运筹学(胡运权第二版)习题答案(第二章)
《运筹学》胡运权清华版-2-01对偶问题
![《运筹学》胡运权清华版-2-01对偶问题](https://img.taocdn.com/s3/m/c9d5de680975f46527d3e1c0.png)
一、对偶问题的提出
二、原问题与对偶问题的数学模型
继续
三、原问题与对偶问题的对应关系
返回
一、对偶问题的提出
题对
偶 问
实例:某家电厂家利用现有资源生产两种
产品, 有关数据如下表:
上页 下页 返回
设备A 设备B 调试工序
产品Ⅰ 产品Ⅱ
0
5
6
2
1
1
利润(元) 2
1
D
15时 24时 5时
a11x1 a12x2 ... a1n xn b1 .a..21x1 a22x2 ... a2n xn b2 am1x1 am2 x2 ... amn xn bm xi 0,i 1,2,..., n
题对 偶 问
上页 下页 返回
对偶问题
min w b1 y1 b2 y2 ... bm ym
y 调试工序 –––– 元/3时
付出的代价最小, 且对方能接受。
厂家觉得比
收
自己生产有利。
购
题对 偶 问
上页 下页 返回
厂家能接受的条件:
出 用同让等代6 y数价2量应的不y资低3 源于 2 5 y自1己生2产y的2 利润y3。 1
收购方的意愿:
单位产品Ⅰ出租 收入不低于2元
单位产品Ⅱ出租 收入不低于1元
y1 a11
a12...
a1n ≤ b1
偶 问
y2 a21 ... ...
a22... ...
a2n
≤
... b2
... ...
题
ym am1 am2 ... amn ≤ bm
≥ ≥ ≥
max c1 c2 ... cn
题对 偶 问
运筹学教程(第二版)(胡运权)课后答案(清华大学出版社)
![运筹学教程(第二版)(胡运权)课后答案(清华大学出版社)](https://img.taocdn.com/s3/m/6304685ace84b9d528ea81c758f5f61fb736287f.png)
运筹学教程(第⼆版)(胡运权)课后答案(清华⼤学出版社)运筹学教程(第⼆版)习题解答第⼀章习题解答运筹学教程1.1 ⽤图解法求解下列线性规划问题。
并指出问题具有惟⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。
1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5 x 1 + 6 x 2≤ 82 5 ≤ x ? 1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3) 1 2 x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 21 2 ? ≥ 12 2 1 ? x , x ≥ 0 .? ?2 x 1 + x 2 ≤ 2st ?3x + 4 x (2) max Z = 3x 1 + 2 x 2x , x ≥ 0 1 2该问题⽆解≥ 12 2 1 ? ? 2 x 1 + x 2 ≤ 2st .?3 x +4 x ( 2 ) max Z = 3 x 1 + 2 x 2第⼀章习题解答3 2 1x = 1, x = 1, Z = 3是⼀个最优解⽆穷多最优解,1 2x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 2该问题有⽆界解1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5x 1 + 6 x 2第⼀章习题解答唯⼀最优解, x 1 = 10, x 2 = 6, Z = 16 ≤ 82 5 ≤ x ?1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3)第⼀章习题解答运筹学教程1.2 将下述线性规划问题化成标准形式。
《运筹学教程》第二章习题答案
![《运筹学教程》第二章习题答案](https://img.taocdn.com/s3/m/5873a0cf58f5f61fb73666a4.png)
