磁性材料基本参数详解

合集下载

磁性材料常识参数介绍

磁性材料常识参数介绍

磁芯
SPINEL
磁学常识: 磁学常识:磁性材料分类
A)锰锌系 ) 组成约为: 其他为: 组成约为:Fe2O3 71%, MnO 20%, 其他为:ZnO 电阻率高(10 ohm-cm) 电阻率高 磁心损耗低 居里温度高 形状:EE,EI,ER,PQ,RM,POT等型式。 形状: , , , , , 等型式。 等型式 用途:功率变压器、 共模滤波器、 用途:功率变压器、EMI共模滤波器、储能电感等 共模滤波器
SPINEL
磁性材质介召:材质发展 磁性材质介召:
在PC50后,TDK相继推 出超低功耗材料PC44,PC45, PC46,PC47,其功率损耗较 PC40降低了约1/4~1/3, 主要差别就在于功耗最低点温 度不同,PC45为60-80℃, PC46为40-50℃,PC47则是 100℃,它们有一个明显的缺 点,一旦偏离了功耗最低点, 损耗值急剧上升。
C点以后是饱和段 点以后是饱和段 点以后是 ab段是上升段 段是上升段 段是 起始磁化 曲线反映 了什么? 了什么?
磁滞回线中H为 磁滞回线中 为 零时B并不为零 零时 并不为零 的现象说明铁 磁材料具有剩 磁材料具有剩 磁性。 磁性。
0
H
起始磁化曲线
oa段是线性段 段是线性段 段是
起始磁化曲线的ab段反映了铁磁材料的 起始磁化曲线的 段反映了铁磁材料的 高导磁性; 点以后说明铁磁材料具有 高导磁性;c点以后说明铁磁材料具有 磁饱和性。 磁饱和性。
SPINEL
磁学常识: 磁学常识:磁性材料分类
B)镍锌系 ) 组成约为: 其他为: 组成约为:Fe2O3 50%, NiO 24%, 其他为:ZnO 电阻率很高(107 ohm-cm) 电阻率很高 工作频率高 铁心损耗较锰锌系高 居里温度高 型式: , ,环形等。 型式:DR,R,环形等。 用途:常模滤波器、 用途:常模滤波器、储能电感等

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。

2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。

器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。

磁性材料基本参数课件

磁性材料基本参数课件

磁性参数与测量:磁损耗 (2)
1 损耗因子tanδ
气隙对损耗因子的影响 磁芯开制气隙后,可以增加磁场和温度的稳定性,损耗因 子有所下降 (tanδ)gap = tanδ·μe/μi 比损耗因子 ,与材料几何尺寸无关,表示小信号下材料 的损耗特性;
磁性参数与测量:磁损耗 (3)
2 品质因素 Q
磁性器件作滤波器的电感时,通常用品质因素Q来表示 它的质量; Q = 1/ tanδ Q与频率和绕组参数有关;
表示小信号下材料的损耗特性,由于磁 芯损耗引起信号相移; tanδ= Rs/ωLs Rs 磁芯及线圈损耗的等效电阻; Ls 装有磁芯的线圈的自感量;
tanδ称损耗因子,表示损耗功率与无 功功率的比值,其磁芯损耗包括磁滞损耗、涡流损 耗、剩余损耗即: tanδ= tanδn + tanδe + tanδr
磁性参数与测量:磁损耗 (4)
3 大信号下的功率损耗Pc
P = Ph + Pe + Pr (Ph、Pe、Pr表示磁滞、涡流、剩余损耗) 磁性材料在高磁通密度下的单位体积损耗。该磁通密 度通常表示为: Bm =E/4.44fNAe ×106(mT) 式中: Bm为磁通密度的峰值(mT) E为线圈两端的电压(V) f为频率(KHz),N为匝数 Ae为磁芯的有效面积(m2)
磁饱和性: B不会随H的增强而无限增强,H增大到 一定值时,B不能继续增强。 磁滞性和剩磁性 磁芯线圈中通过交变电流时,H的大 小和方向都会改变,铁心在交变磁场中反复磁化的过 程中,B的变化总是滞后于H的变化,这种现象称为磁 滞性;当H减为零时B并不为零。
磁性参数与测量:磁导率μ (1)
1 起始磁导率μ
起始磁化曲线
磁滞回线中H为 零时B并不为零 的现象说明铁 磁材料具有剩 磁性。

