数理方程第二章 关于二阶常微分方程本征值问题的一些结论-6
二阶常微分方程解存在的问题
二阶常微分方程解的存在问题分析摘要本文首先介绍了二阶常系数齐次线性微分方程的一般解法——特征方程法及二阶常系数非齐次线性微分方程的待定系数法,然后又介绍了一些可降阶的微分方程类型。
接着,讨论了二阶变系数微分方程的幂级数解法并论述了如何利用变量代换法将某些变系数方程化为常系数方程。
另外,本文还介绍了求解初值问题的另一种方法——拉普拉斯变换法。
最后,给出了二阶微分方程的存在唯一性定理的证明以及它在科学研究、工程技术以及数学建模中解决实际问题的一些应用。
1.引言1.1常微分方程的发展过程与研究途径二阶线性微分方程是常微分方程中一类很重要的方程。
这不仅是因为其一般理论已经研究地比较清楚,而且还因为它是研究非线性微分方程的基础,在工程技术和自然科学中有着广泛的应用。
在科学研究、工程技术中,常常需要将某些实际问题转化为二阶常微分方程问题。
因此,研究不同类型的二阶常微分方程的求解方法及探讨其解的存在唯一性问题是十分重要的。
常微分方程已有悠久的历史,而且继续保持着进一步发展的活力,主要原因是它的根源深扎在各种实际问题之中。
牛顿最早采用数学方法研究二体问题,其中需要求解的运动方程就是常微分方程。
他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。
用现在叫做“首次积分”的办法,完全解决了它的求解问题。
17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。
20世纪30年代直至现在,是常微分方程各个领城迅速发展、形成各自相对独立的而又紧密联在一起的分支学科的时期。
1927-1945年间定性理论的研究主要是跟无线电技术联系在一起的。
第二次世界大战期间由于通讯等方面的要求越来越高,大大地激发了对无线电技术的研究,特别是非线性振动理论的研究得到了迅速的发展。
40年代后数学家们的注意力主要集中在抽象动力系统的拓扑特征, 如闭轨是否存在、结构是否稳定等, 对于二维系统已证明可以通过奇点及一些特殊的闭轨和集合来判断结构稳定性与否;而对于一般系统这个问题尚未解决。
22 二阶线性常微分方程的级数解法和一般本征值问题
(3)
k=0
k=0
k=0
其中的展开系数 pk 和 qk 是已知的,而 ak 是未知的.将这些展开式代入方程 (1),合并同 幂项,将左边整理成一个幂级数,由于右边为零,故所有 (x − x0)k 的系数均必须为零,由
§2 Legendre 方程及其本征值问题
3
此可得 ak 间的一系列代数方程.求解这些代数方程即可用 a0 和 a1 表出 a2, a3, · · · ,从而 得到级数解.容易看出,a0 = c0,a1 = c1.如果不给定初始条件,则级数解中含有两个任意 常数 a0 和 a1,所以是方程 (1) 的通解.
下面补充讨论两个有关问题.它们与级数解法无关,也与常点或奇点无关.
首先,如果我们已经求得方程 (1) 的一个解 y1(x)(不管用什么方法),则第二解就可以用积分表出. 事实上,令 y2(x) = C(x)y1(x),其中 C(x) 是未知函数.代入方程 (1),容易得到 y1C +(2y1 +py1)C = 0,这是 C (x) 的一阶线性方程,容易求出 C (x),再积分一次即得 C(x),最后得到
y(x0) = c0, y (x0) = c1.
(2)
如果不附加初始条件,则通解中含有两个任意常数.
显然,方程 (1) 的解的行为取决于系数的行为.我们假定在复平面的某区域 D 内,p(x)
和 q(x) 除有限个孤立奇点外是单值解析的.级数解法就是在 D 内某点 x0 的邻域或去心邻 域内将 y(x) 展开为幂级数,即 Taylor 级数、Laurent 级数或更一般的幂级数(见后).展开
∞
y(x) = akxk.
k=0
容易得到下列各式:
∞
∞
二阶常微分方程级数解法
+ De
−ikat
(k ≠ 0)
关于v的偏微分方程称为亥姆霍兹方程。 关于v的偏微分方程称为亥姆霍兹方程。关于亥姆霍兹 亥姆霍兹方程 方程以后讨论。 方程以后讨论。 13
3. 输运方程 三维输运方程为
ut − a2∆u = 0
和对三维波动方程的讨论一样, 和对三维波动方程的讨论一样,设 v v u(r , t ) = T (t )v(r ) 有 T ′ + k 2 a 2T = 0
utt − a ∆u = 0
2
12
分离变数得
v v u(r , t ) = T (t )v(r )
代入方程并分离得
′′ + k 2 a 2T = 0 T ∆v + k v = 0
2
关于T的方程的解为 关于T
T (t ) = C + Dt = 0) (k T = C coskat + D sin kat = Ce
Y (θ , ϕ ) = Θ(θ )Φ (ϕ ) Φ′′ + λΦ = 0 d dΘ 2 sin θ (sin θ ) + [l (l + 1) sin θ − λ ]Θ = 0 dθ dθ
第一个方程加上自然周期条件构成本征值问题, 第一个方程加上自然周期条件构成本征值问题,本征 值为 2
λ = m = 0,1, L) (m
∆v + k v = 0 与三维波动方程比较, 与三维波动方程比较,关于空间部分都是亥姆霍兹方 不同的只是T的方程,这里, 的方程是一阶的, 程,不同的只是T的方程,这里,T的方程是一阶的, 解为
2
T = Ce
−k 2a 2t
14
4. 亥姆霍兹方程 与拉氏方程比较, 与拉氏方程比较,亥姆霍兹方程多了一项 仍采用对拉氏方程的讨论方法。 仍采用对拉氏方程的讨论方法。 (1) 球坐标系 亥姆霍兹方程在球坐标系中的表达式为
二阶常系数线性微分方程的解法word版
第八章 讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' 1的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 1变成0=+'+''qy y p y 2我们把方程2叫做二阶常系数齐次线性方程,把方程式1叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式2的两个解, 则2211y C y C y +=也是式2的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程2的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程2的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程2的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式2的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间a,b 内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式2的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数是方程式2的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=21,C C 是任意常数是方程0=+''y y 的通解.由于指数函数rxe y =r 为常数和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rxe y =满足方程2.将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程2,得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r 3只要r 满足方程式3,rx e y =就是方程式2的解.我们把方程式3叫做方程式2的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程2y y y ,,'''的系数. 特征方程3的两个根为 2422,1q p p r -±-=, 因此方程式2的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程2的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程2的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程2的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程2, 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程3的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程2的另一个解 x r xe y 12=.那么,方程2的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程3有一对共轭复根 βαβαi r i r -=+=21, 0≠β于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程2的解具有叠加性,所以-1y ,-2y 还是方程2的解,并且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以方程2的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:1写出方程2的特征方程02=++q pr r2求特征方程的两个根21,r r3根据21,r r 的不同情形,按下表写出方程2的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为t e t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程1的一个特解,Y 是式1所对应的齐次方程式2的通解,则*+=y Y y 是方程式1的通解.证明 把*+=y Y y 代入方程1的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程1的两端恒等,所以*+=y Y y 是方程1的解. 定理4 设二阶非齐次线性方程1的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' 4 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程4的特解, 非齐次线性方程1的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程1的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程1的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程1并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ 5以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:1 若λ不是方程式2的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式5的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入5式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*2 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式5成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.3 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使5式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式1中的x m e x P x f λ)()(=,则式1的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令xe xb y 20-=*,代入原方程解得230-=b故所求特解为 xxe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 xe x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去x e 得126-=+x b ax比较系数,得61=a 21-=b于是 xe x x y )216(2-=*所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法 ,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式1成为x B x A q y p y ωωsin cos +=+'+'' 7这种类型的三角函数的导数,仍属同一类型,因此方程式7的特解*y 也应属同一类型,可以证明式7的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a 解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=*** 代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x sin 51cos 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。
9.3二阶常系数线性微分方程
方程 ( 9 30) 对应齐次方程( 9 25) 的通解, 则方程
(9 30) 的通解为
y(x) Y y(x)
(9 31)
y ay by 0的通解
y ay by f ( x)的一个特解
归纳
对线性方程组Ax = b,它的通解:
x k11 k22 knr nr
形如
y ay by f ( x)
(9 30)
的方程, 称为二阶常系数非齐次线性微分方程, 其中 a , b 为已知常数, f ( x) 0 . 通常称方程(9-25)
y ay by 0为方程 (9 30) 对应的齐次方程 .
