 3 6 17 12 0 6 1 013 223132 7 0 4 732 7515 2 =1 11 032142 31 12 33.设矩阵 A111 , B 1 12 ,求 AB 。
电大经济数学基础形成性考核册答案
![电大经济数学基础形成性考核册答案](https://img.taocdn.com/s3/m/be44b6987375a417876f8f22.png)
电大经济数学基础形成性考核册答案Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D )A .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设yx =lg2,则d y =(B ).A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x(2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →(3)2111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim22=--→x x x 原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在(2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a(2). 1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a edy ax)cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx-+-∴dx xe xxdy x )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导:所以 dx xy x y dy ---=232(2) 方程两边对x 求导:所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x x y +='(2)212321212121)(-----='-='x x x xy作业(二)(一)填空题 1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ). A .)d(cos d sin x xx = B .)1d(d ln x x x =C .)d(22ln 1d 2x xx =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2, B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x xxd 124. 下列定积分计算正确的是( D ).A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x (三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx ex )3( =c e c ee x x x +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx(-) 1 (+) 0 2sin4x -∴原式=c xx x ++-2sin 42cos 2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln(2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x x xd e 2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 2⎰π答案:∵ (+)x(+)02cos 1- ∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -xe - (+)0 xe -∴⎰-----=44)(x x x e xe dx xe=154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:32.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I-可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). `A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB = D .BA AB =4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡22115. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3 三、解答题1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000(3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
经济数学基础形成性考核册及参考答案
![经济数学基础形成性考核册及参考答案](https://img.taocdn.com/s3/m/339dea8a680203d8ce2f2478.png)
(5) y = e ax sin bx ,求 dy
答案: dy = eax (a sin bx + b cos bx)dx
1
(6) y = e x + x x ,求 dy
答案: dy = ( 1
x−
1
1
e x )dx
2
x2
(7) y = cos x − e−x2 ,求 dy
答案: dy = (2xe− x2 − sin x )dx 2x
D. 1 dx = d x x
答案:C 3. 下列不定积分中,常用分部积分法计算的是( ).
A. ∫ cos(2 x +1)dx , ∫ B. x 1 − x2 dx C. ∫ x sin 2xdx
答案:C
4. 下列定积分计算正确的是(
).
∫ D. x dx
1+ x2
1
∫ A. 2xdx = 2 −1
x x →0+
1
C. lim x sin = 1
x→ 0
x
siБайду номын сангаас x
D. lim
=1
x x →∞
3. 设 y = lg2 x ,则 d y = ( ).答案:B
A. 1 dx 2x
B. 1 dx x ln10
C. ln10 dx x
D. 1 dx x
4. 若函数 f (x)在点 x0 处可导,则( )是错误的.答案:B
2 =2
12
0 −1 1 0 −1 0
123 1 2 3 B = 1 1 2 = 0 -1 -1 =0
011 0 1 1
所以 AB = A B = 2 × 0 = 0
⎡1 2 4⎤ 4.设矩阵 A = ⎢⎢2 λ 1⎥⎥ ,确定 λ 的值,使 r ( A) 最小。
经济数学基础形成性考核册及参考答案29665
![经济数学基础形成性考核册及参考答案29665](https://img.taocdn.com/s3/m/aaccc045ae45b307e87101f69e3143323868f558.png)