【精品】磁性材料参数

【精品】磁性材料参数

1、什么是永磁材料的磁性能,它包括哪些指标?永磁材料的主要磁性能指标是:剩磁(Jr,Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m.我们通常所说的永磁材料的磁性能,指的就是这四项。

永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫顽力的温度系数(Brθ,jHcθ)、回复导磁率(μrec.)、退磁曲线方形度(Hk/jHc)、高温减磁性能以及磁性能的均一性等。

除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。

此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。

2、什么叫磁场强度(H)?1820年,丹麦科学家奥斯特(H。

C。

Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。

实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。

定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为1A/m(安/米,国际单位制SI);在CGS单位制(厘米—克—秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为1Oe(奥斯特),1Oe=1/(4π×10?)A/m。

磁场强度通常用H表示.3、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系?理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场—-—关于退磁场的概念,见9Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J之和.由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B:B=μ0H+J(SI单位制)(1—1)B=H+4πM(CGS单位制)磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。

磁钢参数解读

磁钢参数解读

磁钢参数解读磁钢是一种常用的磁性材料,具有很高的磁导率和磁化强度。

在电子电气领域,磁钢被广泛用于电机、变压器、声音设备等各种电磁设备中。

磁钢的性能参数对设备的工作效果和性能起着至关重要的作用。

本文将解读磁钢的几个常见参数,以帮助读者更好地了解并选择合适的磁钢材料。

1.磁导率(μ):磁导率是磁钢的基本物理参数,表示了材料对磁场的响应能力。

磁导率越高,材料对磁场的感应能力越强,磁导率越低,材料对磁场的感应能力越弱。

磁导率的单位是亨利/米(H/m),常用的磁导率数值范围一般在1000-7000之间。

2.饱和磁化强度(Bs):饱和磁化强度是指磁钢材料在饱和磁场下的磁化强度。

简单来说,就是磁钢能够达到的最高磁化程度。

饱和磁化强度越高,材料的磁化能力越强,磁场越容易被磁化。

饱和磁化强度的单位是特斯拉(T),常用的数值范围一般在0.5-2.5T之间。

3.剩磁(Br):剩磁是指在去磁场的作用下,磁钢材料表面产生的剩余磁场。

剩磁是磁钢材料磁化后得到的一个留存状态,可以用来储存或传输磁能。

剩磁的大小与材料本身的磁化强度有关,一般剩磁越大,材料的磁能保存能力越强。

剩磁的单位也是特斯拉(T),常用的数值范围一般在0.05-1.0T之间。

4.矫顽力(Hc):矫顽力是指磁钢材料在去磁化后,需要外加的磁场强度才能使其重新磁化的能力。

矫顽力越大,材料越难去磁化,矫顽力越小,材料越容易去磁化。

矫顽力的单位是安培/米(A/m),常用的数值范围一般在100-1000A/m之间。

5.温度系数(α):温度系数是指磁钢材料在不同温度下的磁化能力变化率。

温度系数可以用来评估磁钢材料的温度稳定性。

温度系数的单位是%/℃,常用的数值范围根据具体应用要求而定。

以上是磁钢的几个重要参数,不同的磁钢材料具有不同的参数组合,适用于不同的应用场景。

在选择磁钢时,需要根据具体的设计要求和工作环境来合理选择磁钢材料,以确保设备的性能和稳定性。

需要注意的是,磁钢的参数解读只是初步了解磁钢性能的一种方式,实际应用中还需要综合考虑其他因素,例如成本、可加工性、耐腐蚀性等。

磁性材料参数汇总表

磁性材料参数汇总表

磁性材料参数汇总表引言磁性材料是一类重要的材料,在许多领域中都有广泛的应用,例如电子设备、电力传输、通信等。

了解磁性材料的参数对于正确选择和设计合适的磁性材料至关重要。

本文档旨在提供一个汇总表,列出常见磁性材料的重要参数和特性,以帮助工程师和研究人员进行选择和评估。

1. 常见磁性材料1.1 铁氧体材料铁氧体材料是一类具有高饱和磁感应强度和低磁导率的磁性材料。

下表列出了一些常见的铁氧体材料及其参数。

材料名称饱和磁感应强度 (T) 磁导率 (H/m) 矫顽力 (A/m)镍锌铁氧体0.4 50 800锰锌铁氧体0.3 100 500镍铜铁氧体0.6 20 10001.2 钕铁硼磁体钕铁硼磁体是一类具有极高磁能积和高矫顽力的磁性材料。

