(完整)初中数学二次函数动点问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数性问题专题—动点问题
函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的综合性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.以函数为背景的综合性问题往往都可归结为动点性问题,我们把它归纳为以下七种题型(附例题)
一、因动点而产生的面积问题
例1:如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
x …-3 -2 1 2 …
y …-5
2
-4 -
5
2
0 …
(1) 求A、B、C三点的坐标;
(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;
(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.
若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2)、(3)小题换为下列问题解答(已知条件及第(1)小题与上相同,完全正确解答只能得到5分):
(2) 若点D的坐标为(1,0),求矩形DEFG的面积.
例2:如图1,已知直线
1
2
y x
=-与抛物线2
1
6
4
y x
=-+交于A B
,两点.
(1)求A B
,两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A B
,两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A B
,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
y
x
O
y
x
O
P
A
图2
图1
B
B
A
图10
例3:如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODE F ∽矩形ABCO ,其相似比为1 : 4,矩形ABCO 的边AB=4,BC=43.
(1)求矩形ODEF 的面积; (2)将图l 中的矩形ODEF 绕点O 逆时针旋转 900,若旋转过程中OF 与OA 的夹角(图2中的∠FOA )的正切的值为x ,两个矩形重叠部分的面积为y ,求 y 与 x 的函数关系式;
(3)将图1中的矩形ODEF 绕点O 逆时针旋转一周,连结EC 、EA ,△ACE 的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由。
二、 因动点而产生的等腰三角形问题
例4:如图,抛物线2
54y ax ax =-+经过ABC △的
三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.
(1)求抛物线的对称轴; (2)写出A B C ,,三点的坐标并求抛物线的解析式;
(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.
三、 因动点而产生的直角三角形问题
例5:如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .
(1)点 (填M 或N )能到达终点;
(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的
取值范围,当t 为何值时,S 的值最大;
(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的
A
C B
y x
0 1
1
y
x
P
Q
B
C
N
M
O
A
坐标,若不存在,说明理由.
四、 因动点而产生的相似形问题
例6:设抛物线2
2y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),
与y 轴交于点C .且∠ACB=90°. (1)求m 的值和抛物线的解析式;
(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以
点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标. (3)在(2)的条件下,△BDP 的外接圆半径等于________________. .
五、 因动点而产生的平行四边问题
例7:如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,
(20)B -,,(08)E ,.
(1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于
C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围; (3)当t 为何值时,四边形MDNA 的面积S 有最大值,并
求出此最大值;
(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出 此时t 的值;若不能,请说明理由.
例8、如图,抛物线2
23y x x =--与x 轴交A 、B 两点(A
点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中 C 点的横坐标为2.
(1)求A 、B 两点的坐标及直线AC 的函数表达式;
(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;
(3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.