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1. .答案: 02.设 , 在 处连续, 则 .答案:13.曲线 在 的切线方程是 .答案:4.设函数 , 则 .答案:5.设 , 则 .答案: (二)单项选择题1.函数 的连续区间是....)答案: D A. B. C. D. 或2.下列极限计算正确的是... )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3.设 , 则 (. ). 答案: ........A. B. C. D.4.若函数.(x)在点x0处可导,则.. )是错误的. 答案: .. A .函数f (x)在点x0处有定义 B . , 但C. 函数f (x)在点x0处连续D. 函数f (x)在点x0处可微 5.当 时,下列变量是无穷小量的是...).答案: C A. B. C. D. (三)解答题 1. 计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21- (2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim 0--→=)11()11)(11(lim 0+-+---→x x x x x=)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x(5)=→x x x 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →=53(6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2. 设函数 ,问: (1)当 为何值时, 在 处有极限存在? (2)当 为何值时, 在 处连续.答案: (1)当 , 任意时, 在 处有极限存在; (2)当 时, 在 处连续。
春电大《经济数学基础》形成性考核册及参考答案
![春电大《经济数学基础》形成性考核册及参考答案](https://img.taocdn.com/s3/m/9b46589f3c1ec5da51e27010.png)
春电大《经济数学基础》形成性考核册及参考答案作业()(一)填空题 .___________________sin lim=-→xxx x .答案: .设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案: .曲线x y =在)1,1(的切线方程是 .答案:2121+=x y .设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 .设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 . 函数212-+-=x x x y 的连续区间是( )答案: .),1()1,(+∞⋃-∞ .),2()2,(+∞-⋃--∞.),1()1,2()2,(+∞⋃-⋃--∞ .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ . 下列极限计算正确的是( )答案: .1lim=→xx x .1lim 0=+→xx x.11sinlim 0=→x x x .1sin lim =∞→xx x. 设y x =lg2,则d y =( ).答案: .12d x x .1d x x ln10 .ln10x x d .1d xx . 若函数 ()在点处可导,则( )是错误的.答案:.函数 ()在点处有定义 .A x f x x =→)(lim 0,但)(0x f A ≠.函数 ()在点处连续 .函数 ()在点处可微 .当0→x 时,下列变量是无穷小量的是( ). 答案: .x2 .xxsin .)1ln(x + .x cos (三)解答题 .计算极限()=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x )1(2lim 1+-→x x x 21-()8665lim 222+-+-→x x x x x )4)(2()3)(2(lim 2----→x x x x x )4(3lim 2--→x x x 21 ()x x x 11lim--→)11()11)(11(lim 0+-+---→x x x x x)11(lim+--→x x x x 21)11(1lim 0-=+--→x x()=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x ()=→x x x 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →53()=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:()当b a ,为何值时,)(x f 在0=x 处有极限存在? ()当b a ,为何值时,)(x f 在0=x 处连续.答案:()当1=b ,a 任意时,)(x f 在0=x 处有极限存在; ()当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形成性考核册及参考答案
![经济数学基础形成性考核册及参考答案](https://img.taocdn.com/s3/m/162bf2e7856a561252d36f1f.png)
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:02.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:DA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =l g 2,则d y =().答案:BA .12d xx B .1d x x ln10 C .ln 10x x d D .1d xx4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:B A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x时,下列变量是无穷小量的是( ). 答案:CA .x2 B .xx sin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21- (2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x=)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim0535sin 33sin 5lim0x x x x x →=53(6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;(2)当1==b a时,)(x f 在0=x 处连续。
最新电大经济数学基础形成性考核册及参考-答-案
![最新电大经济数学基础形成性考核册及参考-答-案](https://img.taocdn.com/s3/m/2d6fed3cfc4ffe473368ab22.png)
经济数学基础形成性考核册及参考答案作业(一)(一)填空题1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:DA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?答案:当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当b a ,为何值时,)(x f 在0=x 处连续. 答案:当1==b a 时,)(x f 在0=x 处连续。
电大经济数学基础形成性考核册答案
![电大经济数学基础形成性考核册答案](https://img.taocdn.com/s3/m/0eec3971f78a6529647d5394.png)
B. lim x 1
x x0
C. lim x sin 1 1
x0
x
D. lim sin x 1
x x
3. 设 y lg 2x ,则 d y ( B ).
A. 1 dx
2x
B. 1 dx
x ln10
C. ln10 dx
x
D. 1 dx
x
4. 若函数 f (x)在点 x0 处可导,则( B )是错误的.