常见的几种 f ( x) 形式: 1. f ( x) Pn( x) 2. f ( x) Pn( x)ex
2a0 a0 x2 a1x a2 2x2 3
比较同幂次项系数, 得 a0 2, a1 0, a2 7 于是 y 2x2 7, 方程通解为
y C1 cos x C2 sin x 2x2 7 其中C1,C2 为任意常数.
2. y ay by Pn( x)ex 型方程
特点:不用积分就可以求出y* 来.
f(x)的类型
f(x)=Pn(x) eμx μ为常数.
取试解函数条件 μ不是特征根 μ是单特征根 μ是重特征根
试解函数y*的形式 y*=eμxQn(x) y*=xeμxQn (x) y*=x2eμxQn (x)
f(x)= (Acosωx+Bsinωx)
eμx μ,ω,A,B为常数.
2 2 0 其特征根 1 1, 2 2 为两个相异实根, 所以
所给方程的通解为 y( x) C1ex C2e2x
数理方程第二章 非齐次边界条件的处理-5
深圳大学电子科学与技术学院
W
W W
x 0 xl
u1 ( t ) u2 ( t )
W1
W2
( 2.59)
l
x
例如上图 W ( x, t ) ,W1 ( x, t ) ,W2 ( x, t )等等,都能满足( 2.59 )的要求。
如,可取直线
W ( x, t ) A(t ) x B(t )
2 2
1 ( x )
t 0
将U的边界条件代入 u( x, t ) V ( x, t ) u1 (t ) u2 (t ) u1 (t ) x
L
由 u x L u2 (t ),得
u (t ) u1 (t ) u (0, t ) V ( L, t ) u1 (t ) 2 L L
x
孙子兵法中,称之为 “偷梁换柱”法。
就能使新的未知函数 V ( x , t ) ,满足齐次的边界条件。
深圳大学电子科学与技术学院
然后来解决关于新的函数V(x,t)——(齐次)的定解问题. 2 2 u u 2 u V W a f ( x, t ) 2 代入 t 2 x
( 2.59)
就能合乎要求。可是,满足(2.59)要求的函数 W(x,t) 是很多的,例如
深圳大学电子科学与技术学院
W
l , (u2 (t ))
0
l
W
W W
x 0 xL
u1 (t ) u2 (t )
0, (u1 (t ))
W1
W2
( 2.59)
x
例如上图 W ( x, t ) ,W1 ( x, t ) ,W2 ( x, t )等等,都能满足( 2.59 )的要求。
二阶常微分方程边值问题求解的常数变易法
二阶常微分方程边值问题求解的常数变易法数学物理方程与特殊函数复习资料二阶常微分方程边值问题求解的常数变易法20XX年-8-31数理方程所解决的问题与高等数学(微积分)教科书中的常微分方程有很大区别,其中最显著的特点是多数微分方程的条件是边值问题,即知道未知函数在自变量变化区域的边界上的取值。
这就是所谓的边值问题。
最简单的是二阶常微分方程的两点边值问题。
二阶常微分方程的解是一个一元函数,关于这个一元函数的信息,知道的不多,除了微分方程本身提供的之外,还有未知函数在一个区间的两个端点处的值。
微积分所教给我们的技巧是先求出常微分方程的通解,再根据两个条件确定通解中的两个任意常数。
进入这门课之初,先回顾初值问题,再思考边值问题。
在边值问题中,数理方程课程内容中出现了一个历史上非常著名的函数,即格林函数。
对力的分析中普遍使用一个方程:F=ma。
这是著名的牛顿第二定律,其中,F表示力,m表示物体的质量,而a表示物体运动的加速度。
由于加速度的物理意义可解释为物体运动时位移变量对时间的二阶导数,再结合使用虎克定律,就得出简单的振动所满足的二阶常微分方程y 2y 0如果考虑外力作用,该方程化为更一般的情况y 2y f(x)y(0) ,y(0)两个初始条件可解释为已经知道初始位移和初始速度。
求解上面方程需要用常数变易法。
先回顾一阶常微分方程求解的方法,然后再讨论二阶常微分方程的常数变易法。
一、一阶常微分方程初值问题的常数变易法一阶常微分方程常数变易法,用于解源函数不为零的常微分方程问题y (x) ry(x) f(x),x 0y(0)先求解简化的(源函数为零)的方程:y (x) ry(x) 0由分离变量:dydyrdx ry,ydx积分:lny rx c,y(x) Cexp( rx)应用常数变易法,假设简化前的方程的解具有与简化后方程的解有相同形式,将常数替换为待定的函数,即y(x) u(x)exp( rx)求导数,得y (x) u (x)exp( rx) ru(x)exp( rx)u (x)exp( rx) ry(x)数学物理方程与特殊函数复习资料将其代入化简前的方程,得等式u (x)exp( rx) f(x),u (x) exp(rx)f(x)积分,得u(x)xexp(r )f( )d C代入表达式y(x) u(x)exp( rx),得y(x) [ exp(r )f( )d C]exp( rx)x应用初始条件,得解函数y(x) exp( rx) exp[ r(x )]f( )dx从两部分解读解函数的意义。
二阶常微分方程级数解法变换本征值问题.pdf
简化为
T '' = Δv a 2T v
令
T '' a 2T
=
Δv v
= −k 2
T '' a 2T
=
Δv v
= −k 2
分解为 T "+a 2k 2T = 0
Δv + k 2v = 0
称为亥姆霍兹方程
第一个方程的解为
T = C + Dt T = C cos kat + D sin kat
(k = 0) (k ≠ 0)
(m = 0,1,2,3L)
r2
d 2R dr 2
+
2r
dR dr
− l(l
+ 1) R
=
0
R = Crl + Dr−(l+1)
(2)、柱坐标系
Δu
=
∂ 2u
∂ρ 2
+
1
ρ
∂u
∂ρ
+
1
ρ2
∂ 2u
∂ϕ 2
+
∂ 2u ∂z 2
试图将变量变 ρ 与 θ 和 z 分离 代入
u(ρ,ϕ, z) = R(ρ)Φ(ϕ)Z(z)
d (r 2 dR ) = l(l +1)R dr dr
−1
sinθ
∂
∂θ
(sinθ
∂Y
∂θ
)
−
1
sin 2 θ
∂ 2Y
∂ϕ 2
= l(l
+ 1)Y
称为球函 数方程
上边第一式化为
r 2 d 2R + 2r dR − l(l +1)R = 0
二阶常微分方程边值问题的数值解法
二阶常微分方程边值问题的数值解法摘要求解微分方程数值解的方法是多种多样的,它本身已形成一个独立的研究方向,其要点是对微分方程定解问题进行离散化.本文以研究二阶常微分方程边值问题的数值解法为目标,综合所学相关知识和二阶常微分方程的相关理论,通过对此类方程的数值解法的研究,系统的复习并进一步加深对二阶常微分方成的数值解法的理解,为下一步更加深入的学习和研究奠定基础.对于二阶常微分方程的边值问题,我们总结了两种常用的数值方法:打靶法和有限差分法.在本文中我们主要探讨关于有限差分法的数值解法.构造差分格式主要有两种途径:基于数值积分的构造方法和基于Taylor展开的构造方法.后一种更为灵活,它在构造差分格式的同时还可以得到关于截断误差的估计.在本文中对差分方法列出了详细的计算步骤和Matlab程序代码,通过具体的算例对这种方法的优缺点进行了细致的比较.在第一章中,本文将系统地介绍二阶常微分方程和差分法的一些背景材料.在第二章中,本文将通过Taylor展开分别求得二阶常微分方程边值问题数值解的差分格式.在第三章中,在第二章的基础上利用Matlab求解具体算例,并进行误差分析.