2固体激光器基本结构.

合集下载

几种激光器的结构示意

几种激光器的结构示意

几种激光器的结构示意激光器是一种能够产生激光光束的器件。

不同类型的激光器通过不同的结构设计来产生不同的激光波长和激光功率。

下面将介绍几种常见的激光器结构示意。

1.气体激光器气体激光器利用气体放电产生激光。

气体激光器的基本结构包括激活介质、激励源和谐振腔。

激活介质是气体,常用的有氖、氩、氮气等。

激活介质通常填充在放电室内,由于电压作用下的电子激发使激发介质处于激发态,然后通过自发辐射产生的辐射光激发其他激发介质,从而实现光的放大效应。

激光器的谐振腔是由两块平面反射镜构成的,通过调节反射镜间的距离,可以实现激射光束的调谐。

2.固体激光器固体激光器是指利用固体介质产生激光。

固体激光器的基本结构包括激发源、增益介质和谐振腔。

激发源通常是一个脉冲电流或者光源,通过激发能量传递给增益介质,使其转化为激发态。

增益介质通常是晶体或者玻璃,如Nd:YAG晶体、Nd:YVO4晶体等。

激发能量在增益介质中逐渐积累,产生激光放大效应。

激光器利用谐振腔来限制光的传播方向,提供光的增益和反射,从而产生高激光功率输出。

3.半导体激光器半导体激光器是利用PN结构形成的电流与光的耦合效应来产生激光。

它的基本结构主要由P型半导体层、N型半导体层和激活层组成。

激活层是半导体激光器的核心部分,通过电流注入的方式产生激发态电子和空穴,然后通过电子空穴复合过程,放出激光。

半导体激光器具有体积小、发光效率高、功耗低等优点,广泛应用于通信、医疗等领域。

4.光纤激光器光纤激光器是利用光纤作为激光介质的激光器。

光纤激光器的基本结构包括光纤、增益介质和谐振腔。

增益介质通常是受控的掺杂光纤,如掺钕光纤、掺铽光纤等。

激发源通过光纤输入激发介质,产生激发态,然后通过自发辐射和受激辐射过程产生激光。

谐振腔的结构通常根据需要采用不同的方式,如光栅镜、光纤光栅、光纤环等。

以上是几种常见的激光器结构示意,每种激光器都有特定的工作原理和结构设计,以满足不同的应用需求。

激光原理5.1固体激光器的基本结构与工作物质

激光原理5.1固体激光器的基本结构与工作物质
8 2ν2t复合
f
νGGf (νν)a内8cν221Lf2νlnν2erd1rJ2
J阈
a内
21Llnr1r2
8
22ed
c2
5.4.4 同质结和异质结半导体激光器
5.2.3 Ar+离子激光器
1. Ar+激光器的结构
➢Ar+激光器一般由放电管、谐振腔、轴向磁场和回气管等几部分组 成。如图(5-14)所示为石墨放电管的分段结构 。
图(5-14) 分段石墨结构Ar+激光器示意图
2. Ar+激光器的激发机理
5.2.3 Ar+离子激光器
2. Ar+激光器的激发机理 ➢Ar+激光器与激光辐射有关的能级结构如图(5-15)所示
➢图(5-10 )是与产生激光有关的Ne原子的部分能级图,Ne原子的激 光上能级是3S和2S能级,激光下能级是3P和2P能级。
➢He-Ne激光器是 典型的四能级系 统,其激光谱线 主要有三条 : ➢3S2P 0.6328 ➢2S2P 1.15 ➢3S3P 3.39
图(5-10) 与激光跃迁有关的Ne原子的部分能级图
图5-1 固体激光器的基本结构示意图
5.1.1 固体激光器的基本结构与工作物质
2.红宝石激光器 ➢红宝石是在三氧化二铝(A12O3)中掺入少量的氧化铬(Cr2O3) 生长成的晶体。它的吸收光谱特性主要取决于铬离子(Cr3+), 如图5-2所示。它属于三能级系统,相应于图5-3的简化能 级模型
图(5-2) 红宝石中铬离子的吸收光谱
图(5-26) PN能带
➢在P-N结上加以正向电压V时,形成结区的两个费米能级E
F
和E
F
,称为准费米能
级,如图(5-27)。
图(5-27) 正向电压V时形成的双简并能带结构

