中国联通金融大数据拓展方法和经验分享

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国联通金融大数据拓展方法和经验分享
2020年5月
C 目录 ONTENTS
1 金融行业现状探讨分析 2 联通大数据金融行业合作探索 3 联通大数据金融行业合作案例
金融行业为什么需要大数据?
宏观政策
市场痛点
“十三五”国家信息化规划 •完善金融服务,积极发展新型 服务。支持通过债券融资方式支 持信息化发展。 中国银行业发展“十三五”规 划 •发挥大数据价值,优化客户体 验,增加客户黏性。 中国保险业发展“十三五”规 划 •推动保险反欺诈制度建设和技 术发展,发挥大数据创新作用。
金融行 业大数

运营团队
专业金融大数据团队,丰富的开 发运营经验
数据分析整合能力
金融行业存量结构化和非结构化数据 全面整合
数据建模能力
结合联通数据及金融行业数据,开发 金融行业产品营销模型,征信模型,
关系圈模型
产品应用开发
丰富的金融产品应用开发经验,满足 用户多样需求
大数据平台搭建
元数据实现平台松耦合可扩展,搭建 金融大数据平台
发展策略
找准需求:金融行业聚焦征信、 精准营销、风险防范等; 做优方案:依托总、省产业互 联网,聚焦客户大数据应用场景 化方案设计,提升大数据解决方 案水平; 优化产品:尝试针对金融细分 领域设计优化大数据行业应用, 反向推动公司产品升级; 形成粘性:拉动公司其他业务 产品发展(大数据 +BPO+COP+AI)。
4
风险控制
进行金融产品售前, 售中和售后的全方 位风险控制,降低 金融风险
5
联通大数据在金融行业优势
以用户实名认证信息为基础,结合社交,消费,位置,上网等诸多数据,联通大数据在金融 方面具有众多优势
海量数据
真实身份数据,上网数据,社交数据, 位置数据,消费数据,通信数据,终 端数据等多种数据准确获取
客户收入,消费,投 资行为比较有规律, 时间及金额较为稳定
金融数据特征明显,如 长期收入情况,支出情 况,投资情况,短期的 消费异常,都具有明显 的特征和价值
金融行业发展大数据得天独厚的优势
传统金融业的结构化数据和互联网行业的非 结构化数据一起构成了互联网金融的核心资产。
大数据作为一种资源和工具,可以用于互 联网金融的风险评估和市场营销,甚至监管。
金融行业与大数据高度契合
金融行业本身数据价值极高,适合通过大数据进行数据挖掘,实现数据价值 金融行业数据高价值体现在以下方面:
交易数据
数据延续
数据稳定
特征明显
金融行业多是用户存 款,消费,投资等金 融账户数据,数据本 身包含用户消费能力, 价值极高
金融行业保存有客户 长期的数据,对客户 长时间的行为分析有 巨大价值
以往客户数据
互联网数据
ETL批量数据采集传输
运营商数据
...
1、金融大数据平台-自助数据应用
通过自助工具应用,提供了常用核心功能满足内部应用人员的日常数据需求,通过 图形化工具代替编程语言,通过图形配置实现报表、分析、取数等功能的个性化数 据需求,提升数据服务效率;或直接进行报表查分析查询。
保险
云计算的本质特性使它成为大 数据的理想计算环境和技术平台。
证券
大数据挖掘 助力金融行业
金融行业发展大数据得天独厚的优势
✓数据众多。
银 行
✓拥有处理传统数据的经验; ✓较高的薪酬能够吸引到实施大数据的人才;
✓充分的预算可以利用多项大数据新技术。
金融行业发展现状探讨分析
经济和社会快速发展,人们对金融产品的需求增加,个性化趋势明显 互联网金融行业兴起,金融行业竞争日趋激烈,面临更多问题:
数据孤立
客群模糊
Leabharlann Baidu
不良资产
内部存量数据丰 富,但数据孤立, 分割严重,分析
2
客户群体分散, 缺乏准确分析, 触达用户手段
4
金融不良资产增 长,风险控制尤 为关键
难度大
1
数据单一
3
客户流失
5
数据种类单一, 需要整合外部数 据进行完善
同质化产品众多, 客户流失严重, 需要进行沉睡客 户唤醒
C 目录 ONTENTS
精确、高密度的金融业务数据 是金融机构最基础和最核心的数 据资产,如何将这些数据整合利 用起来?对数据进行加工处理? 经济持续发展迫切需求征信服 务,特别是在住房信贷、汽车信 贷及信用卡的引入等推动下快速 增长的消费信贷市场。以央行征 信中心为代表的政府主导征信体 系已无法满足市场需要。如何帮 助银行提高风控?降低风险?
1 金融行业现状探讨分析 2 联通大数据金融行业合作探索 3 联通大数据金融行业合作案例
金融行业大数据可能合作方向
结合金融行业的客户需求及联通的大数据能力,可以在以下方面进行大数据合作:
数据整合
整合内部庞大的 存量数据,并进 行数据清洗、加 工、分析、呈现 等一系列处理, 展现数据价值
1
数据完善
中国联通金融行业大数据探索
结合掌握的金融行业用户需求,联通大数据进行以下金融行业大数据合作探索
金融大数据整合:
1
金融大数据平台搭建 内部存量数据采集、清洗、加工,分析
外部数据引入、整合
2
联通金融大
数据探索
3
金融风险控制: 贷款贷前贷中身份验证、风险控制 贷后欠款催缴
客户画像分析: 个人精准画像分析 区域群体画像特征分析
客户全景视图
自定义报表
日志分析
对外数据合作
统一数据服务接口
统一接口 服务调度
权限 数据安全导出
数据应用区 Redis
Hbase MPP 数据实时查询
流式计算区 Storm Redis
数据实时运算
数据服务对外接口
数据存储和分析区 Hive/Hbase
Spark MapReduce 数据离线运算
Flume实时数据采集传输
基于金融行业本身 数据,结合其他行 业数据,进行数据 修补与完善,形成 完整的数据结构, 覆盖整个金融体系
2
客户分析
基于产品定位和 存量客户,进行 精准的产品定位 和客户推广,开 发定制化产品, 满足不同客户的
需求
3
客户触达
多样化触达,并 针对客户的偏好, 进行沉睡用户唤 醒,流失用户的 召回工作,提升 产品的响应程度
金融产品精准营销:
金融产品客户精准营销
4
个性化定制产品服务
沉睡用户唤醒
流失用户召回
5
金融网点选址: 新网点选址评估
现有网点客群分析,影响力评估
1、金融大数据整合
为金融行业搭建异构大数据平台,在整合金融行业已有存量数据基础上,结合运营商数据,提升数据价值
数据 应用层
数据 服务层
数据 运算层
数据 交换层 数据 源层
相关文档
最新文档