关键词:常微分方程,边值问题,差分法,Taylor展开,数值解The Numerical Solutions ofSecond-Order Ordinary Differential Equationswith the Boundary Value ProblemsABSTRACTThe numerical solutions for solving differential equations are various. It formed an independent research branch. The key point is the discretization of the definite solution problems of differential equations. The goal of this paper is the numerical methods for solving second-order ordinary differential equations with the boundary value problems. This paper introduces the mathematics knowledge with the theory of finite difference. Through solving the problems, reviewing what have been learned systematically and understanding the ideas and methods of the finite difference method in a deeper layer, we can establish a foundation for the future learning.For the second-order ordinary differential equations with the boundary value problems, we review two kinds of numerical methods commonly used for linear boundary value problems, i.e. shooting method and finite difference method. There are mainly two ways to create these finite difference methods: i.e. Taylor series expansion method and Numerical Integration. The later one is more flexible, because at the same time it can get the estimates of the truncation errors. We give the exact calculating steps and Matlab codes. Moreover, we compare the advantages and disadvantages in detail of these two methods through a specific numerical example. In the first chapter, we will introduce some backgrounds of the ordinary differential equations and the difference method. In the second chapter, we will obtain difference schemes of the numerical solutions of the Second-Order ordinary differential equations with the boundary value problemsthrough the Taylor expansion. In the third chapter, we using Matlab to solve the specific examples on the basis of the second chapter, and analyzing the errors.KEY WORDS: Ordinary Differential Equations, Boundary Value Problems, Finite Difference Method, Taylor Expansion, Numerical Solution毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
二阶常微分方程的级数解法 本征值问题3-1精品PPT课件
根据泰勒展开的唯一性,可得:
(k 2)(k 1)ck2 k(k 1) l(l 1)ck 0
k(k 1) l(l 1) (k l)(l k 1) 即 ck2 (k 2)(k 1) ck (k 2)(k 1) ck
这样就得到了系数之间的递推关系。反复利用递推关系,就可以求得系数。
解: 这里 p(x) 0, q(x) 2
设解为 y( x) a0 a1x a2 x2 ak xk 则 y( x) 1a1 2a2 x (k 1)ak1xk
y( x) 2 1a2 3 2a3x (k 2)(k 1)ak2 xk
把以上结果代入方程,比较系数得:
n 0,
n 1,
c2
1 2
(a0c1
b0c0 )
1
c3 6 (a1c1 2a0c2 b1c0 b0c1)
1 6
(a02
a1
b0
)c1
(a0b0
b1 )c0
以此类推,可求出全部系数 cn ,从而得到方程的级数解。
8
例3:在 x0 0 的邻域内求解常微分方程 y 2 y 0 (为常数)
的两个无限级数形式解均不满足这个条件。
注意:勒让德方程还有一个参数l。如果l取某些特定的值,则可能找到满足以上 边界条件的解。
(k l)(l k 1) 考察递推公式 ck2 (k 2)(k 1) ck
只要l是个整数,则当k=l时,由系数 cl 2 开始,以后的系数均为零。级数便
截止于l项,退化为l次多项式,解就可能满足边界条件。这样得到的多项式, 称为l阶勒让德多项式。
(2k 1)2k(2k 1)(2k 2)
c2k 3
... c1 (2k 1 l)(2k 3 l)...(1 l) (2k 1)!
二阶常微分方程边值问题
ylabel'$$y$$','Interpreter','latex','color','r','fontsize',28;
实验结果与分析:
差分法结果如下:
从图上我们可以看到,可以得到函数图像确实十分接近理论上的解答,差分二阶导数比起差分一阶导数来说,更加接近原函数.差分二阶导数在后面几乎能跟原函数重合,是非常好的求边值问题的方法.
成绩:
批阅教师签名:
定解问题往往不具有解析解,或者其解析解不易计算.所以要采用可行的数值解法.有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解.此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解即收敛性,等等.
许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关.描述这些过程的偏微分方程具有这样的性质;若初始时刻t=t0的解已给定,则t>t0时刻的解完全取决于初始条件和某些边界条件.利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解.
二阶常微分方程的数值求解讲解
利用dsolve 函数求微分方程解析解
dsolve 的调用格式
y=dsolve('eq1','eq2', ... ,'cond1','cond2', ... ,'v') 其中 y 为输出, eq1、eq2、...为微分方程,cond1、 cond2、...为初值条件,v 为自变量,如果不指定v作为自变 量,则默认t为自变量。
利用Euler方法求解上述方程组可得如下数 值格式
zk y(a ) y0 , y '(a ) z0 yk yk 1 hzk , zk 1 hf ( xk , yk , zk ), k 1, 2 xk xk 1 h.