《运筹学教程》第二章习题答案1、(1)解:引入松弛变量x4≥0,x5≥0,化不等式为等式为:minz=2X1 +3X2+4X3s.t. X1+3X2+2X3+X4=74X1+2X2+X5=9X1,X2,X4,X5≥0化自由变量为非负,令X3=X3′-X3〞,X3′,X3〞≥0 :minz=2X1 +3X2+4X3′-4X3〞s.t. X1+3X2+2 X3′-2 X3〞+X4=74X1+2X2+X5=9X1,X2, X3′,X3〞,X4,X5 ≥0(2)解:引入松弛变量x5≥0,剩余变量X6≥0,化不等式为等式为:maxz=X1 -5X2+4X3- X4s.t. X1+2X3+X5=7X2-2X4-X6=9X1,X2,X4,X5 ,X6≥0化自由变量为非负,令X3=X3′-X3〞,X3′,X3〞≥0 :maxz=X1 -5X2+4X3′-4X3〞- X4s.t. X1+2 X3′-2 X3〞+X5=7X2-2X4-X6=9X1,X2, X3′,X3〞,X4,X5 , X6≥0化极大的目标函数为极小的目标函数:minz=-X1+5X2-4X3′+4X3〞+X4s.t. X1+2 X3′-2 X3〞+X5=7X2-2X4-X6=9X1,X2, X3′,X3〞,X4,X5 , X6≥02、(1)是不等式表示下图阴影区域,过阴影部分任意两点的直线仍在该区域内。
(2)不是不等式表示下图阴影区域,过阴影部分且通过曲线上部的直线上的点不完全在该区域内。
(3)不是 不等式表示下图阴影区域,过阴影部分且通过圆内部的直线上的点不完全在该区域内。
3、在以下问题中,指出一组基础变量,求出所有基础可行解以及最优解。
(1)123123123123m ax 2..2644,,0z x x x s t x x x x x x x x x =+-⎫⎪++≤⎪⎬+-≤⎪⎪≥⎭解:将上式化成标准形式,如下:1231234123512345m in 2..2644,,,,0p x x x s t x x x x x x x x x x x x x =--+⎫⎪+++=⎪⎬+-+=⎪⎪≥⎭从上式中可以得出系数矩阵为[]12345112101411A P P P P P ⎡⎤==⎢⎥-⎣⎦, 取基础变量为45,x x ,令非基变量123,,x x x =0,解方程组123412352644x x x x x x x x +++=+-+=得基础可行解(1)(0,0,0,6,4)T x =同理得基础解:(2)(0,6,0,0,20)T x =-,(3)(0,0,3,0,7)T x =,(4)(0,0,4,24,0)T x =-,(5)(0,1,0,5,0)Tx =,(6)1420(0,,,0,0)99Tx =,(7)(6,0,0,0,2)T x =-,(8)(4,0,0,2,0)Tx=,(9)202(,,0,0,0)33Tx =-,(10)142(,0,,0,0)33Tx =。
运筹学清华大学出版社胡运权着课后答案
![运筹学清华大学出版社胡运权着课后答案](https://img.taocdn.com/s3/m/7987ed06dd3383c4ba4cd28b.png)
�12 x1 � 3 x2 � 6 x3 � 3 x4 � 9
(1)
st
��8 ��3
x1 x1
� �
x2 x6
� 4 x3 �0
�
2 x5
� 10
�� x j � 0�, j � 1,� ,6�
min Z � 5 x1 � 2 x2 � 3 x3 � 2 x4
� x1 � 2 x2 � 3 x3 � 4 x4 � 7
运筹学教程�第二版� 习题解答
运筹学教程
1.1 用图解法求解下列线性规划问题。并指出问 题具有惟一最优解、无穷多最优解、无界解还是无可 行解。
min Z � 2 x1 � 3 x2 � 4 x1 � 6 x2 � 6
(1) st .�� 2 x1 � 2 x2 � 4 �� x1 , x2 � 0
Z
0
0.5
2
0
5
0
0
1
1
5
2/5
0
11/5
0
43/5
page 10 6 January 2011
School of Management
运筹学教程
1.4 分别用图解法和单纯形法求解下述线性规划 问题�并对照指出单纯形表中的各基可行解对应图解 法中可行域的哪一顶点。
max Z � 10 x1 � 5 x2 �3 x1 � 4 x2 � 9
max Z � x1 � x2 �6 x1 � 10 x2 � 120 (3) st.�� 5 � x1 � 10 �� 5 � x2 � 8
max Z � 3x1 � 2 x2 �2 x1 � x2 � 2
(2) st.��3x1 � 4 x2 � 12 �� x1, x2 � 0
运筹学 胡运权 第二章
![运筹学 胡运权 第二章](https://img.taocdn.com/s3/m/3dfc48165f0e7cd1842536eb.png)
第1页