激光器产生激光的三个基本结构

激光器产生激光的三个基本结构

激光器产生激光的三个基本结构一、引言激光器是一种能够产生单色、高亮度、几乎无散射的光束的装置,广泛应用于科学研究、医疗、通信等领域。

激光器的基本结构有三种,分别是气体激光器、固体激光器和半导体激光器。

本文将详细介绍这三种激光器的基本结构及其工作原理。

二、气体激光器1. 气体激光器的基本结构气体激光器由放电管和反射镜组成。

放电管是一个密闭的玻璃管,内部填有稀薄气体(如氦氖气),两端分别安装有高压电极和低压电极。

反射镜则是由两个平面镜或球面镜组成,其中一个反射镜具有一定透过率。

2. 气体激光器的工作原理当高压电极加上高电压时,放电管内的气体被电离,形成等离子体。

等离子体中的自由电子通过碰撞使得氦原子发生受激辐射,产生激光。

激光在反射镜间来回反射,形成一个稳定的激光束。

3. 气体激光器的应用气体激光器广泛应用于科学研究、医疗、通信等领域。

其中,二氧化碳激光器被广泛应用于工业加工领域,如切割、焊接和打孔等。

三、固体激光器1. 固体激光器的基本结构固体激光器由放电管和固态材料组成。

固态材料通常是掺有特定元素(如钕)的晶体或玻璃材料。

放电管则是一个密闭的腔体,内部填有闪烁物质(如氙气),两端分别安装有高压电极和低压电极。

2. 固体激光器的工作原理当高压电极加上高电压时,放电管内的闪烁物质被电离,形成等离子体。

等离子体中的自由电子通过碰撞使得掺杂元素发生受激辐射,产生激光。

激光在固态材料中来回反射,形成一个稳定的激光束。

3. 固体激光器的应用固体激光器广泛应用于科学研究、医疗、通信等领域。

其中,钕掺杂的固态激光器被广泛应用于医疗领域,如眼科手术和皮肤美容等。

四、半导体激光器1. 半导体激光器的基本结构半导体激光器由PN结和反射镜组成。

PN结是由P型半导体和N型半导体组合而成的结构,反射镜则是由两个端面反射镜组成。

2. 半导体激光器的工作原理当PN结加上正向电压时,电子从N型区域流向P型区域,与空穴复合产生辐射能量,产生激光。

激光原理与技术--第二章 激光器的工作原理

激光原理与技术--第二章  激光器的工作原理
45
第四十五页,共60页。
❖ 四能级系统实现粒子数反转分布,对泵浦水平要 求低得多,意思四能级系统较之三能级系统更容 易实现激光振荡
❖ 由上式,E1和E0能级的能量差越大,对四能级系 统越有利,因此需要选择合适的工作物质
❖ 已有的性能较好的激光器绝大多数属于四能级系 统
46
第四十六页,共60页。
❖ 激光器组成
纵模的频率间隔:
q
q1
q
C
2L
33
第三十三页,共60页。

1 He-Ne 激光器谐振腔长50 cm,激射波长 632.8nm,荧光光谱线宽为:
求:纵模频率间隔,谐振腔内的纵模序数及形成激光振荡的纵模数;
q 1.5109 Hz
解:
c 2nL
3108 m sec 2 510 1m
3108 Hz
向节线数,即暗环数,l表示角向节线数,即暗直径数
基模(横向单模):m=n=0, 其它的横模称为高阶横 模
方2形4 反射镜和圆形反射镜的横模图形
第二十四页,共60页。
25 第二十五页,共60页。
(a) TEM00
(b) TEM10
(c) TEM02
26
第二十六页,共60页。
(d) TEM03
横模电场分布及强度示意图
15
第十五页,共60页。
光学谐振腔的模式(波型)
❖ 在具有一定边界条件的腔内,电磁场只能存在于一系列分立的本征态之中,场的 每种本征态将具有一定的振荡频率和空间分布。
❖ 光学谐振腔的模式: 谐振腔内可能存在的电磁场本征态。
❖ 模式与腔的结构之间具有依赖关系 ❖ 光学谐振腔的模式分为:纵模和横模
16 第十六页,共60页。