其中yk 是y( xk )的近似,zk 是y '( xk )的近似
在Matlab中的命令窗口中输入下面的命令
>> syms x y >> S=dsolve('D2y=cos(2*x)-y','y(0)=1','Dy(0)=0','x')
则可以得到如下的结果
S=
4/3*cos(x)-1/3*cos(2*x)
注意:只有很少一部分微分方程(组)能求出解析解。 大部分微分方程(组)只能利用数值方法求数值解。
下的特解,并画出解函数的图形。
>> y=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)','x') >> ezplot(y);
例6
d2 y 2 cos( 2 x ) y 求二阶常微分方程 dx 的通解 y(0) 1, y '(0) 0
二阶常微分方程解
第七节 二阶常系数线性微分方程的解法在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解.本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法.先讨论二阶常系数线性齐次方程的求解方法.§ 二阶常系数线性齐次方程及其求解方法设给定一常系数二阶线性齐次方程为22dx y d +p dxdy +qy =0 其中p 、q 是常数,由上节定理二知,要求方程的通解,只要求出其任意两个线性无关的特解y 1,y 2就可以了,下面讨论这样两个特解的求法.我们先分析方程可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,dx dy,y 各乘以常数因子后相加等于零,如果能找到一个函数y,其22dx y d ,dxdy ,y 之间只相差一个常数因子,这样的函数有可能是方程的特解,在初等函数中,指数函数e rx,符合上述要求,于是我们令y =e rx其中r 为待定常数来试解将y =e rx,dxdy=re rx,22dx y d =r 2e rx代入方程得 r 2e rx +pre rx +qe rx=0或 e rxr 2+pr +q =0因为e rx≠0,故得r 2+pr +q =0由此可见,若r 是二次方程r 2+pr +q =0的根,那么e rx 就是方程的特解,于是方程的求解问题,就转化为求代数方程的根问题.称式为微分方程的特征方程.特征方程是一个以r 为未知函数的一元二次代数方程.特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论.1若特证方程有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程的两个特解.因为 x r xr 21e e =e x)r r (21-≠常数所以e r1x ,e r2x 为线性无关函数,由解的结构定理知,方程的通解为y =C 1e r1x +C 2e r2x2若特征方程有两个相等的实根r 1=r 2,此时p 2-4q =0,即有r 1=r 2=2p-,这样只能得到方程的一个特解y 1=e r 1x,因此,我们还要设法找出另一个满足12y y ≠常数,的特解y 2,故12y y 应是x 的某个函数,设12y y =u,其中u =ux 为待定函数,即 y 2=uy 1=ue r 1x对y 2求一阶,二阶导数得dx dy 2=dxdu e r1x+r 1ue r1x=dx du +r 1uer1x 222dx y d =r 21u +2r 1dx du +22dx ud e r1x将它们代入方程得r 21u +2r 1dx du +22dxu d e r1x+p dxdu +r 1uer1x+que r1x =0或22dx u d +2r 1+p dxdu+r 21+pr 1+que r1x =0因为e r1x ≠0,且因r 1是特征方程的根,故有r 21+pr 1+q =0,又因r 1=-2p故有2r 1+p =0,于是上式成为 22dxu d =0 显然满足22dxud =0的函数很多,我们取其中最简单的一个 ux =x则y 2=xe rx 是方程的另一个特解,且y 1,y 2是两个线性无关的函数,所以方程的通解是y =C 1e r1x +C 2xe r1x =C 1+C 2xe r1x3若特征方程有一对共轭复根 r 1=α+i β,r 2=α-i β此时方程有两个特解y 1=eα+i βxy 2=eα-i βx则通解为y =C 1e α+i βx +C 2e α-i βx其中C 1,C 2为任意常数,但是这种复数形式的解,在应用上不方便.在实际问题中,常常需要实数形式的通解,为此利用欧拉公式e ix =cosx +isinx,e -ix =cosx -isinx有 21e ix+e -ix=cosxi 21e ix-e -ix=sinx21 y 1+y 2=21e αxe i βx+e -i βx=e αxcos βxi 21 y 1-y 2=i21e αxe i βx-e -i βx=e αxsin βx由上节定理一知,21 y 1+y 2,i21y 1-y 2是方程的两个特解,也即eαxcosβx,e αx sin βx 是方程的两个特解:且它们线性无关,由上节定理二知,方程的通解为y =C 1e αx cos βx +C 2e αx sin βx或 y =e αx C 1cos βx +C 2sin βx其中C 1,C 2为任意常数,至此我们已找到了实数形式的通解,其中α,β分别是特征方程复数根的实部和虚部.综上所述,求二阶常系数线性齐次方程的通解,只须先求出其特征方程的根,再根据他的三种情况确定其通解,现列表如下特征方程r 2+pr +q =0的根微分方程22dx y d +p dx dy+qy =0的通解有二个不相等的实根r 1,r 2y =C 1e r1x+C 2e r2x有二重根r 1=r 2y =C 1+C 2xe r1x有一对共轭复根β-α=β+α=i r i r 21y =e αx C 1cos βx +C 2sin βx例1. 求下列二阶常系数线性齐次方程的通解1 22dx y d +3dx dy-10y =0 2 22dx y d -4dx dy +4y =0 3 22dx y d +4dxdy +7y =0 解 1特征方程r 2+3r -10=0有两个不相等的实根r 1=-5,r 2=2所求方程的通解 y =C 1e -5r+C 2e 2x2特征方程r 2-4r +4=0,有两重根 r 1=r 2=2所求方程的通解y =C 1+C 2xe 2x3特征方程r 2+4r +7=0有一对共轭复根r 1=-2+3i r 2=-2-3i所求方程的通解 y =e -2x C 1cos3x +C 2sin 3x§ 二阶常系数线性非齐次方程的解法由上节线性微分方程的结构定理可知,求二阶常系数线性非齐次方程22dx y d +p dxdy +qy =fx 的通解,只要先求出其对应的齐次方程的通解,再求出其一个特解,而后相加就得到非齐次方程的通解,而且对应的齐次方程的通解的解法,前面已经解决,因此下面要解决的问题是求方程的一个特解.方程的特解形式,与方程右边的fx 有关,这里只就fx 的两种常见的形式进行讨论.一、fx =p n xe αx ,其中p n x 是n 次多项式,我们先讨论当α=0时,即当fx =p n x 时方程22dx y d +p dx dy +qy =p nx 的一个特解.1如果q ≠0,我们总可以求得一n 次多项式满足此方程,事实上,可设特解~y =Q nx =a 0x n+a 1xn -1+…+a n,其中a 0,a 1,…a n 是待定常数,将~y 及其导数代入方程,得方程左右两边都是n 次多项式,比较两边x 的同次幂系数,就可确定常数a 0,a 1,…a n .例1. 求22dx y d +dxdy+2y =x 2-3的一个特解. 