5.求下列函数的二阶导数:
(1) y ln(1 x2 ) ,求 y
答案:
(1)
y
1
2
x x
2
(2)
y
1
(x 2
1
x2
)
1
3
x2
1
1
x2
2
2
作业(二)
(一)填空题
1.若 f (x)dx 2x 2x c ,则 f (x) ___________________ .答案: 2x ln 2 2
x2 x 2
D
)
A. (,1) (1,)
B. (,2) (2,)
C. (,2) (2,1) (1,)
D. (,2) (2,) 或 (,1) (1,)
2. 下列极限计算正确的是( B )
A. lim x 1
x0 x
A.函数 f (x)在点 x0 处有定义
B. lim x x0
f (x)
A ,但 A
f (x0 )
C.函数 f (x)在点 x0 处连续
D.函数 f (x)在点 x0 处可微
经济数学基础形成性考核册参考答案
![经济数学基础形成性考核册参考答案](https://img.taocdn.com/s3/m/94b14e3243323968011c924e.png)
经济数学基础形成性考核册参考答案经济数学基础作业1一、填空题: 1、0; 2、1;3、x -2y +1=0;4、2x ;5、-2π;二、单项选择题: 1、D ; 2、B ; 3、B ; 4、B ; 5、B ; 三、解答题 1、计算极限(1)解:原式=1lim→x )1)(1()2)(1(+---x x x x=1lim→x 12+-x x=21(2)解:原式=2lim→x )4)(2()3)(2(----x x x x=2lim→x 43--x x=-21(3)解:原式=0lim→s xx x )11(11+---=lim →s 111+--x=-21(4)解:原式=∞→s lim 22423531xx x x +++-=21(5)解:∵x 0→时,xx sm x x sm 5~53~3∴0lim→x xsm xsm 53=0lim→x xx53=53(6)解:2lim→x )2sin(42--x x =2lim →x 242--x x=2lim→x (x+2)=4 2、设函数: 解:0lim →x f(x)=0lim →x (sin x1+b)=b+→0lim x f(x)=+→0lim x xxsin 1≤(1)要使f(x)在x=0处有极限,只要b=1, (2)要使f(x)在x=0处连续,则-→0lim x f(x)=+→0lim x =f(0)=a即a=b=1时,f(x)在x=0处连续 3、计算函数的导数或微分: (1)解:y '=2x +2xlog 2+2log1x(2)解:y '=2)()()(d cx cb ax d cx a ++-+=2)(d cx bc ad +-(3)解:y '=[)53(21--x ]'=-21)53(23--x ·(3x-5)' =-23)53(23--x(4)解:y '=x21-(e x+xe x)=x21-e x -xe x(5)解:∵y '=ae ax sinbx+be ax cosbx =e ax (asmbx+bcosbx) ∴dy=e ax (asmbx+bcosbx)dx(6)解: ∵y '=-21xe x1+23x 21∴dy=(-21xex1+23x)dx(7)解:∵y '=-x21+sin x +xex22-∴dy=(xex22--x21 sin x )dx(8)解:∵y '=nsin n -1x+ncosnx∴dy=n(nsin n -1+ cosnx)dx(9)解:∵y '=)1221(1122xx xx ++++=211x+∴dxxdy 211+=(10)解:xxxxxotxxxxy y 652321cot226121116121ln 1csc1222--+-⋅='-++=4、(1)解:方程两边对x 求导得 2x+2yy '-y-xy '+3=0 (2y-x)y '=y -2x -3 y '=xy x y ---232∴dy=dxxy x y ---232(2)解:方程两边对x 求导得:Cos(x+y )·(1+y ')+e xy (y+xy ')=4 [cos(x+y)+xe xy ]y '=4-cos(x+y)-ye xy y '=xyxey x yexy y x ++-+-)cos()cos(45.(1)解:∵y '=22212)1(11Xx x x+='+∙+2222)1(22)1(1)12(X XX X XX Y +∙-+='+=''=222)1()1(2X X +-(2)解:)()1(2121'-='-='-xxxx xy=x x21212123----)(212122'-=''---xx yx x41432325--+14143)1(=+=''y经济数学基础作业2一、填空题:1、2x ln 2+2 2、sinx+C3、-C x F +-)1(2124、ln(1+x 2)5、-211x+二、单项选择题: 1、D 2、C 3、C 4、D 5、B三、解答题:1、计算下列不定积分: (1)解:原式=⎰dx e x )3(= Cee x +3ln )3(=Cx e +-13ln )3((2)解:原式=dxXXXX X)21(2⎰++=Cxxx +++523422221(3)解:原式=⎰++-dxx x x 2)2)(2(=⎰-dx x )2( =Cx x+-222(4)解:原式=-⎰--)21(21121x d x=-x 21ln 21-+C (5)解原式=⎰+2212)2(21dxx=⎰++)2()2(212212x d x=C x ++232)2(31(6)解:原式=Z ⎰xd x sin=-2cos C x + (7)解:原式=-2⎰2cos x xd=-2xcos ⎰+dxx x 2cos 22 =-2xcos Cx smx ++242(8)解:原式=⎰++)1()1ln(x d x=(x+1)ln(x+1)-⎰++)1ln()1(x d x =(x+1)ln(x+1)-x+c2、计算下列积分 (1)解:原式=⎰⎰-+--dx x dx x )1(12)1(11=(x-12)2(11)222x xx-+-=2+21=25(2)解:原式=⎰-xde x 1121=121xe -=e e -(3)解:原式=⎰+x d xeln ln 1113=⎰++-)1(ln )ln 1(1213x d x e=1)ln 1(2321ex +=4-2 =2(4)解:原式=xxdsm 22102⎰π=⎰-xdxsm xxsm 2021022122ππ=02cos 412πx=21-(5)解:原式=⎰xx xde2ln 1=dxxx e e xx⎰--12211ln 22=⎰-dx xe e 2122=14222exe-=)414(222--ee=412+e(6)解:原式=⎰⎰-+dxxedx x404=4+⎰--x xde 04=⎰-----)(0444x d exexx=04444xee----=14444+----e e =455--e经济数学基础作业3一、填空题: 1. 