光纤激光器的基本结构

光纤激光器的基本结构

光纤激光器的基本结构光纤激光器是一种基于光纤的固态激光器,具有高效、稳定、可靠等优点,被广泛应用于通信、制造业、医疗等领域。

它的基本结构包括泵浦光源、光纤放大器、光纤反射镜和激光输出光纤。

下面将详细介绍每个部分的结构和作用。

一、泵浦光源泵浦光源是光纤激光器的核心部件,它的作用是提供能量激发光纤中的掺杂物,使其产生激光。

常用的泵浦光源有半导体泵浦二极管、光纤耦合的激光二极管等。

半导体泵浦二极管是最常用的泵浦光源,它的结构由n型和p型半导体材料组成,两端连接金属电极。

当电流流过二极管时,n型和p型半导体之间的结电场使得电子和空穴结合并释放出能量,这种能量被传递到掺杂光纤中,使其产生激光。

光纤耦合的激光二极管是一种将激光通过光纤耦合到掺光纤中的泵浦光源,它的结构由激光二极管、光纤耦合器和掺光纤组成。

二、光纤放大器光纤放大器是光纤激光器中的另一个关键部件,它的作用是将泵浦光源产生的激光放大。

光纤放大器的结构包括掺杂光纤、泵浦光源和光纤反射镜。

当泵浦光源激发掺杂光纤中的掺杂物时,产生的激光被反射到光纤反射镜上,不断地被反射和放大,最终形成高质量的激光输出。

三、光纤反射镜光纤反射镜是将激光反射回掺杂光纤中的镜子,它的结构包括镜头和反射膜。

当激光经过反射膜时,一部分激光被反射回掺杂光纤中,使其不断地被反射和放大,最终形成高质量的激光输出。

四、激光输出光纤激光输出光纤是将产生的激光传输到需要的地方的光纤,它的结构和普通光纤类似。

激光输出光纤的质量对激光器的输出功率和稳定性有很大的影响,因此要选择高质量的光纤。

总的来说,光纤激光器的基本结构包括泵浦光源、光纤放大器、光纤反射镜和激光输出光纤。

这些部件的结构和作用紧密相连,协同工作,才能产生高质量的激光输出。

第四章激光光谱学中的光源

第四章激光光谱学中的光源
当频率一定的光射入工作物质时,受激辐射和受激吸收两过程同时存在,因 受激辐射使光子数增加,受激吸收使光子数减小。物质处于热平衡态时,处在较低 能级E1的粒子数必大于处在较高能级E2的粒子数。这样光穿过工作物质时,光的能 量只会减弱不会加强。要想使受激辐射占优势,必须使处在高能级E2的粒子数大于 处在低能级E1的粒子数。这种分布正好与平衡态时的粒子分布相反,称为粒子数反 转分布,简称粒子数反转,如何从技术上实现粒子数反转是产生激光的必要条件。
的光放大。但是把工作物质作得无限长是不现实的。
所谓光学谐振腔,实际上是在激光器两端,面对面地装上两块反射率很高的 平面镜,一块平面镜对光几乎全反射,另一块则让光大部分反射,少部分透 射出去,以使激光可透过这块镜子而射出。光学谐振腔的作用为:①提供光 学正反馈,②限制激光的模式。
l
全反射镜
. 激光光束
适当的工作物质,在适当的激励条件下可在特定的高低能级间实现粒子 数反转。
第三节 激光器基本结构
1.激光工作物质 必须能在该物质中实现粒子数反
转。可以是气体、液体、固体或半导 体。现已有工作物质近千种,可以产 生波长从紫外到远红外波段
2. 激励源(泵) 为使工作物质中出现粒子数反转,必须用一定的方法激励原子体系,使处
小信号增益越来越大, 但同时对激光作贡献的原子减少, 特别是 q 0 时,只有一群 uz 0 原子对激光贡献
输出功率反而下降--- 烧孔
第五节 光谱学中常用激光光源
1. 固体激光器
√将可激活离子掺杂到晶体或玻璃体中的一大类激光器; √一般采用光激发泵浦,如采用闪光灯或另一台激光来泵浦; √激光介质加工成圆柱状,称为激光棒; √为了有效地利用泵浦光能,需要加上聚光器;
第四节 激光振荡

半导体泵浦固体激光器实验报告

半导体泵浦固体激光器实验报告

半导体泵浦固体激光器实验报告实验名称:半导体泵浦固体激光器实验实验目的:1. 了解半导体泵浦固体激光器的工作原理和基本结构;2. 学习激光器的调谐方法和测量激光器的光学特性;3. 熟悉激光器的使用,掌握激光器实验中的各种技能。

实验原理:半导体泵浦固体激光器是利用半导体激光二极管激发固体激光材料来产生激光的一种激光器。

其基本结构如图所示:![image](其中,激光二极管的电流经过施加,产生激光并通过聚焦透镜进行集中,通过反射镜反射,激活激光材料的原子和分子的电子从基态跃迁到激发态,形成放电状态,当放电状态达到一定密度时,形成激光束发射出去。