解 自由项fx =x 2-3是一个二次多项式,又q =2≠0,则可设方程的特解为~y =a 0x 2+a 1x +a 2求导数~'y =2a 0x +a1~"y =2a代入方程有2a 0x 2+2a 0+2a 1x +2a 0+a 1+2a 2=x 2-3比较同次幂系数⎪⎩⎪⎨⎧-=++=+=3a 2a a 20a 2a 21a 2210100 解得 47a 21a 21a 210-=-==所以特解~y =21x 2-21x -472如果q =0,而p ≠0,由于多项式求导一次,其次数要降低一次,此时~y =Q n x 不能满足方程,但它可以被一个n +1次多项式所满足,此时我们可设~y =xQ n x =a 0x n +1+a 1x n +…+a n x代入方程,比较两边系数,就可确定常数a 0,a 1,…a n .例2. 求方程22dx y d +4dxdy=3x 2+2的一个特解. 解 自由项 fx =3x 2+2是一个二次多项式,又q =0,p =4≠0,故设特解~y =a 0x 3+a 1x 2+a 2x求导数~'y =3a 0x 2+2a 1x +a2~"y =6a 0x +2a1代入方程得12a 0x 2+8a 1+6a 0x +2a 1+4a 2=3x 2+2,比较两边同次幂的系数⎪⎩⎪⎨⎧=+=+=2a 4a 20a 6a 83a 1221010 解得 3219a 163a 41a 210=-==所求方程的特解 ~y =41x 3-163x 2+3219x3如果p =0,q =0,则方程变为22dxyd =p nx,此时特解是一个n +2次多项式,可设~y =x 2Q nx,代入方程求得,也可直接通过两次积分求得.下面讨论当α≠0时,即当fx =p n xe αx 时方程22dx y d +p dxdy +qy =p nxe αx的一个特解的求法,方程与方程相比,只是其自由项中多了一个指数函数因子e αx ,如果能通过变量代换将因子e αx 去掉,使得化成式的形式,问题即可解决,为此设y =ue αx ,其中u =ux 是待定函数,对y =ue αx ,求导得dx dy =e αxdxdu+αue αx 求二阶导数 22dx y d =e αx22dx u d +2αe αxdxdu+α2ue αx代入方程得e αx22dx u d +2αdx du +α2u +pe αxdx du +αu +que αx=p n xeαx消去e αx得22dx u d +2α+p dxdu +α2+p α+qu =p nx 由于式与形式一致,于是按的结论有:1如果α2+p α+q ≠0,即α不是特征方程r 2+pr +q =0的根,则可设的特解u =Qn x,从而可设的特解为~y =Q n xe αx2如果α2+p α+q =0,而2α+p ≠0,即α是特征方程r 2+pr +q =0的单根,则可设的特解u =xQ n x,从而可设的特解为~y =xQ n xe αx3如果r 2+p α+q =0,且2α+p =0,此时α是特征方程r 2+pr +q =0的重根,则可设的特解u =x 2Q n x,从而可设的特解为~y =x 2Q n xe αx例3. 求下列方程具有什么样形式的特解122dx y d +5dx dy +6y =e 3x 2 22dx y d +5dx dy +6y =3xe -2x 3 22dx y d +αdxdy +y =-3x 2+1e -x解 1因α=3不是特征方程r 2+5r +6=0的根,故方程具有形如~y =a 0e3x 的特解.2因α=-2是特征方程r 2+5r +6=0的单根,故方程具有形如~y =xa 0x +a 1e -2x的特解.3因α=-1是特征方程r 2+2r +1=0的二重根,所以方程具有形如~y =x 2a 0x 2+a 1x +a 2e -x的特解.例4. 求方程22dxyd +y =x -2e 3x的通解.解 特征方程 r 2+1=0特征根 r =±i 得,对应的齐次方程22dxyd +y =0的通解为 Y =C 1cos x +C 2sin x由于α=3不是特征方程的根,又p n x =x -2为一次多项式,令原方程的特解为~y =a 0x +a 1e 3x此时u =a 0x +a 1,α=3,p =0,q =1,求ux 的导数dxdu =a 0,22dx u d =0,代入22dx u d +2α+p dxdu+α2+αp +qu =x -2得: 10a 0x +10a 1+6a 0=x -2比较两边x 的同次幂的系数有⎩⎨⎧-=+=2a 6a 101a 10010 解得 a 0=101,a 1=-5013于是,得到原方程的一个特解为~y =101x -5013e3x所以原方程的通解是y =Y +~y =C 1cosx +C 2sinx +101x -5013e 3x例5. 求方程22dx y d -2dxdy-3y =x 2+1e -x的通解. 解 特征方程 r 2-2r -3=0特征根 r 1=-1,r 2=3所以原方程对应的齐次方程22dx y d -2dxdy-3y =0的通解Y =C 1e -x +C 2e 3x ,由于α=-1是特征方程的单根,又p n x =x 2+1为二次多项式,令原方程的特解~y =xa 0x 2+a 1x +a 2e -x此时 u =a 0x 3+a 1x 2+a 2x,α=-1,p =-2,q =-3对ux 求导dx du=3a 0x 2+2a 1x +a 222dx ud =6a 0x +2a 1代入22dx u d +2α+p dxdu +α2+pr +qu =x 2+1,得-12a 0x 2+6a 0-8ax +2a 1-4a 2=x 2+1比较x 的同次幂的系数有⎪⎪⎩⎪⎪⎨⎧=--==-0a 8a 6121a 1a 121000 解得 329a 0a 4a 2161a 2011-==--=故所求的非齐次方程的一个特解为~y =-4x 3x 2+4x +89e-x二、fx =p n xe αx cos βx 或p n xe αx sin βx,即求形如22dx y d +p dx dy +qy =p nxe αx cos βx 22dx y d +p dx dy+qy =p nxe αx sin βx 这两种方程的特解.由欧拉公式知道,p n xe αx cos βx,p n xe αx sin x 分别是函数p n xe α+i βx 的实部和虚部.我们先考虑方程22dx y d +p dxdy +qy =p nxe α+i βx方程与方程类型相同,而方程的特解的求法已在前面讨论.由上节定理五知道,方程的特解的实部就是方程的特解,方程的特解的虚部就是方程的特解.因此,只要先求出方程的一个特解,然而取其实部或虚部即可得方程或的一个特解.注意到方程的指数函数e α+i βx 中的α+i ββ≠0是复数,而特征方程是实系数的二次方程,所以α+i β最多只能是它的单根.因此方程的特解形为Q n xeα+i βx或x Qn xeα+i βx.例6. 求方程22dxyd -y =e xcos2x 的通解. 解 特征方程 r 2-1=0特征根 r 1=1,r 2=-1于是原方程对应的齐次方程的通解为Y =C 1e x +C 2e -x为求原方程的一个特解~y .先求方程22dxyd -y =e 1+2ix的一个特解,由于1+2i 不是特征方程的根,且p n x 为零次多项式,故可设u =a 0,此时α=1+2i,p =0,q =-1代入方程22dx u d +2α+p dxdu+α2+αp +qu =1 得1+2i 2-1a 0=1 ,即4i -4a 0=1,得a 0=)1i (41 =-81i +1这样得到22dx y d -y =e 1+2ix的一个特解y =-81i +1e 1+2ix由欧拉公式y =-81i +1e 1+2ix=-81i +1e xcos 2x +isin2x=-81e xcos2x -sin2x +icos2x +sin2x取其实部得原方程的一个特解~y =-81e xcos 2x -sin2x故原方程的通解为y =Y +~y =C 1e x+C 2e-x-81e x cos2x -sin2x 例7. 求方程22dxyd +y =x -2e 3x+xsinx 的通解.