第二章 线性规划的对偶理论
一、问题的提出: 设用两种原料(A、B)
生产三种产品的一个生产计划问题
m f ( x) = x1 + 2x2 + 4x3 ax x1 + 2x2 + 2x3 ≤ 25 s.t. 2x1 + x2 + 2x4 ≤15 x1, x2 , x3 ≥ 0
华东师范大学
《运筹学》 运筹学》
第11页 11页
弱对偶性的推论: 对偶性的推论:
max问题的任何可行解目标函数值是其对偶min问 题目标函数值的下限; min问题的任何可行解目标 函数值是其对偶max问题目标函数值的上限。 如果原max(min)问题为无界解,则其对偶 min (max) max(min) 问题无可行解。 如果原max(min)问题有可行解,其对偶 min (max) 问题无可行解,则原问题为无界解。 存在原问题和对偶问题同时无可行解的情况。
华东师范大学
14 December 2010
《运筹学》 运筹学》
第10页 10页
1. 弱对偶性定理(P55) 对偶问题(min)的任何可行解Y0,其目 标函数值 bTY0 总是不小于原问题(max) 的任何可行解X0的目标函数值CTX0, 即 CTX0 ≤ bTY0
14 December 2010
14 December 2010
华东师范大学
《运筹学》 运筹学》
第8页
表2.1 对偶变换的规则
原问题(max,≤) ≤ 原问题 系数矩阵 A 目 标 系数 C 常数 项 b 第 i 行约束条件为 ≤ 型 第 i 行约束条件为 ≥ 型 第 i 行约束条件为 = 型 决策变量 xj ≥ 0 决策变量 xj ≤ 0 决策变量 xj ±不限 ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ 对偶问题(min,≥) ≥ 对偶问题 系数矩阵 AT 常数项 b 目 标 系数 C 对偶变量 yi ≥ 0 对偶变量 yi ≤ 0 对偶变量 yi ±不限 第 j 行约束条件为 ≥ 型 第 j 行约束条件为 ≤ 型 第 j 行约束条件为 = 型
运筹学胡运权第02章
![运筹学胡运权第02章](https://img.taocdn.com/s3/m/680967fa7c1cfad6195fa7eb.png)
•极大化问题的每个约束对应于极小化问题 的一个变量,其每个变量对应于对偶问题 的一个约束。
max Z c1 x1 c2 x2 cn xn
对 偶 问 题 的 定 义
a11 x1 a12 x 2 a1n x n (, )b1 a 21 x1 a 22 x 2 a 2 n x n (, )b2 a x a x a x (, )b m2 2 mn n m m1 1 x j 0( 0, 或符号不限) j 1 ~ n
c3 x3 c3 x3 max z c1 x1 c2 x2
对偶变量 y1 y2′
y2″
y3′
非 对 偶 形 式 的 原对 偶 问 题
例2-4
b2 y2 b3 y3 min w b1 y1 b2 y2
令各约束对应的对偶变量分别为y1、y2′、y2″、 -y3′
(2.4a) (2.4b) (2.4c)
(2.4d)
先转换成对称形式,如下:
a11 x1 a12 x2 a13 x3 a13 x3 b1 a x a x a x a x b 2 21 1 22 2 23 3 23 3 s.t. a21 x1 a22 x2 a23 x3 a23 x3 b 2 a x a x a x a x b3 31 1 32 2 33 3 33 3 x1 0,x2 0,x3 0,x3 0
a11 y1 a21 y2 a21 y2 a31 y3 c1 a y a y a y a y c 2 12 1 22 2 22 2 32 3 s.t. a13 y1 a23 y2 a23 y2 a33 y3 c 3 a y a y a y a y c 3 23 2 33 3 13 1 23 2 y1 0,y2 0,y2 0,y3 0
清华大学《运筹学教程》胡运权主编课后习题答案
![清华大学《运筹学教程》胡运权主编课后习题答案](https://img.taocdn.com/s3/m/3dd6ac1c2bf90242a8956bec0975f46526d3a75b.png)
3 x1 x2 x5 3
st
4 x1 3 x2 x3 x6
x1
2 x2
x4
4
6
x j 0(, j 1,,4)
cj
CB
xB
b
-M x5 3
-M
x6
6
0
x4
4
cj zj
-4 x1 1
-M x6 2
0
x4
3