3 2. -723. A 与B 可交换4. (I-B )-1A5. 3100210001-二、单项选择题:1.C2.A3.C4.A5.B三、解答题 1、解:原式=⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯-⨯+⨯-0315130501121102 =⎥⎦⎤⎢⎣⎡53212、解:原式=⎥⎦⎤⎢⎣⎡⨯-⨯⨯-⨯⨯+⨯⨯+⨯0310031002100210 =⎥⎦⎤⎢⎣⎡00003、解:原式=[]24)1(50231⨯+-⨯+⨯+⨯- =[]02、计算:解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142301215427401277197=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-------7724300012675741927 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423012121553、设矩阵:解:222321013211023210132)2(21)1(110111132=--=--+---=A011211321==B0=∙=∴B A AB4、设矩阵:解:A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110214742101112421λλ要使r (A )最小。
经济数学基础形成性考核册作业1参考答案Word版
![经济数学基础形成性考核册作业1参考答案Word版](https://img.taocdn.com/s3/m/04bddb96852458fb760b5644.png)
经济数学基础形成性考核册作业1参考答案(一)填空题1.0;2. 1;3. 2121+=x y ;4. x 25. 2π- (二)单项选择题1. D;2.B3. B4.B5.B (三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = 12lim 1+-→x x x = 21- (2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = 43lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21111lim0-=+--→x x (4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim 05355sin 33sin lim 0⨯→xx x xx =53 (6)=--→)2sin(4lim 22x x x 42)2sin(2lim )2sin()2)(2(lim22=--+=-+-→→x x x x x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)b b xx x f x x =+=--→→)1sin ()(lim lim 00,1sin )(limlim 00==++→→xxx f x x 所以,当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)a f =)0(,所以,当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形成性考核参(全)
![经济数学基础形成性考核参(全)](https://img.taocdn.com/s3/m/9b2d2fdaf01dc281e43af085.png)
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1..答案:0 2.答案:1 3.答案:2121+=x y 4..答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1.2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos(三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim 0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形成性考核册参考答案【精品资料】下载
![经济数学基础形成性考核册参考答案【精品资料】下载](https://img.taocdn.com/s3/m/e60e38b4a76e58fafbb003a5.png)
− cos 2x
4
1
1
π
∴
原式= ( 2
2
1 = (2
+
3
x2 ) 2
+
c
3
(6) 原式= 2∫ sin xd x = −2cos x + c
(7) ∵(+) x
sin x 2
(-) 1
x − 2 cos
2
(+) 0
x − 4sin
2
∴原式= − 2x cos x + 4sin x + c
2
2
(8) ∵ (+) ln(x +1)
1
(-) − 1
x−2 = lim
x→1 x + 1 =−1
2 (x - 2)(x - 3)
(2). 原式= lim x→2 (x - 2)(x - 4) x−3
= lim x→2 x − 4 1 = 2
( 1− x −1)( 1− x +1) (3). 原式= lim
x→0
x( 1− x +1)
= lim −1 x→0 1 − x +1
经济数学基础作业 2
1. 2x ln 2 + 2 2. sin x + c 3. − 1 F (1 − x2 ) + c 4. 0 2
二、单项选择:
1.D 2.C 3.C 4.D 5.B 三、计算题:
1、计算极限
∫ (1) 原式= (3) x dx
e
=
(3)x e
3 ln
+c
=
3x ex (ln 3 −1)
∴ dy = ( 3
x−
经济数学基础形成性考核册及参考答案
![经济数学基础形成性考核册及参考答案](https://img.taocdn.com/s3/m/f0b07bbbbe1e650e53ea99ab.png)