解 由上节定理三,定理四,本题的通解只要分别求22dxyd +y =0的特解Y,22dxy d +y =x -2e 3x的一个特解~1y , 22dxy d +y =x sin x 的一个特解~2y 然而相加即可得原方程的通解,由本节例4有Y =C 1cosx +C 2sinx,~1y =101x -5013e3x下面求~2y ,为求~2y 先求方程22dxy d +y =xe ix由于i是特征方程的单根,且pn x=x为一次式,故可设u=xax+a1=a0x2+a1x,此时α=i,p=0,q=1,对u 求导dxdu=2ax+a1,22dxud=2a代入方程22dxud+2α+pdxdu+α2+pα+qu=x得 2a0+2i2ax+a1+0=x即 4iax+2ia1+2a=x比较x的同次幂的系数有:⎩⎨⎧=+=a2ia21ia41得41a41i41a1=-==即方程22dxyd+y=xe ix的一个特解~y=-4ix2+41xe ix=-4ix2+41cosx+isinx=41x2sinx+41xcosx+i-41x2cosx+41xsinx取其虚部,得~2y=-41x2cos x+41x sin x 所以,所求方程的通解y =Y+~1y+~2y=C 1cosx +C 2sinx +101-513e3x-41x 2cosx +41xsinx综上所述,对于二阶常系数线性非齐次方程22dx y d +p dxdy +qy =fx 当自由项fx 为上述所列三种特殊形式时,其特解~y 可用待定系数法求得,其特解形式列表如下:自由项fx 形式特解形式fx =p n x当q ≠0时~y =Q n x当q =0,p ≠0时~y =Q n x当q =0,p =0时~y =x 2Q n xfx =p n xeαx当α不是特征方程根时~y =Q nxeαx当α是特征方程单根时~y =xQ n xe αx当α是特征方程重根时~y =x 2Q n xe αxfx =p n xe αx cos βx 或fx =p n xe αx sin βx利用欧拉公式e i βx =cos βx +isin βx,化为fx =p n xe α+i βx 的形式求特解,再分别取其实部或虚部以上求二阶常系数线性非齐次方程的特解的方法,当然可以用于一阶,也可以推广到高阶的情况.例8. 求y+3y ″+3y ′+y =e x 的通解解 对应的齐次方程的特征方程为r 3+3r 2+3r +1=0 r 1=r 2=r 3=-1所求齐次方程的通解Y =C 1+C 2x +C 3x 2e -x由于α=1不是特征方程的根因此方程的特解~y =a 0e x代入方程可解得a 0=81故所求方程的通解为y =Y +~y =C 1+C 2x +C 3x 2e -x+81e x.§ 欧拉方程下述n 阶线性微分方程a 0xnn n ax y d +a 1x n -11n 1n dxyd --+…+a n -1x dxdy+a ny =fx 称为欧拉方程,其中a 0,a 1,…a n 都是常数,fx 是已知函数.欧拉方程可通过变量替换化为常系数线性方程.下面以二阶为例说明.对于二阶欧拉方程a 0x 222dx y d +a 1x dxdy +a 2y =fx 作变量替换令x =e t,即t =ln x引入新变量t,于是有dx dy =dt dy dx dt =dt dy x 1=x 1dtdy22dx y d =dx d x 1dt dy =x 1dx d dt dy +dt dy dx d x 1 =x 122dt y d dx dt -2x 1dt dy =2x 122dt y d -2x 1dt dy 代入方程得a 022dt y d -dt dy +a 2dtdy+a 1y =fe t即 22dty d +002a a a dt dy +01a a y =0a 1fe t它是yt 的常系数线性微分方程.例9. 求x 222dx y d +x dx dy =6lnx -x1的通解. 解 所求方程是二阶欧拉方程作变换替换,令x =e t ,则dx dy =x 1dxdy22dx y d =2x 122dt y d -2x 1dt dy 代入原方程,可得 22dty d =6t -e -t两次积分,可求得其通解为 y =C 1+C 2t +t 3-e -t代回原来变量,得原方程的通解y =C 1+C 2lnx +lnx3-x1第八节 常系数线性方程组前面讨论的微分方程所含的未知函数及方程的个数都只有一个,但在实际问题中常遇到含有一个自变量的两个或多个未知函数的常微分方程组.本节只讨论常系数线性方程组,并且用代数的方法将其化为常系数线性方程的求解问题.下面以例说明.例1. 求方程组⎪⎩⎪⎨⎧=--=--)2(0y 3x 4dtdy)1(e y 2x dtdx t的通解.解 与解二元线性代数方程组中的消元法相类似,我们设法消去一个未知函数,由1得y =21 dtdx -x -e t3将其代入2得 21 22dt x d -dt dx -e t-4x -23 dtdx -x -e t=0 化简得22dt x d -4dtdx -5x =-2e t它是一个二阶常系数非齐次方程它的通解为 x =C 1e 5t+C 2e -t+41e t代入3得 y =2C 1e 5t-C 2e -t-21e t即所求方程组的通解为⎪⎪⎩⎪⎪⎨⎧--=++=--t t 2t 51t t2t 51e 21e C e C 2y e 41e C e C x例2. 求解方程组⎪⎩⎪⎨⎧++=+-=+)2(t 2y x dtdy dt dx )1(yt dt dydt dx 2的通解解 为消去y,先消去dtdy,为此将1-2得dtdx +x +2y +t =0即有 y =-21 dtdx+x +t 3代入2得dt dx -21dt d dt dx +x +t -x +21 dtdx +x +t -2t =0 即 22dt x d -2dtdx+x =3t -1 这是一个二阶常系数线性非齐次方程,解得x =C 1e t +C 2te t -3t -7代入3得 y =-C 1e t-C 221+te t+t +5 所以原方程组的通解为⎪⎩⎪⎨⎧+++--=--+=5t e )t 21(C e C y 7t 3te C e C x t2t 1t 2t 1。
2.2 二阶线性常微分方程的级数解法和一般本征值问题
xy (x) =
k=0 ∞
kak xk ,
∞
x2 y (x) =
k=0 k −2
k (k − 1)ak xk ,
∞
(11a) (11b)
y (x) =
k=0
k (k − 1)ak x
k −2
=
k=2
k (k − 1)ak x
=
k=0
(k + 2)(k + 1)ak+2 xk ,
代入方程并整理得
C2 (x) 是未知函数,满足附加条件 y1 C1 + y2 C2 = 0,
代入非齐次方程 (5),利用附加条件以及 y1 (x) 和 y2 (x) 满足齐次方程的事实,易得
(6a)
y1 C1 + y2 C2 = f.
(6b)
由于 y1 (x) 和 y2 (x) 线性无关,故 ∆ ≡ y1 y2 − y2 y1 = 0 (否则可以证明 y1 (x) ∝ y2 (x),则 y1 (x) 与
∗
c 1992–2004 林琼桂
本讲义是中山大学物理系学生学习数学物理方法课程的参考资料,由林琼桂编写制作.欢迎任何个人复 制用于学习或教学参考,欢迎批评指正,但请勿用于出售.
1
§1 常点邻域的级数解法2 Nhomakorabea对偏微分方程分离变量后,马上需要解决的就是常微分方程及其本征值问题的求解. 本书遇到的都是二阶线性常微分方程, 因为它们来源于二阶线性偏微分方程. 虽然常微分方 程比偏微分方程简单, 但也并不存在什么普遍有效的解析求解的程式. 我们知道, 一阶线性 常微分方程的解可以用系数和非齐次项的积分表出, 尽管这些积分不一定能积出来 (即其原 函数不一定是初等函数) . 但对于二阶线性常微分方程, 并不存在类似的结果. 除了常系数 情况和少数特殊类型 (比如 Euler 方程) 可以用初等函数求解之外, 级数解法可能就是最好 的选择了. 级数解法可以算是比较系统的一种方法, 因为对于那些能够用初等函数求解的简 单情况, 级数解法通常也一样有效. 不过, 应该指出, 能够用级数解法求解的方程也是非常 有限的, 这取决于方程的系数的性质, 通过具体问题的研究,可以逐步看清这一点.