下表列出了一些常见的钕铁硼磁体及其参数。

材料名称饱和磁感应强度 (T) 磁能积 (J/m3) 矫顽力 (A/m)N35 1.17 263e6 955N45 1.33 326e6 955N52 1.45 398e6 9551.3 钢磁材料钢磁材料是一类在低频磁场中具有高导磁率和低矫顽力的磁性材料。

下表列出了一些常见的钢磁材料及其参数。

材料名称饱和磁感应强度 (T) 导磁率 (H/m) 矫顽力 (A/m)低碳钢 2 1000 4硅钢 2 5000 6非晶合金钢 2.1 10000 22. 参数解释2.1 饱和磁感应强度饱和磁感应强度是材料在外加磁场作用下能够达到的最大磁感应强度。

单位为特斯拉(T)。

2.2 磁导率磁导率描述了材料对磁场的响应程度,即磁场强度与磁感应强度之间的比值。

单位为亨利/米(H/m)。

2.3 矫顽力矫顽力是材料从饱和磁化状态中恢复到磁场消失状态所需施加的逆磁场强度。

单位为安培/米(A/m)。

2.4 磁能积磁能积是材料单位体积的储磁能力,表示材料在磁场中存储的能量密度。

单位为焦耳/立方米(J/m3)。

3. 典型应用3.1 铁氧体材料•镍锌铁氧体:常用于磁芯和磁带记录头。

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

・磁性材料的基本特性1・磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M〜H或B〜H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H, Ms保持不变;以及当材料的M值达到饱和后,外磁场H 降低为零时,M 并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M〜H曲线或B〜H 曲线上的某一点,该点常称为工作点。

2・软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列°剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br/Bs矫顽力He:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率小是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相矢。

初始磁导率L1J、最大磁导率nm>微分磁导率pd、振幅磁导率pa、有效磁导率pe、脉冲磁导率| ip。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe oc f2 t2 / , p降低,磁滞损耗Ph的方法是降低矫顽力He;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率P。

在自由静止空气中磁芯的损耗与磁芯的温升矢系为:总功率耗散(mW)/表面积(cm2)3・软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压〜电流特性。

器件的电压〜电流特性与磁芯的几何形状及磁化状态密切相矢。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换矢系。