cj zj
-4
-1 0
x1
x2
x3
3
1
0
4
3 -1
1
20
7M-4 4M-1 -M
小于0 ,因此已经得到唯一最优解,最优解为:
X * 2 5 ,9 / 5,1,0T
max Z 10x1 15x2 12x3
5x1 3x2 x3 9
(4)
st
5x1 2x1
6x2 x2 x3
15x3 5
15
x j 0(, j 1,,3)
39
1.8 已知某线性规划问题的初始单纯形
表和用单纯形法迭代后得到下面表格,试求括
弧中未知数a∼l值。
项目
X1 X2 X3 X4 X5
X4 6 (b) (c) (d) 1 0
X5 1 -1 3 (e) 0 1
Cj-Zj
a -1 2 0 0
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
Cj-Zj
0 -7 (j) (k) (l)
6 4
x1 , x2 0
无穷多最优解
(蓝 色 线 段 上 的 点 都 是 最优 解 )
x1
6 5
,
x2
运筹学胡运权 部分课后习题答案
![运筹学胡运权 部分课后习题答案](https://img.taocdn.com/s3/m/50995925e2bd960590c67778.png)
第一章P43-1.1(1)当取A (6/5,1/5)或B (3/2,0)时,z 取最小值3。
所以该问题有无穷多最优解,所有线段AB 上的点都是最优解。
P43-1.2(1)令''4'44x x x -=,z z -='''4'4321'55243max x x x x x z +-+-=,,,,,,232142222465''4'43216''4'43215''4'4321''4'4321≥=-+-++-=+-+-+=-+-+-x x x x x x x x x x x x x x x x x x x x x x x xP43-1.4(1) 图解法:A(0,9/4),Z 1=45/4;B(1,3/2),Z 2=35/2;C(8/5,0),Z 3=16。
单纯形法:10 5 0 0C b X b b x1x2x3x4θ0 x39 3 4 1 0 30 x48 5 2 0 1 8/5δ10 5 0 00 x321/5 0 14/5 1 -3/5 3/210 x18/5 1 2/5 0 1/5 4δ0 1 0 -25 x23/2 0 1 5/14 -3/1410 x1 1 1 0 -1/7 2/7δ0 0 -5/14 -25/14依次相当于:原点;C;B。
P44-1.7(1)2 -1 2 0 0 0 -M -M -MC b X b b x1x2x3x4x5x6x7x8x9θ无界解。
两阶段法:阶段二:P45-1.10证明:CX (0)>=CX*,C*X*>=C*X (0) CX (0)-CX*+C*X*-C*X (0)>=0,即(C*-C)(X*-X (0))>=0。
P45-1.13设饲料i 使用x i (kg ),则543218.03.04.07.02.0m in x x x x x z ++++=s.t. 7001862354321≥++++x x x x x 305.022.05.054321≥++++x x x x x1008.022.05.054321≥++++x x x x x0,,,,54321≥x x x x x第二章P74-2.1(1)321532m ax y y y w ++=22321≤++y y y 243321≤++y y y 4334321=++y y y 无约束321,0,0y y y ≤≥P75-2.4(1),06353322232max 212121212121≥≥≤-≤+≤-≤++=y y y y y y y y y y y y w(2) (8/5,1/5)(3) 无穷多最优解。
《运筹学》课堂作业及相应答案解析
![《运筹学》课堂作业及相应答案解析](https://img.taocdn.com/s3/m/c907ecd248649b6648d7c1c708a1284ac85005d5.png)