二阶常微分方程级数解法_本证值问题
2 Y ∂ 1 1 ⎞ . ⎟− 2 2 ⎠ Y sin θ ∂ϕ
1 d ⎛ 2 dR ⎞ 1 1 ∂ ⎛ ∂Y ⎞ 1 1 ∂ 2Y = μ. ⎟− ⎜r ⎟=− ⎜ sin θ 2 2 R dr ⎝ dr ⎠ Y sin θ ∂θ ⎝ ∂θ ⎠ Y sin θ ∂ϕ
i)径向方程
d ⎛ 2 dR ⎞ ⎜r ⎟ − μR = 0, dr ⎝ dr ⎠ 后面解出 μ = l (l + 1)
——该方程称为连带 Legendre 方程。
6
当 m=0 时,称为 Legendre 方程:
d ⎡ 2 dy ⎤ ( 1 − x ) ⎥ + μy = 0 ⎢ dx ⎦ dx ⎣
即:
d y dy (1 − x ) dx 2 − 2 x dx + μy = 0
2 2
注意: 因 x=cosϑ, 而 ϑ 的变化范围是 [0, π], 所以 x 的变化范围是 [-1,+1] 。
Φ ' ' + λΦ = 0 Φ (ϕ + 2π ) = Φ (ϕ )
d2R dR r + 2r + k 2 r 2 − l (l + 1) R = 0 R: 2 dr dr 齐次边值
[
]
Z: R:
Z ' '− μZ = 0 齐次边值
k 2v = 0
Θ:
⎡ m2 ⎤ d ⎡ 2 dy ⎤ ( ) − x y =0 + − 1 μ ⎢ dx ⎢ dx ⎥ 1 − x2 ⎥ ⎣ ⎦ ⎣ ⎦ | x |≤ 1 解有界
⎧ J m ( x) ⎪ ⎨N m ( x) ⎪H ( x) ⎩ m
19
分离变量结果
二阶常微分方程的级数解法及本征值问题
m 0,1, 2, ; ( ) A cos m B sin m
记常数 k 2 2 ,即 k 2 2 ,(3)式可改写为:
d 2 R 1 dR m2 R 0 ,相应地作变量代换: x ,可以化为: 2 d2 d
本章习题
P237:1,3 题
10
E F ln (1) 0 , Z ( z ) C ; R m m E F
m0 m 1, 2,3,
(2) 0 , Z ( z ) Ce
z
De
z
d 2R dR 令 ,则方程(4)可化为 2 m 2 R 0 ,称为 m 阶贝塞 2 d d
2
塞尔方程,具体求解后面将具体介绍。 (b)柱坐标系中亥姆霍兹方程的分离变量
1 u 1 2u 2u 2 2 2 k 2v2 0 z
柱坐标系与球坐标系中的讨论类似,令 v( , , z ) R( ) ( ) Z ( z ) ,引入两个常数
d 2 R 1 dR m 2 y ' m2 , m 阶贝塞尔方程。 ( R y 1 0 " 1 2 R 0 ) dx 2 x dx x2 x x
7
第(2)式是偏微分方程,称为亥姆霍兹方程。 同样地,对于输运方程 ut a 2 u 0 同样作分离变量代换,可以得到:
d 2 R 1 dR m 2 1 R 0 d2 d 2
即: 2
d 2R dR 2 m 2 R 0 ,称为 m 阶贝塞尔方程。 2 d d
2
连带勒让德方程隐含 1 ( 0, )的自然边界条件构成本征值问题, 决定 l 只 能取整数值。 第(2)式即 r 2
二阶常微分方程
分解为两个方程:
1 ∂ 2Y 1 ∂ ∂Y (sin θ )+ + l (l + 1)Y = 0 2 2 sin θ ∂θ ∂θ sin θ ∂ϕ
d 2 dR (r ) + [k 2 r 2 − l (l + 1)]R = 0 dr dr
(17) (18)
方程(17)就是球函数方程,把它进一步分离变数将得到解; 常微分方程(18)叫作l阶球贝塞尔方程。
20
线性二阶常微分方程(2) 在常点z0的邻域 z − z 0 < R 上存在唯一的解析解,就把它表成此邻域上泰勒级 数的形式,
(5)
令 Y (θ , ϕ ) = Θ(θ )Φ (ϕ ) 代入球函数方程(5),得
dΘ Φ d Θ d 2Φ (sin θ )+ + l (l + 1)ΘΦ = 0 2 2 dθ sin θ dθ sin θ dϕ
sin 2 θ 两边同乘以 ΘΦ
sin θ d dΘ 1 d 2Φ (sin θ )+ + l (l + 1) sin 2 θ = 0 dθ Θ dθ Φ dϕ 2
(9)
方程(9)化为
d 2Θ dΘ m2 (1 − x 2 ) 2 − 2 x + [l (l + 1) − ]Θ = 0 2 dx 1− x dx
(10)
当 m = 0 时,
——l 阶连带勒让德方程 (11)
11
d 2Θ dΘ (1 − x 2 ) 2 − 2 x + l (l + 1)Θ = 0 dx dx
其中z为复变数,z0为选定的点,C0, C1为复常数。 一、方程的常点和奇点 如果方程(2)的系数函数p(z)和q(z)在选定的点z0的 邻域中是解析的,则点z0叫作方程(2)的常点。 如果选定的点z0是p(z)或q(z)的奇点,则点z0叫作方 程(2)的奇点。
数理方程第二章 关于二阶常微分方程本征值问题的一些结论-6
( m n )
对应于不同特征值的特征函数在a,b上带权函数(x)互相正交。
(4 ) 本征函数系 yn ( x) , n 1,2,, n, , 在
a , b 上构成完备系。 Nhomakorabea即:对于一个任意函数f(x) ,在区间 [a,b]上,只要满足具有一 阶连续导数、二阶分段连续导数;同时满足斯特姆-刘维尔型 方程的边界条件,那么一定可以将f(x)按本征函数系展成绝对 b 且一致收敛的级数。 ( x) f ( x) y ( x) d x
则无论方程是齐次还是非齐次,必须首先作函数的代换,使其转化为
齐次边界条件问题,方可进行求解。
三、非齐次方程、非齐次边界条件的定解问题(无论初始条件如何),一定
要将其转化为:非齐次方程+齐次边界条件来处理。
深圳大学电子科学与技术学院
分离变量法的军事策略 :
— —分兵合围,各个击破
分离变量法的哲学思想 :
2
到此为止,所求解的各种问题只牵涉具有边界的空间。但 这并不意味分分离变量法就不可以应用于无界空间。事实上, 稍加推广还是可以应用的。所说的推广,指的是间断的本征值 为连续本征值所取代,线性叠加为积分所取代。
深圳大学电子科学与技术学院
实施分离变量法应该注意的几个问题:
一、根据边界条件的形状,选取适当的坐标系。选取的原则是:使对应 的坐标系,边界条件的表达式最为简单。如 圆、圆环、扇形区域→极坐标系; 圆柱形区域→柱坐标系; 球形区域→球坐标系。 二、若边界条件是非齐次的,又没有其它可利用的条件来确定特征函数,