半导体泵浦固体激光器的调谐方法有很多种,如通过调整输出反射镜的位置和倾角,调整背面反射镜的位置和倾角等,从而达到调谐的目的。

同时,对激光器的光学特性有很多种测量方法,包括激光器产生激光的波长、光功率等参数,以及激光束的透过合大度、束径、谐波烽度谱等。

实验步骤:1. 搭建半导体泵浦固体激光器实验装置,并对各个部件进行检查和调整。

2. 通过调整输出反射镜和背面反射镜的位置和倾角,调谐激光器的输出波长,并测量激光的光功率。

3. 测量激光束的透过合大度、束径、谐波烽度谱等光学特性。

4. 尝试改变激光二极管的电流和输出反射镜的位置和倾角,观察激光器的输出特性的变化。

实验结果:通过调整输出反射镜和背面反射镜的位置和倾角,成功调谐了激光器的输出波长,同时测量得到了激光的光功率和各种光学特性参数。

实验结论:半导体泵浦固体激光器是一种常见的激光器,其工作原理和基本结构比较简单,可以通过调谐输出镜和背面反射镜的位置和倾角来实现对激光的调谐。

同时,激光器的光学特性也可以通过多种方法进行测量和分析,可以应用于各种实际应用场景中。

固体激光器原理及应用

固体激光器原理及应用

编号赣南师范学院学士学位论文固体激光器原理及应用教学学院物理与电子信息学院届别 2010届专业电子科学与技术学号 *********姓名丁志鹏指导老师邹万芳完成日期 2010.5.10目录摘要 (1)关键词 (1)Abstract (1)Key words (1)1引用 (2)2激光与激光器 (2)2.1激光 (2)2.2激光器 (3)3固体激光器 (4)3.1工作原理和基本结构 (4)3.2典型的固体激光器 (8)3.3典型固体激光器的比较 (11)3.4固体激光器的优缺点 (12)4固体激光器的应用 (13)4.1军事国防 (13)4.2工业制造 (15)4.3医疗美容 (17)5结束语 (17)参考文献 (19)摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。

介绍固体激光器的工作原理及应用,更能够加深对其的了解。

本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。

关键词:固体激光器基本原理基本结构应用Abstract:Solid-state laser is currently one of the most extensive laser,it has some very obvious advantages.The working principle of solid-state lasers and applications were described in the paper and it can enhance the understanding.In this paper, starting with the basic principles and structure of the introduced solid-state laser,and then some typical solid-state lasers and a presentation on its military defense,industrial technology,medical and cosmetic applications in three areas and future development direction were introduced.Key words:Solid-state Laser Basic Principle Basic Structure Application1引用世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。

半导体激光器工作原理和基本结构

半导体激光器工作原理和基本结构

半导体激光器与固体激光器旳比较
半导体激光器和固体激光器都是以固体激光材料作为工作物质旳激光器 ; 半导体激光器是电鼓励,直接把电能转化为光能,转换效率高达50%以上。固体激光器是光
鼓励,激活粒子需要吸收光能,然后产生受激振荡;半导体泵浦转化效率一般在15%左右, 灯泵浦鼓励一般在4%左右。 半导体激光器旳主要特点是:体积小、重量轻;功率转换效率高;能够经过变化温度、掺杂量、 磁场、压力等实现调谐;其缺陷是激光旳发散角较大,单色性较差,输出功率亦较小。目前 新型旳半导体激光器已经能够到达较大旳输出功率,而为了得到更大旳输出功率,一般能够 将许多单个半导体激光器组合在一起形成半导体激光器列阵,即在同一片已做好旳P一N结旳 基片上,用光刻腐蚀措施提成好几种单个器件,或将许多单个激光器排列成一定形状,然后 将它们并联或串联起来。目前已经有100WQCW线阵和s000WQCW叠阵(波长780~815五m)旳 产品上市。 固体激光器可作大能量和高功率相干光源。红宝石脉冲固体激光器旳输出能量可达千焦耳级。 经调Q和多级放大旳钕玻璃激光系统旳最高脉冲功率达10瓦。钇铝石榴石连续激光器旳输出 功率达百瓦级,多级串接可达千瓦。固体激光器利用Q开关技术(电光调制), 固体激光器能 够得到纳秒至百纳秒级旳短脉冲,采用锁模技术可得到皮秒至百皮秒量级旳超短脉冲。因为 工作物质旳光学不均匀性等原因,一般固体激光器旳输出为多模。若选用光学均匀性好旳工 作物质和采用精心设计谐振腔等技术措施,可得到光束发散角接近衍射极限旳基横模(TEM00) 激光,还可取得单纵模激光。
半导体激光器旳应用
• 在医疗和生命科学研究方面应用:
1. 激光手术治疗。半导体激光已经用于软组织切除, 组织接合、凝固和气化。一般外科、整形外科、皮肤 科、泌尿科、妇产科等; 2. 激光动力学治疗。将对肿瘤有亲合性旳光敏物质有 选择旳汇集于癌组织内,经过半导体激光照射使癌组 织产生活性氧,旨在使其坏死而对健康组织毫无损害; 3. 生命科学研究。使用半导体激光旳“光镊”,能够 捕获活细胞或染色体并移至任意位置,已经用于增进 细胞合成、细胞相互作用等研究。

co2激光器

co2激光器

/info/6835.html∙CO2激光器是一种以CO2来产生激光辐射的气体激光器,是目前用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。