第一部分绪论第二部分线性规划与单纯形法1 判断下列说法是否正确:(a)图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;(b)线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;(c)线性规划问题的每一个基解对应可行域的一个顶点;(d)如线性规划问题存在可行域,则可行域一定包含坐标的原点;(e)对取值无约束的变量x i,通常令其中,在用单纯形法求得的最优解中有可能同时出现(f)用单纯形法求解标准型的线性规划问题时,与对应的变量都可以被选作换入变量;(g)单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;(h)单纯形法计算中,选取最大正检验数δk对应的变量x k作为换入变量,将使目标函数值得到最快的增长;(i)一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果;(j)线性规划问题的任一可行解都可以用全部基可行解的线性组合表示;(k)若x1,x2分别是某一线性规划问题的最优解,则也是该线性规划问题的最优解,其中λ1,λ2可以为任意正的实数;(1)线性规划用两阶段法求解时,第一阶段的目标函数通常写为X ai为人工变量),但也可写为,只要所有k i均为大于零的常数;(m)对一个有n个变量、m个约束的标准型的线性规划问题,其可行域的顶点恰好为个;(n)单纯形法的迭代计算过程是从一个可行解转转换到目标函数值更大的另一个可行解;(o)线性规划问题的可行解如为最优解,则该可行解一定是基可行解;(p)若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;(q)线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;(r)将线性规划约束条件的“≤”号及“≥”号变换成“=”号,将使问题的最优目标函数值得到改善;(s)线性规划目标函数中系数最大的变量在最优解中总是取正的值;(t)一个企业利用3种资源生产4种产品,建立线性规划模型求解得到的最优解中,最多只含有3种产品的组合;(u)若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解;(v)一个线性规划问题求解时的迭代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。
运筹学课后答案2
![运筹学课后答案2](https://img.taocdn.com/s3/m/b7989722cfc789eb172dc8a5.png)
运筹学(第2版)习题答案2第1章 线性规划 P36~40第2章 线性规划的对偶理论 P68~69 第3章 整数规划 P82~84 第4章 目标规划 P98~100 第5章 运输与指派问题 P134~136 第6章 网络模型 P164~165 第7章 网络计划 P185~187 第8章 动态规划 P208~210 第9章 排队论 P239~240 第10章 存储论 P269~270 第11章 决策论 Pp297-298 第12章 博弈论 P325~326 全书360页由于大小限制,此文档只显示第6章到第12章,第1章至第5章见《运筹学课后答案1》习题六6.1如图6-42所示,建立求最小部分树的0-1整数规划数学模型。
【解】边[i ,j ]的长度记为c ij ,设⎩⎨⎧=否则包含在最小部分树内边0],[1j i x ij数学模型为:,12132323243434364635365612132434343546562324463612132446362335244656121324354656m in 52,22,233344,510ij ijij i j ij Z c x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ==++≤++≤++≤++≤+++≤+++≤+++≤++++≤++++≤+++++≤=∑或,[,]i j ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩所有边6.2如图6-43所示,建立求v 1到v 6的最短路问题的0-1整数规划数学模型。
图6-42【解】弧(i ,j )的长度记为c ij ,设⎩⎨⎧=否则包含在最短路径中弧0),(1j i x ij数学模型为:,1213122324251323343524344546253545564656m in 100,00110,(,)ijiji jij Z cx x x x x x x x x x x x x x x x x x x x x x i j =⎧+=⎪---=⎪⎪+--=⎪⎪+--=⎨⎪++-=⎪⎪+=⎪=⎪⎩∑或所有弧 6.3如图6-43所示,建立求v 1到v 6的最大流问题的线性规划数学模型。
清华大学《运筹学教程》胡运权主编课后习题答案