磁性材料入门知识

磁性材料入门知识

磁性材料入门知识磁性材料入门知识磁性材料是指在磁场中可以产生磁性的材料,包括铁、钢、铁合金、磁性玻璃、氧化物等等。

它们具有多种应用,如电机、电磁铁、电子、通讯、医疗、军事等领域。

本文将为你介绍磁性材料的基本知识。

1. 磁化强度磁化强度是衡量磁性材料磁化程度的物理量,通常用磁化强度或磁化矢量表示。

磁化强度的单位是安培每米(A/m)或高斯(Gs)。

磁力线越接近选定的物体,磁化强度就越强。

2. 磁场强度磁场强度是衡量磁场强弱的物理量,它和磁性材料的磁化程度有关。

磁场强度的单位是特斯拉(T)或高斯(Gs)。

3. 磁性导数磁性材料的磁性导数是指材料对磁场的响应,通常用来表示磁性材料的磁化程度。

高磁性导数的材料对磁场的响应非常灵敏,可以用来制造磁传感器。

4. 磁饱和当磁性材料的磁化强度达到一定值时,它将不再对外加磁场产生响应,这个过程称为磁饱和。

磁饱和是磁性材料失去磁性的一个重要特征。

5. 磁畴磁性材料分为多个微小的磁畴,每个磁畴具有自己的磁矩方向,这个方向通过相邻的原子强引力互相保持。

每个磁畴磁矩方向相同,但与相邻磁畴的磁矩方向不同。

6. 磁滞回线当一个交变电流通过一个螺线管时,磁针的磁化方向会随着电流变化,因此在磁针上会形成一个磁滞回线。

磁滞回线经常用来描述磁性材料的饱和磁化、滞磁和磁导率等性质。

7. 磁性材料分类根据磁性材料的磁导率和饱和磁化强度,可以将磁性材料分为软磁性材料和硬磁性材料。

软磁性材料是指具有高磁导率和低磁饱和的材料,通常用作电子元器件、电机和变压器等领域。

硬磁性材料是指具有高饱和磁化和低磁导率的材料,通常用于制造永磁体、磁存储、磁头等领域。

8. 磁性材料应用磁性材料广泛应用于各个领域。

在电子行业,磁性材料用于制造电感和磁芯等元器件。

在电机和发电机中,磁性材料用于制造转子和定子,改进机器效率并降低成本。

磁性材料还用于通讯、医疗、军事和安全等领域。

总之,磁性材料具有重要的应用和理论价值。

通过深入了解磁性材料的基本知识,可以更好地理解其在科技领域中的应用和发展前景。

磁性材料基本参数详解课件.ppt

磁性材料基本参数详解课件.ppt
磁饱和性: B不会随H的增强而无限增强,H增大到 一定值时,B不能继续增强。
磁滞性和剩磁性 磁芯线圈中通过交变电流时,H的大 小和方向都会改变,铁心在交变磁场中反复磁化的过 程中,B的变化总是滞后于H的变化,这种现象称为磁 滞性;当H减为零时B并不为零。
磁性材料基本参数详解课件
磁性参数与测量:磁导率μ (1)
磁芯损耗 (Pcv) Kw/m3
25℃ 60℃ 100℃
1100 800 600
600 450 410
600 400 300
570 250 460
350 250 660
600 400 250
130﹡ 80﹡ 80﹡
680
320
350
290
饱和磁通量密 (Bs)mT
25℃ 60℃ 100℃
520
440
磁性材料基本参数详解课件
磁性参数与测量:磁损耗 (2)
1 损耗因子tanδ
气隙对损耗因子的影响 磁芯开制气隙后,可以增加磁场和温度的稳定性,损耗因 子有所下降
(tanδ)gap = tanδ·μe/μi 比损耗因子 ,与材料几何尺寸无关,表示小信号下材料 的损耗特性;
磁性材料基本参数详解课件
磁性参数与测量:磁损耗 (3)
变温度,在这个温度磁
μi
性材料的磁性将变得很
μi
80% μi
小或消失,它的表示方 式有很多,我们一般按 下图进行测量,即随着
温度升高,磁导率下降
到最大值的80%及20%
20% μi
时,两点的联线,延长
到与温度轴的交点即为
居里温度。
Tc
T
磁性材料基本参数详解课件
磁性参数与测量:其它参数

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

一.磁性材料的基本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。

2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率ρ。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。