经济数学根底形成性考核册及参考答案作业〔一〕〔一〕填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,那么________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:2121+=x y 4.设函数52)1(2++=+x x x f ,那么____________)(='x f .答案:x 2 5.设x x x f sin )(=,那么__________)2π(=''f .答案:2π- 〔二〕单项选择题 1. 函数212-+-=x x x y 的连续区间是〔 〕答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 以下极限计算正确的选项是〔 〕答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,那么d y =〔 〕.答案:B A .12d x x B .1d x x ln10C .ln10x x d D .1d xx 4. 假设函数f (x )在点x 0处可导,那么( )是错误的.答案:B A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,以下变量是无穷小量的是〔 〕. 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限〔1〕=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-〔2〕8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21 〔3〕x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x〔4〕=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x 〔5〕=→x x x 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →=53〔6〕=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:〔1〕当b a ,为何值时,)(x f 在0=x 处有极限存在? 〔2〕当b a ,为何值时,)(x f 在0=x 处连续.答案:〔1〕当1=b ,a 任意时,)(x f 在0=x 处有极限存在; 〔2〕当1==b a 时,)(x f 在0=x 处连续。
电大经济数学基础形成性考核册答案[]
![电大经济数学基础形成性考核册答案[]](https://img.taocdn.com/s3/m/4ed28f0f5901020207409c3a.png)
电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:02.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D )A .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =(B ).A .12d x x B .1d x x ln10C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x时,下列变量是无穷小量的是( C ).A .x2 B .xx sin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x(3)2111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim 22=--→x x x原式=2)2sin(2lim2+++→x x x x=2)2sin(lim)2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a(2). 1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a e dyax )cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x 23112+-='∴dx e xx dy x )123(12-=(7)2e cos xx y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx -+-∴dx xe xxdyx )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导:0322=+'--'⋅+y x y y y x 32)2(--='-x y y x y所以 dx xy x y dy---=232(2) 方程两边对x 求导:4)()1)(cos(='+⋅+'++y x y e y y x xy xy xy ye y x y xe y x -+-='++)cos(4])[cos( 所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x x y +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2)212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3.若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2.答案:c x F +--)1(212 4.设函数___________d )1ln(d d e 12=+⎰x x x .答案:0 5.若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,(D )是x sin x 2的原函数. A .21cos x 2B .2cos x 2C .-2cos x 2D .-21cos x 22. 下列等式成立的是( C ). A .)d(cos d sin x xx =B .)1d(d ln x x x =C .)d(22ln 1d 2x xx =D .x x xd d 1= 3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x x xd 124. 下列定积分计算正确的是(D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x (三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x x x+-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x xd 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin2(7)⎰x xx d 2sin答案:∵(+) x 2sinx (-) 1 cos2- (+) 0 sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln( 2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 20⎰π答案:∵ (+)x(+)0 2cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5)x x x d ln e1⎰答案:∵ (+) xln x(-)x 122x∴ 原式=⎰-e e xdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)xx e -(-)1 -xe - (+)0 xe -∴⎰-----=44)(x x x e xe dx xe =154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是.