![清华大学《运筹学教程》胡运权主编课后习题答案](https://img.taocdn.com/s3/m/575822df5022aaea998f0fee.png)
该题是唯一最优解:
29
17
x1 5 , x2 5 , x3 1, x4 0, Z 5
page 21 13 April 2021
21
School of Management
运筹学教程
第一章习题解答
max Z 10x1 15x2 12x3
5x1 3x2 x3 9
(4)
st
5x1 2x1
(2)
st
x1 x2 x3 4 2x1 x2 x3 6
x1 0, x2 0, x3无约束
page 6 13 April 2021
6
School of Management
运筹学教程
第一章习题解答
min Z 3x1 4x2 2x3 5x4
4x1 x2 2x3 x4 2
17
School of Management
运筹学教程
第一章习题解答
解:下界对应的模型如下( c,b取小,a取大)
max Z x1 4x2
st.43xx1165xx22
8 10
x1, x2 0
最优值(下界)为:6.4
page 18 13 April 2021
18
School of Management
运筹学教程
第一章习题解答
1.2 将下述线性规划问题化成标准形式。
min Z 3x1 4x2 2x3 5x4
4x1 x2 2x3 x4 2
(1)
st
x12x1x23xx23
2x4 x3
14 x4
. 2
x1, x2 , x3 0, x4无约束
min Z 2x1 2x2 3x3
st
8x1 3x1
《运筹学》胡运权清华版-2-01对偶问题
![《运筹学》胡运权清华版-2-01对偶问题](https://img.taocdn.com/s3/m/0499be832dc58bd63186bceb19e8b8f67d1cef66.png)
应用场景限制
对偶问题在某些应用场景中可能存在限制, 需要探索更广泛的应用领域和场景。
对偶问题的未来发展方向
交叉学科融合
对偶问题将与数学、物理、工程等多个学科交叉融合,形成新的 研究领域和方向。
算法优化与并行计算
针对大规模对偶问题的求解,将发展更高效的算法和并行计算技 术,提高求解效率。
应用领域拓展
02
对偶问题在优化、机器学习、大数据等领域的应用将进一步深
化,推动相关领域的发展。
算法创新
03
针对对偶问题的求解算法将不断创新,提高求解效率,满足大
规模复杂问题的求解需求。
对偶问题的研究难点与挑战
理论证明
对偶理论中的一些基本定理和性质仍需进一 步证明和完善,以增强其数学严谨性。
求解难度
求解动态规划对偶问题的方法包括状态转移方程、最优子结构、备忘录法等。这些方法可以帮助我们找 到最优解,并避免重复计算。
在求解动态规划对偶问题时,需要注意对偶问题的最优解并不一定对应原问题的最优解,因此需要对解 进行验证和调整。
博弈论对偶问题的求解方法
01
博弈论是研究多个决策者之间 决策问题的学科,而博弈论对 偶问题则是将原问题转化为求 最大值的问题。
题
非线性规划对偶问题是将原非线 性规划问题的目标函数和约束条 件转换为对偶形式后得到的新问 题。
对偶问题的重要性
理论意义
对偶问题在运筹学理论中具有重要的 地位,它揭示了原问题与对偶问题之 间的内在联系,有助于深入理解运筹 学的基本原理。
应用价值
在实际应用中,对偶问题可以用于求 解原问题的近似解或启发式解,提高 求解效率,尤其在处理大规模优化问 题时具有显著的优势。
清华大学胡运权《运筹学习题集》第二版共53页
![清华大学胡运权《运筹学习题集》第二版共53页](https://img.taocdn.com/s3/m/cd7332f0dd88d0d233d46af9.png)
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
清华大学胡运权《运筹学习题集》第 二版
11、用道德的示范来造就一个人Fra bibliotek显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
运筹学(胡运权第二版)习题答案(第二章)
![运筹学(胡运权第二版)习题答案(第二章)](https://img.taocdn.com/s3/m/d457ec9b31b765ce0408142d.png)
2.9 用对偶单纯形法求解下列线性规划问题。
minZ 4x1 12x2 18x3
(1)
st.
