考研数学常用积分公式

合集下载

考研数学三公式大全

考研数学三公式大全

考研数学三公式大全高等数学公式导数公式: 基本积分表:三角函数的有理式积分:ax x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x Cx dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππA.积化和差公式:B.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+④2sin2sin 2cos cos βαβαβα-+-=- 1.正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)2..余弦定理:a2=b2+c2-2bc A cos b2=a2+c2-2ac B cosc 2=a 2+b 2-2ab C cos bca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C BA c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限①βαβαβαsin cos cos sin )sin(±=±②βαβαβαsin sin cos cos )cos( =±③βαβαβαtg tg tg tg tg ⋅±=± 1)(④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -=④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sinθθ-±=②2cos 12sin 2θθ-=③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=-⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 多元函数微分法及应用将D 主副角线翻转后,所得行列式为4D ,则4D D =;1. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:AO A C A BCB O B==、(1)m n CA OA A BBO B C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;2. 对于n 阶行列式A ,恒有:1(1)nnk n kk k E A S λλλ-=-=+-∑,其中kS 为k 阶主子式; 3. 证明0A =的方法: ①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n=(是满秩矩阵)⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是nR 的一组基; ⇔A是nR 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;4. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12sA A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;②、111A O A O O B OB ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A CB O B O B-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B-,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,iλ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质: ①、0()min(,)m nr A m n ⨯≤≤;②、()()Tr A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论); Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律; ②、型如101001a c b ⎛⎫⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C ab C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()na b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n nn n n n n m n CC C m m n mⅢ、组合的性质:11112---+-===+==∑nmn mm m m r nr r nnn nnnn n r CCCC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵: ①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A AA X X λλλ- == ⇒ =;③、*1AA A -=、1*n AA-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程: ①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m个方程,n 个未知数)③、()1212n n x xaa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,mααα构成n m ⨯矩阵12(,,,)m A =ααα;m个n 维行向量所组成的向量组B :12,,,T T T mβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应; 2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组) ②、向量的线性表出 Ax b⇔=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行); ③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,sααα线性相关,则121,,,,ss αααα+必线性相关;若12,,,sααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定; 7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,lP P P ,使12lA P PP =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m nA ⨯与l nB ⨯:①、若A 与B 行等价,则A 与B 的行秩相等; ②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m ss n m nAB C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n rrBb b b ⨯可由向量组12:,,,n ssAa a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K=(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用; 13. ①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E=()r A m⇔=、Q 的列向量线性无关;(87P )②、对矩阵m nA ⨯,存在n mP ⨯,nPA E=()r A n⇔=、P 的行向量线性无关; 14.12,,,sααα线性相关⇔存在一组不全为0的数12,,,sk k k ,使得1122s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r sααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n rξξξ-为0Ax =的一个基础解系,则*12,,,,n rηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵TA A E ⇔=或1TAA -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1TAA -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=TCAC B,其中可逆; ⇔T x Ax与Tx Bx 有相同的正、负惯性指数;③、A 与B 相似 1-⇔=PAP B;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则TC AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型Tx Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =;A ⇔的所有特征值均为正数; A⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)考研概率论公式汇总1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)(AB A A A A A =⋃⋂∅=∅⋂=Ω⋂)(反演律:B A B A =⋃BA AB ⋃= ni ini i A A 11=== ni i ni iA A11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂)()()(A P B P A B P -=-⇒对任意两个事件A , B , 有)()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有 3.条件概率乘法公式())0)(()()(>=A P A B P A P AB P全概率公式∑==ni i AB P A P 1)()()()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==ni i i k k B A P B P B A P B P 1)()()()( 4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λnn np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U (2) 指数分布 )(λE (3) 正态分布 N (μ , σ2 ) *N (0,1) — 标准正态分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G ) (2)二维正态分布9.二维随机变量的条件分布 10.随机变量的数字特征 数学期望随机变量函数的数学期望X 的k 阶原点矩)(k X E X 的k 阶绝对原点矩)|(|k X EX 的k 阶中心矩)))(((k X E X E -X 的方差)()))(((2X D X E X E =-X ,Y 的k + l 阶混合原点矩)(l k Y X E X ,Y 的k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) = E ((X - E (X ))2) )()()(22X E X E X D -= 方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ。