答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵XBX A =+的解______________=X .答案:A B I1)(--5.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). `A .111)(---+=+B A B A ,B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB =4. 下列矩阵可逆的是(A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321(2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济数学基础形成性考核册参考答案经济数学基础作业1一、1、0;2、1;3、x -2y +1=0;4、2x ;5、-2π;二、1、D ;2、B ;3、B ;4、B ;5、B ; 三、1、计算极限 (1)解:原式=1lim →x )1)(1()2)(1(+---x x x x =1lim →x 12+-x x = -21(2)解:原式=2lim→x )4)(2()3)(2(----x x x x =2lim →x 43--x x =21(3)解:原式=0lim→s x x x )11(11+---=0lim→s 111+--x=-21 (4)解:原式=∞→s lim 22423531xx x x +++-=21 (5)解:∵x 0→时,x x sm x x sm 5~53~3∴0lim →x x sm x sm 53=0lim →x x x 53=53(6)解:2lim→x )2sin(42--x x =2lim →x 242--x x =2lim →x (x+2) =42、设函数:解:lim →x f(x)=lim →x (sinx1+b)=b +→0lim x f(x)=+→0lim x xxsin 1≤(1)要使f(x)在x=0处有极限,只要b=1, (2)要使f(x)在x=0处连续,则-→0lim x f(x)=+→0lim x =f(0)=a即a=b=1时,f(x)在x=0处连续 3、 (1)解:y '=2x +2xlog 2+2log 1x(2)解:y '=2)()()(d cx c b ax d cx a ++-+ =2)(d cx bcad +-(3)解:y '=[)53(21--x ]'=-21)53(23--x ·(3x-5)'=-23)53(23--x(4)解:y '=x21-(e x +xe x)=x21-e x -xe x(5)解:∵y '=ae ax sinbx+be ax cosbx=e ax (asmbx+bcosbx)∴dy=e ax (asmbx+bcosbx)dx(6)解: ∵y '=-21xex1+23x21 ∴dy=(-21xex1+23x )dx(7)解:∵y '=-x21+sinx +xex 22-∴dy=(xex 22--x21 sinx )dx(8)解:∵y '=nsin n -1x+ncosnx ∴dy=n(nsin n -1+ cosnx)dx(9)解:∵y '=)1221(1122x x x x ++++ =211x + ∴dx xdy 211+=(10)解:x x xxxot x xx xy y 652321cot 226121116121ln 1csc 1222--+-⋅='-++=4、(1)解:方程两边对x 求导得 2x+2yy '-y-xy '+3=0 (2y-x)y '=y -2x -3 y '=xy x y ---232∴dy=dx xy x y ---232(2)解:方程两边对x 求导得: Cos(x+y )·(1+y ')+e xy(y+xy ')=4 [cos(x+y)+xe xy]y '=4-cos(x+y)-ye xyy '=xyxe y x yexyy x ++-+-)cos()cos(45.(1)解:∵y '=22212)1(11X x x x +='+•+ 2222)1(22)1(1)12(X X X X X XY +•-+='+=''=222)1()1(2X X +-(2)解:)()1(2121'-='-='-x xxx xy =x x 21212123----)(21212123'-=''---x x yx x 41432325--+14143)1(=+=''y 经济数学基础作业2一、1、2xln 2+2 2、sinx+C 3、-C x F +-)1(212 4、ln(1+x 2) 5、-211x +二、1、D 2、C 3、C 4、D 5、B三、1、(1)解:原式=⎰dx e x)3(= C ee x+3ln )3(=C x e+-13ln )3( (2)解:原式=dx XX X X X )21(2⎰++=C x x x +++52342252321(3)解:原式=⎰++-dx x x x 2)2)(2(=⎰-dx x )2( =C x x +-222(4)解:原式=-⎰--)21(21121x d x =-x 21ln 21-+C(5)解原式=⎰+2212)2(21dx x =⎰++)2()2(212212x d x =C x ++232)2(31(6)解:原式=Z⎰x d x sin=-2cos C x +(7)解:原式=-2⎰2cosx xd =-2xcos ⎰+dx x x 2cos 22 =-2xcos C xsm x ++242(8)解:原式=⎰++)1()1ln(x d x =(x+1)ln(x+1)-⎰++)1ln()1(x d x =(x+1)ln(x+1)-x+c2、(1)解:原式=⎰⎰-+--dx x dx x )1(12)1(11=(x-12)2(11)222x x x -+- =2+21= 25 (2)解:原式=⎰-x d e x1121=121xe -=ee -(3)解:原式=⎰+x d xe ln ln 1113 =⎰++-)1(ln )ln 1(1213x d x e =1)ln 1(2321e x + =4-2 =2(4)解:原式=x xdsm 2212⎰π =⎰-xdx sm x xsm 2021022122ππ =02cos 412πx =21-(5)原式=⎰x x xd e 2ln 1=dx x x e e x x ⎰--12211ln 22=⎰-dx x e e 2122 =14222e x e -=)414(222--e e =412+e (6)解:原式=⎰⎰-+dx xe dx x 0404 =4+⎰--xxde4 =⎰-----)(04044x d e xex x=04444xe e----=14444+----e e=455--e经济数学基础作业3一、 1. 