x1 3x3 3 2x2 2x3 5
xj 0,( j 1,,3)
minZ 5x1 2x2 4x3
3x1 x2 2x3 4
(2) st.6x1 3x2 5x3 10
xj
0, (
j
1,,3)
School of Management
page 11 5/17/2021
School of Management
运筹学教程
第二章习题解答
min W 2 y1 3 y2
y1 2 y2 2
(1)
对偶问题:
st
.
2 3
y1 y1
y2 y2
3 5
y1
3y2
6
y1 0, y2 0
(2) 最优解是:y1=-8/5,y2=1/5,目标函数值-19/5。 (3)由于 y1=-8/5,y2=1/5都不等于零,原问题中的约 束取等号。又上面第4个约束不等号成立,故x4=0,令 x3=0就可以得到最优解: x1=8/5,x2=1/5。
page 5 5/17/2021
School of Management
运筹学教程
第二章习题解答
minWb1y1b2y2 bmym
m
aijyi
cj
(j 1,2,,n1)
对偶问题s: tim 1 aijyi cj
(j n11,n12,,n)
i1 yi 0
(i 1,,m1)
yi无约束j( m1 1,,m)
2x3 5x3
4 10
xj
0, (
j
1,,3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章习题解答
2.1 写出下列线性规划问题的对偶问题
。
min Z 2x1 2x2 4x3
x1 3x2 4x3 2
(1)
st
2x1x1 4
x2 x2
3x3 3x3
3 5
x1, x2 , 0, y3
y1 2 y2 y3 2
y1 2 y2 1 (1)
st
.
y1 y1
y2 y2
1 0
(2) (3)
y1, y2 0
(4)
由于(1)和(4)是矛盾约束,故对偶问 题无可行解。所以原问题目标函数值无界。
第二章习题解答
2.7 给出线性规划问题
min Z 2x1 4x2 x3 x4
第二章习题解答
2.5 给出线性规划问题
max Z x1 2x2 x3
x1 x2 x3 2
st 2x1x1x2x2x3x31 2
.
x1 0, x2 0, x3无约束
(1)写出其对偶问题;(2)利用对偶问题性质证明 原问题目标函数值z≤1。
第二章习题解答
min W 2 y1 y2 2 y3
解:
l=1, k=0 , h=-1/2, a=2,
c=3, b=10, e=5/4, f=-1/2, d=1/4, g=-3/4, i=-1/4, j=1/4
Cj→ CB 基 b
32 2 0 0 0 X1 X2 X3 X4 X5 X6
0 X1 (b) 1 1 1 1 0 0
0 X2 15 (a) 1 2 0 1 0
m
aij yi
cj
( j 1,2,, n1)
对偶问题:
st
i 1 m
aij
yi
cj
( j n1 1, n1 2,, n)
i1 yi 0
(i 1,, m1)
yi无约束(j m1 1,, m)
第二章习题解答
2.2 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则 其对偶问题也一定存在可行解; 答:不对!如原问题是无界解,对偶问题 无可行解。 (2)如果线性规划的对偶问题无可行解,则 原问题也一定无可行解; 答:不对!道理同上。
max Z x1 x2 5x3 6x4
st
.