器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。

常用磁芯参数范文

常用磁芯参数范文

常用磁芯参数范文磁芯是一种用于电磁元件中的材料,主要用于集成电路、传感器、电感、变压器和电源等设备中。

它们具有不同的特性和特点,因此在选择磁芯时需要考虑许多参数。

下面是一些常用的磁芯参数。

1.硬磁性能:硬磁性能是磁芯的重要参数之一,它决定了磁芯在磁场中能够产生多大的磁感应强度。

硬磁性能通常用剩磁、矫顽力和矫顽力延迟等指标来表示。

2.相对磁导率:相对磁导率是磁芯的另一个重要参数,它决定了磁芯的导磁能力。

相对磁导率越高,磁芯的导磁能力越强。

3.矫顽力:矫顽力是指磁芯在外加磁场作用下,磁感应强度增加到饱和值所需的磁场强度。

矫顽力越高,磁芯的磁感应强度越高。

4.矫顽力延迟:矫顽力延迟是指矫顽力在磁场消失后,磁芯保持磁感应强度的能力。

矫顽力延迟越高,磁芯的保持磁感应强度能力越强。

5.饱和磁感应强度:饱和磁感应强度是指磁芯在饱和状态下的磁感应强度。

饱和磁感应强度越高,磁芯的导磁能力越强。

6.损耗:损耗是指磁芯在磁场作用下产生的能量损失。

损耗通常分为磁滞损耗和涡流损耗两种。

7.温度特性:磁芯的温度特性决定了磁芯在不同温度下的性能。

温度特性通常包括磁感应强度、电阻和导磁系数等参数的变化。

8.尺寸:磁芯的尺寸决定了它的使用范围。

尺寸通常包括磁心直径、磁心高度、线圈匝数等参数。

9.材料:磁芯的材料决定了它的性能和特点。

常见的磁芯材料包括铁氧体、镍锌铁氧体、铁镍合金等。

以上是一些常用的磁芯参数,不同的应用场景和需求会对这些参数有不同的要求。

因此,在选择磁芯时,需要根据具体的应用需求来确定合适的参数。

磁性材料的磁饱和度与磁导率

磁性材料的磁饱和度与磁导率

磁性材料的磁饱和度与磁导率磁性材料是一类具有特定磁性能的材料,研究其磁性能对于理解材料的特性和应用具有重要意义。

磁饱和度和磁导率是磁性材料的两个关键性能参数,它们在材料的磁性行为和应用中起着重要的作用。

一、磁饱和度磁饱和度是指磁性材料在外加磁场作用下,当其磁化强度达到一定值时,无法再增加磁化强度的能力。

磁饱和度可以用来衡量材料的磁性饱和程度和磁化能力。

磁饱和度的定义可以通过材料的磁化曲线来解释。

当一个磁性材料受到外加磁场的作用时,其磁化强度会随着外加磁场的增加而增加。

然而,当磁化强度达到一定值时,材料的磁化强度将不再增加,而是趋于饱和。

这个磁化强度的临界值即为磁饱和度。

磁饱和度不仅与材料本身的性质有关,同时也受到外界条件的限制。

例如,温度的升高会降低磁饱和度,外加磁场的强度也会对磁饱和度产生影响。

因此,在实际应用中,需要考虑到这些因素对磁饱和度的影响。

二、磁导率磁导率是描述磁性材料对外磁场响应能力的参数,它表示材料相对于真空的磁场导磁能力。

磁导率可以用来衡量材料的磁化能力和磁性行为。

在磁场作用下,磁性材料中的磁化强度与磁场强度之间存在一定的关系。

磁导率是磁化强度与磁场强度之比的比例系数,用来描述这种关系。

磁导率的数值越大,说明材料对外磁场的响应能力越强。

与磁饱和度类似,磁导率也受到多种因素的影响。

例如,外界温度和频率对磁导率都有一定的影响,不同的磁性材料也具有不同的磁导率范围。

三、磁饱和度与磁导率的关系磁饱和度和磁导率是磁性材料磁性能的两个重要参数,它们之间存在一定的关系。

在某些情况下,磁饱和度和磁导率可以看作是相关的。

一般来说,当磁导率较大时,材料的磁饱和度也会相应增大。

这是因为磁导率的增大意味着材料对外磁场的响应能力增强,磁化强度可以更好地随外磁场的增加而增加,从而延迟了磁饱和的发生。

然而,并非所有情况下磁饱和度和磁导率之间存在直接的关联。

一些材料可能具有高磁导率但相对较低的磁饱和度,而另一些材料可能具有相对较低的磁导率但较高的磁饱和度。

磁铁性能和参数介绍

磁铁性能和参数介绍

磁铁性能和参数介绍(一)磁铁性能简介强磁指的是强力磁铁,专业名称:稀土强磁,钕铁硼,这种磁铁一般性能比较高,普遍用在玩具、包装盒、灯具、工艺品、喇叭、医疗机械、保健产品、电子产品、五金工具等产品上,一般N33、N35、N38为宜,这三种是钕铁硼强磁最普通性能,一通常的情况下,如果要求不是很高的话,这三种性能磁铁都就差不多了。

N40以上高性能:这一性能一般用在手机、精密仪器、航天般空、前沿的科学研究,可分为:N40、N42、N45、N48、N50、N52九种。

以上九种性能耐温都在≤80℃,一旦超过这个温度就会退磁。

(二)磁铁材料牌号1.磁铁材料牌号为了便于区别不同材料的永磁体且便于人们认知,大部分的工厂采用固定的字母来表示不同的磁铁,比如最常见的是N35的磁铁,N 代表该种磁铁是钕铁硼,Y代表的是永磁铁氧体,如果是PCx的话,比如PC40,那就是高磁导率的软磁铁氧体。