3 2. -72 3. A 与B 可交换 4. (I-B )-1A 5.3100210001-二、1.C 2.A 3.C 4.A 5.B 三、1、解:原式=⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯-⨯+⨯-0315130501121102 =⎥⎦⎤⎢⎣⎡5321 2、解:原式=⎥⎦⎤⎢⎣⎡⨯-⨯⨯-⨯⨯+⨯⨯+⨯0310031002100210 =⎥⎦⎤⎢⎣⎡00003、解:原式=[]24)1(50231⨯+-⨯+⨯+⨯-=[]02、计算:解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1423012154274001277197=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-------7724300012675741927 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423012121553、设矩阵:解:22002321013211023210132)2(21)1(110111132=--=--+---=A0110211321==B0=•=∴B A AB4、设矩阵:解:A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110214742101112421λλ要使r (A )最小。
只需2)(492147==⇒-=A r 此时λλ5、求矩阵A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----30312114247145853352⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⇒-0331000021144585235233313114211445852352)2()2(∴r(A)=3 6、(1)解:[A 1]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---101013001340790231100010001111103231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⇒943732311100010001943013001100790231 ∴A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡943732311 (2)解:[A 1]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------2101720311000100011000100011121243613∴A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---2101720317、解:设即由B XA x x x x X =⎥⎦⎤⎢⎣⎡=4321⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++++322152523343214321x x x x x x x x 即0,125213212121==⇒=+=+x x x x x x1132523433434=-=⇒=+=+x x x x x x ∴X=⎥⎦⎤⎢⎣⎡-1101四、1、证:B 1、B 2都与A 可交换,即B 1A=AB 1 B 2A=AB 2 (B 1+B 2)A=B 1A+B 2A=AB 1+AB 2AA (B 1+B 2)=AB 1+AB 2∴(B 1+B 2)A=A (B 1+B 2)(B 1B 2)A=B 1(B 2A )=B 1(AB 2)=(B 2A )B 2=AB 1B 2 即B 1+B 2、B 1B 2与A 可交换。
2、证:(A+A T)T=AT+(A T)T=A T+A=A+A T故A+A T为对称矩阵 (AA T)T=(A T)A T=AAT(AA T )T =A T (A T )T =A TA3、证:若AB 为对阵矩阵,则(AB )T=B T A T=BA=AB∵AB 为几何对称矩阵 知A T=A B T=B 即AB=BA 反之若AB=BA (AB )T=B T A T=BA=AB 即(AB )T=AB ∴AB 为对称矩阵。
4、设A 为几何对称矩阵,即A T=A (B -1AB )T=B T A T(B -1)T=B T A T(B T)T(∵B -1=B T) =B -1AB ∴B -1AB 为对称矩阵经济数学基础作业4一、 1、 1<x ≤4且x ≠2 2、x=1, x=1,小值 3、P 21- 4、 4 5、 ≠-1 二、1、 B 2、 C 3、 A 4、 C 5、 C 三、1、(1)解:y x e e dxdy•=dx e dy ex y =1⎰=-x x y d fe dy e-e -y=e x+C 即 e x+e -y=C (2)解:3y 2dy=xe xdx⎰⎰=dx xe dy y x 23y 3=xe x-e x+C2、(1)解:方程对应齐次线性方程的解为:y=C(X+1)2由常数高易法,设所求方程的解为:y=C(x)(x+1)2 代入原方程得 C '(x )(x+1)2=(x+1)3C '(x)=x+1C(x)=c x x ++22故所求方程的通解为:(2)1_)(22+++x C x x (2)解:由通解公式[]⎰+∂=⎰⎰-Cdx e x e y dx x p dx x )()()(其中 P (x )=-代入方式得,22)(,1x xsm x Q x= Y=e⎥⎦⎤⎢⎣⎡+•⎰⎰-⎰C dx ex xsm dx xdx x1122 =e lnx[]⎰+•-Cdx ex xsm cnx22=x[]⎰+C xdx sm 22=cx-xcos2x3、(1)y '=e 2x/e y即e ydy=e 2xdx⎰⎰=dx e dy ex y2e y=C e x+221 将x=0,y=0代入得C=21 ∴e y=的特解为满足0)0()1(212=+y e x(2)解:方程变形得y '+x e x Q x x P ,x e x y x x ===)(,1)(其中为一阶线性微分方程C dx e x e xy dxx x +=⎰1代入方式得Y=e⎥⎦⎤⎢⎣⎡+⎰⎰⎰-C dx e x e dx xx dx x11=⎥⎦⎤⎢⎣⎡+⎰-C dx e x e e x x x ln ln =[]⎰+C dx e x x1=xcexx+1 将x=1,y=0代入得C=-e ∴y=xee x x +1 为满足y (1)=0的特解。