x1 x2 x3 2 2x1 x2 x3 1
x
j
0, (
j
1,,3)
试根据对偶问题性质证明上述线性规 划问题目标函数值无界。
第二章习题解答
解:x1=1,x2=x3=0是原问题的可行解。原问题的对 偶问题为:
min W 2 y1 y2
st
n
xij bj
( j 1,, n)
.
i1 xij 0
(i 1,, m, j 1,, n)
m
n
maxW ai yi bj y jm
对偶问题:
st.
yi yi无
i 1
y jm cij 限制,i
j 1
(i 1,, m,
1,, n m
j
1,, n)
第二章习题解答
第二章习题解答
(3)在互为对偶的一对原问题与对偶问
题中,不管原问题是求极大或极小,原问题可行解的 目标函数值一定不超过其对偶问题可行解的目标函数 值;
反。
答:不对!如果原问题是求极小,结论相
题。
(4)任何线性规划问题具有惟一的对偶问
答:结论正确!
第二章习题解答
2.3 已知某求极大化线性规划问题 用单纯形法求解时的初始单纯形表及最终单纯形 表如下表所示,求表中各括弧内未知数的值。
第二章习题解答
min W 2 y1 3 y2
y1 2 y2 2
(1)对偶问
题: st
.32
y1 y1
y2 y2
3 5
y1
3y2
6
y1 0, y2 0
(2) 最优解是:y1=-8/5,y2=1/5,目标函数值-19/5。 (3)由于 y1=-8/5,y2=1/5都不等于零,原问题中的约 束取等号。又上面第4个约束不等号成立,故x4=0,令 x3=0就可以得到最优解: x1=8/5,x2=1/5。
maxW 5 y1 3y2 8 y3
y1 y2 4 y3 5
对偶问题:
st
2 2
y1 y1
5 3
y2 y2
7 y3 3 y3
6 3
y1无约束, y2 0, y3 0
第二章习题解答
mn
min Z
cij xij
i1 j 1
n
xij ai
(i 1,, m)
(3) j1
第二章习题解答
2.4 给出线性规划问题
min Z 2x1 3x2 5x3 6x4
st.
x1 2 x1
2
x2 x2
3x3 x4 x3 3x4
2 3
x j 0, ( j 1,,4)
(1)写出其对偶问题;(2)用图解法求解对偶问题; (3)利用(2)的结果及根据对偶问题性质写出原问题最优 解。
y1 y2 y3 1
(1)对偶问题:st
y1y1
y2 y2
y3 y3
2
1
y1 0, y2无约束, y3 0
(2)y1=y3=0,y2=1 时 对 偶 问 题 的 一 个 可 行 解 , 目 标 函数值为1,故原问题的目标函数值小于等于1。
第二章习题解答
2.6 已知线性规划问题
m
max Z c j x j
j 1
n
aij x j bi
(i 1,, m1 m)
(4)
j1
st
n
aij x j
bi
(i m1 1, m1 2,, m)
j1
x
j
0
( j 1,, n1, n), x j无约束(j n1 1,, n)
第二章习题解答
minW b1 y1 b2 y2 bm ym
对偶问题
:
st
3 4
y1 y1
y2 4 y3 2 3y2 3y3 4
y1 0, y2 0, y3无限制
第二章习题解答
max Z 5x1 6x2 3x3
x1 2x2 2x3 5
(2)
st
4 xx1175xx22
3x3 3x3
3 8
x1无约束, x2 , 0, x3 0
0 X3 20 2 (c) 1 0 0 1
Cj-Zj
32 2 0 0 0
┆ ┆ ┆ ┆┆ ┆ ┆ ┆ ┆
0 X4 5/4 0 0 (d) (l) -1/4 -1/4
3 X1 25/4 1 0 (e) 0 3/4 (i)
2 X2 5/2 0 1 (f) 0 (h) 1/2
Cj-Zj
0 (k) (g) 0 -5/4 (j)