2.烧结钕铁硼牌号烧结钕铁硼永磁材料的牌号由主称和两种磁特性三部分组成,第一部分为主称,由钕元素的化学符号ND简化为N,第二部分的数字是材料最大磁能积(BH)max的标称值(单位为KA/m3),第三部分的字母表示磁铁的最高工作温度。

牌号示例:N35H表示(BH)max为35MGOe左右(280 KA/m3),最高工作温度为120℃的烧结钕铁硼永磁材料。

钕铁硼磁性材料牌号有:N30~N52;30H~50H;30SH~50SH;28UH~40UH;30EH~35EH等。

3.不同牌号对应的工作温度不同牌号所对应的最大工作温度,各厂家基本一致:1)数据后面没有字母,例如:N35耐温一般在≤80℃2)数据后面以M结尾,例如:N50M 耐温一般在≤100℃3)数据后面以H结尾,例如:N48M 耐温一般在≤120℃4)数据后面以SH结尾,例如:N45SH 耐温一般在≤150℃5)数据后面以UH结尾,例如:N35UH 耐温一般在≤180℃6)数据后面以EH结尾,例如:N50M 耐温一般在≤200℃7)数据后面以EH结尾,例如:N50M 耐温一般在≤220℃后面五种性能都属耐高温型,如果一旦超后面既定的温度,磁铁就会退磁。