CO2激光器是目前连续输出功率较高的一种激光器,它发展较早,商业产品较为成熟,被广泛应用到材料加工、医疗使用、军事武器、环境量测等各个领域。

目录∙CO2激光器的原理∙CO2激光器的结构∙CO2激光器的优缺点∙CO2激光器的优势及应用∙CO2激光器的发展趋势CO2激光器的原理∙与其它分子激光器一样,CO2激光器工作原理其受激发射过程也较复杂。

分子有三种不同的运动,即分子里电子的运动,其运动决定了分子的电子能态;二是分子里的原子振动,即分子里原子围绕其平衡位置不停地作周期性振动——并决定于分子的振动能态;三是分子转动,即分子为一整体在空间连续地旋转,分子的这种运动决定了分子的转动能态。

分子运动极其复杂,因此能级也很复杂。

CO2激光器产生激光:在放电管中,通常输入几十mA或几百mA的直流电流。

放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。

这时受到激发的氮分子便和CO2分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO2分子从低能级跃迁到高能级上形成粒子数反转从而产生激光。

CO2激光器的结构∙如图1 所示是为一种典型的CO2激光器结构示意图。

构成CO2激光器谐振腔的两个反射镜放置在可供调节的腔片架上,最简单的方法是将反射镜直接贴在放电管的两端。

基本结构:①激光管激光器中最关键的部分。

通常由三部分组成(如图1所示):放电空间(放电管)、水冷套(管)、储气管。

放电管通常由硬质玻璃制成,一般采用层套筒式结构。

它能够影响激光的输出以及激光输出的功率,放电管长度与输出功率成正比。

在一定的长度范围内,每米放电管长度输出的功率随总长度而增加。

一般而言,放电管的粗细对对输出功率没有影响。

水冷套管的和放电管一样,都是由硬质玻璃制成。

它的作用是冷却工作气体,使得输出功率稳定。

固体激光器基本特性

固体激光器基本特性

30
光电子技术精品课程
影响阈值的因素
工作物质的种类
三能级阈值高于四能级阈值
损耗系数α
对三能级系统影响小 对四能级系统影响显著。 质量好的工作介质和精心调节谐振腔可减小α
ηLηcηab
三能级:
g2 1 1 1 1 提高发光效率 n2th ( ln ) ntot (1 g 2 / g1 ) g1 21 2l R 提高聚光器效率 提高光谱匹配效率 四能级: n2th
2 2 21 2 A /( 4 n ) 0 21
ni为激光工作介质能级上的粒子数
21是受激辐射截面
多普勒加宽的高斯线型的受激发射截面
1/ 2 2 2 21 2 A ( ln 2 ) /( 4 n ) 0 21
22
光电子技术精品课程
固体激光器阈值
受激辐射截面
A31
W13
E2
S32
A21 B12 B21 E1
A30
W03
E2
A21 B12 B21
E1
E0
b) 四能级
0 p
a) 三能级
0 , 激光频率 p , 泵浦光频率
10
光电子技术精品课程
输出耦合系数
T T
T,输出镜透射率
,谐振腔往返损耗率
11
光电子技术精品课程
1.2固体激光器的阈值
12
光电子技术精品课程
黑体辐射
13
光电子技术精品课程
波耳兹曼分布
E2 A21 B12 B21
热平衡时,上能级原子数很少
当能系足够大
E1
T≈300K
任何跃迁频率位于近红外或可见区域中的能隙来说,波耳 兹曼指数很小,于是上能级原子数远小于下能级原子数

固体激光器的基本结构和工作物质 李迎鑫 1102

固体激光器的基本结构和工作物质  李迎鑫 1102

固体激光器的基本结构与工作物质摘要1960年,T.H.梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。