关于二阶常微分方程本征值问题的一些结论参考了孙秀泉教授的课件深圳大学电子科学与技术学院26关于二阶常微分方程本征值问题的一些结论常微分方程在齐次边界条件下的本征值以及本征函数1有界弦的自由振动3圆形域内laplace方程的定解问题sincos分离变量法的实质将时间变量视为参变量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章要求
• 理解分离变量法的基本思想、本质以及适用范围; • 熟练掌握用分离变量法求解定解问题的步骤,并运 用分离变量法求解方程和边界条件都是齐次的定解 问题; • 学会用本征函数法求解方程为非其次、边界条件为 齐次的定解问题; • 掌握非齐次边界条件的齐次化方法; • 掌握极坐标系中圆型域上拉普拉斯方程边值问题的 求解; • 了解Strum-Liourier理论的一些结论。
(2) 所有的本征值均不为负,即
n 0 ,
n 1, 2,
(3) 对应于不同本征值的本征函数在
a , b 上互相正交。即
深圳大学电子科学与技术学院
m n
ym ( x ) , yn ( x )
b
为任意两个不同的本征值 对应的两个本征函数
m
则有:
( x) y
a
( x ) yn ( x ) d x 0 ,
f ( x ) f n yn ( x )
n 1
其中 f n
a
n
( x ) yn ( x ) d x
2 a
b
上述本征值问题的结论是相当广泛的,数学物理方程中所涉 及的本征本征值问题,几乎都是它的特例。
深圳大学电子科学与技术学院
在用球坐标以及柱坐标分离变量,求定解问题时,需要讨论如下方程
则无论方程是齐次还是非齐次,必须首先作函数的代换,使其转化为
齐次边界条件问题,方可进行求解。
三、非齐次方程、非齐次边界条件的定解问题(无论初始条件如何),一定
要将其转化为:非齐次方程+齐次边界条件来处理。
深圳大学电子科学与技术学院
分离变量法的军事策略 :
— —分兵合围,各个击破
分离变量法的哲学思想 :
1. 常微分方程在齐次边界条件下的本征值以及本征函数 (1) 有界弦的自由振动
X ( x ) X ( x ) 0
X (0) X ( L) 0
n 2 2 n 2 L
X n ( x) n sin
n x L
(2) 有限长杆上的热传导
X ( x) X ( x) 0
深圳大学电子科学与技术学院
2. 分离变量法的实质
将时间变量 t ,视为参变量; 将空间变量 x ,按本征函数展成 Fourier 级数。 适用范围: (1) 泛定方程与边界条件为线性; (2) 边界条件为齐次(圆域、圆环域例外); (3) 区域为有界的、规则的(区域边界易于以简单方程表示)。 3. 按照本征函数系展开的依据 如 1. 中的问题(1)、(3),按照本征函数展开,理所当然。 但是,2. 中的问题本征函数系 sin n x ,而 (
( m n )
对应于不同特征值的特征函数在a,b上带权函数(x)互相正交。
(4 ) 本征函数系 yn ( x) , n 1,2,, n, , 在
a , b 上构成完备系。
即:对于一个任意函数f(x) ,在区间 [a,b]上,只要满足具有一 阶连续导数、二阶分段连续导数;同时满足斯特姆-刘维尔型 方程的边界条件,那么一定可以将f(x)按本征函数系展成绝对 b 且一致收敛的级数。 ( x) f ( x) y ( x) d x
2 n 2 12 2
L
2
,
L
2
,,
2 n
L
2
, )
情况又将会怎样呢?
深圳大学电子科学与技术学院
回答是肯定的。若本征函数系是一个正交、完备系,也可以按 Fourier 级数展开。 特别考虑如下方程:
通常称之为 Sturm-Liouville (斯特姆-刘维尔) 型方程。有关的本征值问题的一些结论,相应 地称为:斯特姆-刘维尔理论。
y( x) h y( x) xb 0
y(a )
深圳大学电子科学与技术学院
d y d k( x) q ( x) y ( x) y 0 , d x dx y( x) h y( x) xb 0
2
n2
n2
L2
X (0) 0 ,
X ( L) h X ( L) 0
X n ( x) Bn sin n x
(3) 圆形域内 Laplace 方程的定解问题
0 ( 2 ) ( )
n
(n 为正整数)
n ( ) an cosn bn sin n
( a x b)
y(a )
对于上述问题的本征值,有结论如下: (1) 存在无穷多个实的本征值,并经适当调换,可以构成一个非递减 数列
1 2 n n1
y1 ( x ) y2 ( x )
yn(a x b) 的特例。
例如: k ( x) x, q ( x) n , ( x) x x 2 y x y ( x 2 n2 ) y 0
x
k ( x) 1 x 2 , q ( x) 0, ( x) 1 (1 x ) y 2 x y y 0
2
到此为止,所求解的各种问题只牵涉具有边界的空间。但 这并不意味分分离变量法就不可以应用于无界空间。事实上, 稍加推广还是可以应用的。所说的推广,指的是间断的本征值 为连续本征值所取代,线性叠加为积分所取代。
深圳大学电子科学与技术学院
实施分离变量法应该注意的几个问题:
一、根据边界条件的形状,选取适当的坐标系。选取的原则是:使对应 的坐标系,边界条件的表达式最为简单。如 圆、圆环、扇形区域→极坐标系; 圆柱形区域→柱坐标系; 球形区域→球坐标系。 二、若边界条件是非齐次的,又没有其它可利用的条件来确定特征函数,
深圳大学电子科学与技术学院
分离变量法提要:
• • • • • • 有界弦的自由振动 有限长杆上的热传导 圆域内的二维拉普拉斯方程的定解问题 非齐次方程的解法 非齐次边界条件的处理 关于二阶常微分方程本征值问题的一些结论
参考了孙秀泉教授的课件
§2.6
关于二阶常微分方程本征值问题的一些结论
深圳大学电子科学与技术学院
d d y k ( x ) q ( x) y ( x) y 0 , dx d x
不难看出,以下方程,正是上面方程的特例: 取: k ( x) 1, q ( x) 0, ( x) 1 与之对应的边界条件:
( a x b)
X ( x ) X ( x ) 0
“在复杂的事物的发展过程中,有许多的矛盾存在,其中必有 一种是主要的矛盾,由于它的存在和发展规定或影响着其他矛盾 的存在和发展。” “研究任何过程,如果是存在着两个以上矛盾的复杂过程的话, 就要用全力找出它的主要矛盾。捉住了这个主要矛盾,一切问题 就迎刃而解了。”
——摘自毛泽东《矛盾论 》
深圳大学电子科学与技术学院
x 2 y x y ( x 2 n2 ) y 0
(1 x 2 ) y 2 x y y 0
d d y k( x) 它们也是方程 q ( x) y ( x) y 0 , dx d x
2
Bessel Equation . Legendre Equation .