tmcf125ab参数

tmcf125ab参数

tmcf125ab参数一、概述tmcf125ab是一款高性能的磁性薄膜材料,广泛应用于电子、通信、航空航天等领域。

其具有优异的磁性能、良好的机械性能和稳定的化学性质,是制造高精度、高性能磁性器件的重要原材料。

本文将对tmcf125ab的参数进行详细的介绍。

二、磁性能参数1.剩磁感应强度(Br):tmcf125ab的剩磁感应强度较高,可以达到1.25T(特斯拉)。

这使得tmcf125ab在制作高灵敏度磁性器件方面具有显著的优势。

2.饱和磁化强度(Ms):饱和磁化强度是磁性材料的一个重要参数,表示磁性材料在一定磁场下能够达到的最大磁化强度。

tmcf125ab的饱和磁化强度很高,可以达到140000A/m(安培/米)。

3.矫顽力(Hc):矫顽力是磁性材料的一个重要参数,表示磁性材料克服退磁效应所需的磁场强度。

tmcf125ab的矫顽力较高,可以达到2400A/m (安培/米)。

三、物理性能参数1.密度:tmcf125ab的密度较高,可以达到7.65g/cm³(克/立方厘米)。

这有助于提高磁性器件的稳定性和可靠性。

2.热稳定性:tmcf125ab具有良好的热稳定性,可以在较高的温度下保持稳定的磁性能。

其热稳定性可以在一定范围内通过热处理进行调整。

四、机械性能参数1.硬度:tmcf125ab的硬度较高,可以采用常用的加工方法进行加工。

其硬度取决于制备工艺和热处理条件。

2.韧性:tmcf125ab具有良好的韧性,可以在一定程度上承受冲击和振动。

这有助于提高磁性器件的可靠性和稳定性。

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。

2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。

器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。

磁钢参数解读

磁钢参数解读

磁钢参数解读一、磁钢概述磁钢是一种常见的磁性材料,其具有磁性,可以产生磁场并吸引铁、镍等物质。

磁钢广泛应用于电子、电机、仪表、通讯、医疗和家电等领域,是现代工业中不可或缺的材料之一。

磁钢的性能参数对其在不同应用场合下的性能表现有着重要的影响,因此磁钢参数的解读对于优化材料选择、设计和应用具有重要意义。

二、磁性参数1. 饱和磁感应强度(Bs):饱和磁感应强度是指在外加磁场作用下,磁钢达到饱和状态时的磁感应强度。

Bs是衡量磁钢磁性能好坏的重要参数,通常情况下,Bs值越大,磁性能越好。

对于需要产生强磁场的应用来说,选择具有高Bs值的磁钢是非常关键的。

2. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

矫顽力值越大,表示磁性材料的抗磁退磁能力越强,对于需要稳定的磁性能的应用而言,较大的矫顽力是必要的。

3. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

矫顽力值越大,表示磁性材料的抗磁退磁能力越强,对于需要稳定的磁性能的应用而言,较大的矫顽力是必要的。

4. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

矫顽力值越大,表示磁性材料的抗磁退磁能力越强,对于需要稳定的磁性能的应用而言,较大的矫顽力是必要的。

5. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

矫顽力值越大,表示磁性材料的抗磁退磁能力越强,对于需要稳定的磁性能的应用而言,较大的矫顽力是必要的。

6. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

矫顽力值越大,表示磁性材料的抗磁退磁能力越强,对于需要稳定的磁性能的应用而言,较大的矫顽力是必要的。

7. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁性材料基本参数详解
磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。

自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。

铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。

顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。

本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。

锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。

它是以氧化铁、氧化锌为主要成分的复合氧化物。

其工作频率在1kHz 至10MHz 之间。

主要用着开关电源的主变压器用磁芯. 。

随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。

但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。

磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。

使用频率可达100KHZ ,甚至更高。

但最适合于10KHZ 以下使用。

磁场强度H :
磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。

它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。

均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示;
使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N I
H 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。

在磁芯中,加正弦波电流,可用有效磁路长度Le 来计算磁场强度:
1 奥斯特= 80 安/ 米
磁通密度,磁极化强度,磁化强度
在磁性材料中,加强磁场H 时,引起磁通密度变化,其表现为:
B= ц o H+J= ц o (H+M)
B 为磁通密度( 磁感应强度) ,J 称磁极化强度,M 称磁化强度,ц o 为真空磁导率,其值为4 π× 10 ˉ 7 亨利/ 米(H/m )
B 、J 单位为特斯拉,H 、M 单位为A/m, 1 特斯拉=10000 高斯(Gs )
在磁芯中可用有效面积Ae 来计算磁通密度:
正弦波为:
电压单位伏特(V ),频率单位赫兹(Hz ),N 为匝数,B 单位为特斯拉(T );Ae 单位为: ㎡
饱和磁通密度、剩余磁化强度、矫顽力
B 和H 的关系除在真空中和在磁性材料中小磁化场下具有线性关系外,一般具有非性关系,如下图磁滞回线性特性:
磁滞回线:铁磁体从正向至反向,再至正向反复磁化至技术饱和一周,所得到的B 与H 的闭合关系曲线称为磁滞回线。

Bs 为饱和磁化强度,Br 为剩余磁化强度,Hc 为矫顽力,Hs 为饱和磁化场,不同磁性材料,磁滞回线表现形式不一样,Bs 、Br 、Hc 、Hs 都不一样。

铁芯的μ值与使用范围
铁芯因不同的烧结温度,不同和物质配比例,可以烧结出各种不同的材料,一般来讲,镍锌铁氧体铁芯比锰锌系的铁氧体铁芯的使用频率范围宽。

μ值是衡量铁芯性能的一个重要参数,μ值越高,铁芯使用频率范围就越小,如下表:
μ值(Gs )使用频率(KHz )
10000 200 以下
2500 500 以下
1000 1000 以下
125 5000 以下
μ i(In itial Permeability) :交流最初磁导率,铁芯刚通过交流电时的导磁系数。