到1960年底,人们分别在固体(掺铀氟化钙)和气体(氦氖)中实现了四能级激光器系统。

固体激光器的发明梅曼发明的红宝石激光器为激光技术的发展完全打开了新的大门。

本文就固体激光器的基本结构与工作物质进行阐释。

关键词固体激光器基本结构工作物质基本结构固体激光器一般由激光工作物质、激励源、聚光腔、谐振腔反射镜和电源等部分构成。

工作物质,激光器的核心部分,由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。

这种工作物质一般应具有良好的物理-化学性质、窄的荧光谱线、强而宽的吸收带和高的荧光量子效率。

激励能源,固体激光器一般采用光激励源。

通常为光泵。

它的作用是给工作物质以能量,即将原子由低能级激发到高能级的外界能量。

通过强光照射工作物质而实现粒子数反转的方法称为光泵法。

例如红宝石激光器,是利用大功率的闪光灯照射红宝石(工作物质)而实现粒子数反转,造成了产生激光的条件。

通常可以有光能源、热能源、电能源、化学能源等。

常用的脉冲激励源有充氙闪光灯;连续激励源有氪弧灯、碘钨灯、钾铷灯等。

在小型长寿命激光器中,可用半导体发光二极管或太阳光作激励源。

一些新的固体激光器也有采用激光激励的。

聚光腔的作用有两个:一个是将泵浦源与工作物质有效的耦合;另一个是决定激光物质上泵浦光密度的分布,从而影响到输出光束的均匀性、发散度和光学畸变。

工作物质和泵浦源都安装在聚光腔内,因此聚光腔的优劣直接影响泵浦的效率及工作性能。

谐振腔,由全反射镜和部分反射镜组成,是固体激光器的重要组成部分。

光学谐振腔除了提供光学正反馈维持激光持续振荡以形成受激发射,还对振荡光束的方向和频率进行限制,以保证输出激光的高单色性和高定向性。

最简单常用的固体激光器的光学谐振腔是由相向放置的两平面镜(或球面镜)构成。

受激辐射光通过反馈在其中形成放大与振荡, 并由部分反射镜输出。

固体激光器基本原理以及应用

固体激光器基本原理以及应用
自第一台红宝石激光器问世,固体激光器就一 直占据了激光器发展的主导地位,特别是在20 世纪80 年代出现的半导体激光器以及在此基础 上出现的全固化固体激光器更因为体积小、重
量轻、效率高、性能稳定、可靠性好和寿命长
等优点,逐渐成为光电行业中最具发展前途的
领域。目前世界范围内销售的商品固体激光器 已有500 余种,但从1998 年开始,固体激光器 中的Nd:YAG 激光器的市场占有率和销售额已 升为第一位。
与传统灯泵浦固体激光器比较,全固化固体激 光器具有以下优点:
1) 转换效率高:由于半导体激光的发射波长与 固体激光工作物质的吸收峰相吻合,加之泵浦 光模式可以很好地与激光振荡模式相匹配,从 而光光转换效率很高,已达50%以上,光纤达 80%,整机效率也可以与二氧化碳激光器相当, 比灯泵固体激光器高出一个量级,因而全固化 固体激光器可省去笨重的水冷系统,体积小, 重量轻,结构紧凑,易于系统集成,性能价格 比高。
连续或脉冲
532, 1070, 1800-2000 高达2KW/高达1mJ
高达20%
基模 光斑细
功率/能量稳定 性 冷却方式 可靠性 维护周期 使用寿命 系统体积 光纤传输 设备成本 运行成本 技术
< 1.5% 风冷 最佳 无需维护 大于10 万小时 小巧紧凑 单模光纤 较高 较低 最新
二极管泵浦固体激光器
2
3)任意形状光纤激光器
为了克服双包层光纤激光器输出功率受 到限制,进一步提高输出功率,日本学 者率先开发出了一种任意形状光纤激光 器,有望获得千瓦量级的光纤激光器。 其方案是将光纤排放成盘状结构,大大 增加了泵浦光的利用面积,其有效利用 面积比纤芯端面和包层端面大得多。根 据光纤的排放方式不同,这类光纤激光 器又可分为盘状、片状、圆柱状、环状 和棒状等不同结构的光纤激光器。

激光原理实验

激光原理实验

激光原理实验激光安全须知实验一Nd3+:YAG激光器的安装与调试实验二Nd3+:YAG激光器参数测量实验三高斯光束远场发散角测量实验四氦氖激光器模式测量实验五电光调Q脉冲YAG激光器实验六KTP晶体倍频YAG激光器实验七YAG激光放大器激光安全须知1 大功率调Q脉冲激光装置所在地应有明确标志,非实验人员不得进入激光工作区域。

2 不可直视激光束(迎着激光束射来的方向看)和它的反射光束,不允许对激光器件做任何目视的准直操作。

3 对于不可见的红外激光束,实验者更应了解实验的光路布局,并避免使自己的头部保持在激光束高度所在的水平面内。

4 实验区域内不应存在任何带有闪亮表面的物体。

实验者应从身上除去此类饰物、手表与徽章等。

5 不可在有激光照射的情况下移动任何反射镜、光阑、能量汁探头和光谱仪器等。

6 不允许将激光束瞄准任何人体、动物、车辆、门窗和天空等。

对于由此而带来的对目的物的伤害,操作者负有法律责任。

7 不得在未停机或未确认储能元件均已放电完毕的情况下检修激光设备,避免造成电击伤害。

实验一Nd3+:YAG激光器的安装与调试一、实验目的1、通过对Nd3+:Y AG激光器的安装与调试熟悉固体激光器的结构和工作原理。

2、学会调整光学谐振腔的基本方法。

3、要求将激光器调整到有最佳输出状态。

二、仪器设备YAG棒:φ6Х80mm 脉冲氙灯:φ6Х80mm 半反镜透过率:T=80%谐振腔长:500mm 储能电容:100μF 聚光腔:1个激光电源:1台水冷设备:一套光学平台及支架:一套黑相纸:若干红光LED指示光源光源:一支小孔光阑:一个三、实验原理1、固体激光器基本结构YAG 棒图1、固体激光器基本结构固体激光器主要由工作物质,激励源和光学谐振腔三部分组成,其结构如图1。

本实验用激光器,工作介质φ6×80mm,泵灯为脉冲氙灯,尺寸为φ7×80mm,聚光腔采用镀银金属腔。

聚光腔的作用是使光泵发出的光更有效地集中照射到工作物质上,从而提高激光器的总体效率。

2激光器的工作原理

2激光器的工作原理
影响谐振腔的光学反馈作用的两个因素: 组成腔的两个反射镜面的反射率;反射镜的几何形状以及 它们之间的组合方式。 2. 产生对振荡光束的控制作用 主要表现为对腔内振荡光束的方向和频率的限制。改变腔的 参数如:反射镜、几何形状、曲率半径、镜面反射率及配置
1.
2.
3.
有效地控制腔内实际振荡的模式数目,获得单色性 好、方向性强的相干光 可以直接控制激光束的横向分布特性、光斑大小、 谐振频率及光束发散角 可以控制腔内光束的损耗,在增益一定的情况下能 控制激光束的输出功率
l3
q
l2
折叠腔
l1
谐振腔作用:提供光学正反馈,控制光束特征 (模式,功率,光斑)
2.光腔的两种理论方法
• 衍射理论: 不同模式按场分布,损耗, 谐振频率来区分, 给出 不同模式的精细描述, 适用菲涅尔数不大, 衍射效应明显 • 几何光学+干涉仪理论: 忽略反射镜边缘引起的衍射效应,
不同模式按传输方向和谐振频率来区分, 粗略但简单明了
谐振腔的使用特点(1)可使输出光有良好的方向性。(2) 限制模式和选择频率的作用。
§2.1 谐振腔
1.腔的构成与分类
(a) 闭腔 (b) 开腔 介质波导腔
另:折叠腔、环形腔 复合腔-腔内加入其它光学元件,如透镜,F-P标准具等 按谐振腔的几何逸出损耗分类:稳定腔,非稳定腔,临界腔
一般要求上能级 E 2的自发辐射寿命大于下能级E 1的自发辐 射寿命,而且根据跃迁选择定则,该两能级之间的辐射跃迁 是被允许的,同时辐射的频率 (E2 E1) / h 适合我们的 要求。
2. 泵浦源(激励源) 采用一定的激励方式和激励装置。 根据工作物质 特性和运转条件的不同,采用不同的方式和装置, 提供的泵浦源可以是光能、电能、化学能及原子能 等。 激励源的选择取决于工作物质的特点。因而不 同工作物质往往需要不同的泵浦源。如对固体激光 器一般采用脉冲氙灯、碘钨灯等光激励的办法,对 气体激光器则用电激励方法,通过放电直接激励工 作物质。此外激励源的选择也应考虑到激励效率等 问题。