是磁性材料的磁化曲线始端磁导率的极限值。

它与温度、频率有关,测量时在一定温度、一定频率、很低磁通密度(或很小磁场)、闭合磁路中进行。

在实际测量中规定磁化场△H 所产生的磁通密度应小于1mT, B 为0.1mT.
μ e :有效磁导率;在封闭的磁回路里,如果漏磁可以忽略,能产生自感的导磁系数。

用它可以表征磁芯的性能。

Bs(Saturation flux density) :随着H 的增加,铁芯B 值达饱和时的磁通。

Br(Remanence) :(剩磁/ 残留磁通)当铁芯一度饱和之后,即使让磁场强度在回复到零,铁芯中仍然有部分磁通残留,称之为残磁。

Hc (Coercivity ):矫顽磁力(或称保磁力);磁芯从饱和状态去除磁场后,继续反向磁化,直至B 减小到0 ,即将残留磁通矫正至零,所需的磁场强度。

Tc(Curie temperature) :居里温度(或临界温度)。

对于所有的磁性材料来说,并不是在任何温度下都具有磁性。

一般地,磁性材料具有一个临界温度Tc ,因铁芯的磁导系数是随温度的上升而增加的,在此温度以下,原子磁矩排列整齐,产生自发磁化,物体变成铁磁性的。

在这个温度以上,由于高温下原子的剧烈热运动,导磁系数完全崩溃,原子磁矩的排列混乱无序,磁状态由铁磁性改为顺磁性。

如图,μ -T 曲线上80 %μ max--20 %μ max 的连线与μ =1 的交叉点相对应的温度称为居里温度。

损耗因子tg δ m
表示小信号下材料的损耗特性。

是损耗功率与无功功率的比值。

因磁芯损耗包括磁滞损耗、涡流损耗、剩余损耗,所以损耗因子,可表示为:
tg δ m =tg δ h +tg δ c +tg δ r, tg δ h 、tg δ c 、tg δ r 分别称为磁滞、涡流、剩余损耗因子。

比损耗因子
tg δ m/ μ i 或tg δ / μ i 称比损耗因子,与材料几何尺寸无关,表示小信号下材料的损耗特性。

气隙的影响
当磁路中有气隙时,其损耗因子为带气隙损耗因子,(tg δ)gap 它与无气隙时损耗因子关系为:(tg δ)gap/ (μ e-1 )= tg δ / (μ i-1 )
因μ e· μ i 远大于1 ,故上式可表示为:(tg δ)gap/ μ e= tg δ / μ i
由于μ e <μ i , 所以开气隙后,损耗因子减小,Q 值增加。

磁芯开气隙后,磁芯内部磁场强度H 将大大减小,由Hi=He-Hd=He-NM 可以看出,退磁因子N 越大,Hi 越小。

这里He 是绕组通以电流后产生的磁场(He=NI/Le ),对闭路磁芯N=0 ,气隙越大,N 越小,反之亦然。

开制气隙可增加磁场和温度的稳定性。

品质因素Q
磁性器件作滤波电感时,通常用品质因素(Q )来表示它的质量。

Q= 1/ tg δ = ω L/Rt, Rt 表示总电阻。

包括线圈和磁芯的电阻。

Rt 表示有损耗,包括磁芯损耗、铜线损耗。

可见Q 与频率和绕组参数有关。

在大信号场下,磁芯损耗用下式表示:
Pm= Ph+Pe+Pr, 其中Ph 、Pe 、Pr ,分别表示磁滞损耗、涡流损耗、剩余损耗.
开关电源变压器要求铁氧体材料要具有:高Bs 、高振幅磁导率?Ae (Amplitude permeability) 以提高其功率转换效率并避免饱和;也要求材料的功率损耗Pm 尽量小以避免在高频下发热? 希望呈负温度系数;为了在高温下保持高的Bs ,材料的居里温度应当较高,电阻率较高。

变压器的磁芯一方面起加强线圈之间磁通交链的正向作用,同时也带来因交变磁通激励而产生额外的磁芯损耗之负面作用。

因为磁芯的每次磁化会消耗能量,即产生磁滞损耗(磁性材料的磁畴运动及磨擦而导致),磁通交变产生的感应电势的驱动会产生涡流损耗。

这两种损耗都与磁通交变的频率有关。

同一铁氧体的磁滞损耗正比于直流磁滞回线的面积,并与频率成线性关系(与f 成正比)对于工作在100KHZ 以下的功率铁氧体磁芯,(变压器工作温度:80 -100 ℃)为获得低损耗,要选用最低矫顽力、较低的磁致伸缩系数λ的磁芯。

铁氧体的涡流损耗与f 的平方成正比:Pe=Ce.f 2 .Bm 2 / ρ
Ce 为磁芯尺寸长度;ρ为电阻率,它随着温度的上升而减小,故Pe 反而增大。

但在高于1MHZ 时,会出现铁磁谐振,从而形成铁氧体损耗。

电阻率ρ几乎于温度无关,总损耗主要受剩余损耗的影响,剩余损耗占支配地位,且对温度产生强烈的依耐性。

可采用细晶粒铁氧体磁芯。

相关文档
最新文档