激光原理及应用课件—陈鹤鸣第8章 典型激光器

激光原理及应用课件—陈鹤鸣第8章 典型激光器
激光工作方式:多数以四能级方式工作 激光输出特性: 单色性、方向性优于其它激光器;
频率稳定,易获得连续的激光输出。
激光器装置:激光管(放电管),电极,光谐振腔 光谐振腔:内腔式,外腔式
2022/11/19
激光原理及应用 陈鹤鸣 赵新彦
19
8.2.2 He-Ne激光器 1.基本结构
2022/11/19
侧面激励: 采用大功率半导体激光器列阵作泵浦光源,
激光输出功率大
2022/11/19
激光原理及应用 陈鹤鸣 赵新彦
10
8.1.2 红宝石激光器
1. 发光机理 (1)激光工作物质
基质: Al2O3 晶体 掺杂: Cr2O3
(质量比约为0.05 %)
(2)激光的产生
激光波 长:
694.3nm
4 A2 泵浦
输出功率大,体积小,效率高,适合实现调Q、锁模等技术
8.1.1 固体激光器的基本结构和抽运方式
1. 闪光灯泵浦
脉冲激光器:脉冲氙灯 连续激光器:氪灯,碘钨灯
2022/11/19
激光原理及应用 陈鹤鸣 赵新彦
9
2. 半导体激光二极管泵浦 端面激励: 装置简单,泵浦光束与谐振腔模匹配良好,
阈值功率低,斜效率高
染料分子的能级图
2022/11/19
激光原理及应用 陈鹤鸣 赵新彦
32
§8.4 新型激光器
2022/11/19
激光原理及应用 陈鹤鸣 赵新彦
33
8.4.1 准分子激光器
准分子: Excimer 一种在激发态能够暂时结合成不稳定分子,而 在基态又迅速离解成原子的缔合物,因而也称 “受激准分子”。
准分子的能级结构
脉冲输出能量达百焦耳量级,脉冲峰值功率达

2μm单纵模全固态脉冲激光技术研究进展(封面文章·特邀)

2μm单纵模全固态脉冲激光技术研究进展(封面文章·特邀)

2μm单纵模全固态脉冲激光技术研究进展(封面文章特邀)颜秉政;穆西魁;安嘉硕;齐瑶瑶;丁洁;白振旭;王雨雷;吕志伟【期刊名称】《红外与激光工程》【年(卷),期】2024(53)2【摘要】2μm激光属于人眼安全波段,具有高大气透过率和水吸收特性,能覆盖CO_(2)等温室气体的吸收峰,因此在大气环境监测、光通信、激光雷达、材料加工、医疗手术等领域有广泛应用。

其中,单纵模运转的全固态2μm脉冲激光器以其高稳定性、窄线宽和优良的光束质量等优势,可作为多普勒测风、相干差分吸收等激光雷达应用的优质光源,在工业、国防和科研等领域具有重要意义。

目前,实现2μm激光输出的主要方法有光参量技术和直接泵浦法。

相比光参量技术,直接泵浦法更具高效率、可调节性和集成性等优点,已成为2μm全固态激光的主流方式。

文中总结了常用的2μm固体激光增益介质,分析了空间结构振荡器单纵模选择的原理和特点,综述了2μm单纵模全固态脉冲激光的研究进展,并对不同结构激光器的输出特性进行了比较,最后对2μm单纵模全固态脉冲激光的发展前景进行了展望。

【总页数】16页(P1-16)【作者】颜秉政;穆西魁;安嘉硕;齐瑶瑶;丁洁;白振旭;王雨雷;吕志伟【作者单位】河北工业大学先进激光技术研究中心;河北省先进激光技术与装备重点实验室【正文语种】中文【中图分类】TN248.1【相关文献】1.单纵模调Q脉冲光纤激光器研究进展2.高功率克尔透镜锁模掺镱全固态激光器研究进展(特邀)3.被动锁模超短脉冲光纤激光器研究进展(特邀)4.全固态单频连续波宽调谐钛宝石激光器研究进展(特邀)5.单纵模激光器强度噪声抑制技术研究进展因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ቤተ መጻሕፍቲ ባይዱ
2. 学习内容
(2)固体激光器的基本组成:工作物质、泵浦系统、谐 振
腔和冷却、滤光系统构成的。 左下图是长脉冲固体激光器的基
本结构示意图(冷却、滤光系统未画出)。
基本结构示意图
2. 学习内容
①过渡金属离子:铬(Cr3+)。
(3)在固体中能产生受激 发射作用的金属离子主
②大多数镧系金属离子:钕
要有三类:
固体激光器的基本结构
课程名称:激光原理与技术 主讲人:张玄和 单位:浙江工贸职业技术学院
固体激光器的基本结构
1. 教学目标
使学生认识固体激光器的基本结构。
2. 学习内容
(1)固体激光器定义:用固体激光材料作为工作物质的激光器。
这类激光器所采用的固体工作物质,是把容易产生受激发射作
用的金属离子掺入晶体而制成的。
(Nd3+)、钐(Sm2+)、镝
(Dy2+)。 ③锕系金属离子:铀(U3+)。
3. 小结
固体激光器基本上都是由工作物质、泵浦系统、 谐振腔和冷却、滤光系统构成的。
4. 作业思考题
①固体激光器所采用的固体工作物质有何特点? ②在固体中, 能产生受激发射作用的金属离子主要
有哪三类?
相关文档
最新文档