考研数学公式大全(考研必备)

考研数学公式大全(考研必备)

高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-c osβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=c osαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-t anαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)] 泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n !+… 此时三角函数定义域已推广至整个复数集。

考研数学公式大全(考研必备)

考研数学公式大全(考研必备)

高等数学公式篇导数公式: 基本积分表:C kx dx k +=⎰)1a (,C x 1a 1dx x 1a a-≠++=+⎰C x ln dx x 1+=⎰ C e dx e xx +=⎰C a ln a dx a xx+=⎰(1a ,0a ≠>) C x cos xdx sin +-=⎰C x sin dx x cos +=⎰ C x arctan dx x 112+=+⎰C axarcsin x a dx C x a xa ln a 21x a dx C a x ax ln a 21a x dx C a xarctan a 1x a dx Cx cot x csc ln xdx csc C x tan x sec ln xdx sec Cx sin ln xdx cot C x cos ln xdx tan 22222222+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C)a x x ln(a x dx C shx chxdx C chx shxdx Ca ln a dx a Cx csc xdx cot x csc C x sec dx x tan x sec Cx cot xdx csc x sin dx C x tan xdx sec x cos dx 2222x x2222aln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 221a a ='='⋅-='⋅='-='='='='='-2222xx x 11)x cot arc (x 11)x (arctan x 11)x (arccos x 11)x (arcsin x 1)x (ln e )e (x sin )x (cos +-='+='--='-='='='-='C x sin d x cos c ln B Ax dx x sin d x cos c xsin b x cos a +++=++⎰其中,)x sin d x cos c (B )x sin d x cos c (A x sin b x cos a +++=+ a Bd Ac =+B ,A b Bc Ad ⇒=-三角函数的有理式积分:2222u1du2dx 2x tan u u 1u 1x cos u 1u 2x sin +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:α-α=αα+=α-α+±=αα+α=αα-=α+α-±=αα+±=αα-±=αcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x cot arc 2x arctan x arccos 2x arcsin -π=-π= 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+α±ββ⋅α=β±αβ⋅αβ±α=β±αβαβα=β±αβα±βα=β±αcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin( α-α-α=αα-α=αα-α=α2333tan 31tan tan 33tan cos 3cos 43cos sin 4sin 33sin α-α=αα-α=αα-α=α-=-α=ααα=α222222tan 1tan 22tan cot 21cot 2cot sin cos sin 211cos 22cos cos sin 22sin中值定理与导数应用:拉格朗日中值定理。

考研数学微积分公式

考研数学微积分公式

考研数学微积分公式微积分是数学中的一个重要分支,用来研究变化和累积的过程。

在考研数学中,微积分是一个重要的考察点,掌握常见的微积分公式对于解题非常有帮助。

下面是一些考研数学微积分公式的详细介绍。

1.基本导数公式(1) 常数导数公式:如果常数k,那么d/dx(k) = 0。

(2) 幂函数导数公式:如果f(x) = x^n(n不等于-1,-2...),那么d/dx(f(x)) = nx^(n-1)。

(3)基本初等函数导数公式:a. 常数函数的导数:d/dx(c) = 0。

b. 正弦函数的导数:d/dx(sin(x)) = cos(x)。

c. 余弦函数的导数:d/dx(cos(x)) = -sin(x)。

d. 正切函数的导数:d/dx(tan(x)) = sec^2(x)。

e. 反正弦函数的导数:d/dx(arcsin(x)) = 1/√(1-x^2)。

f. 反余弦函数的导数:d/dx(arccos(x)) = -1/√(1-x^2)。

g. 反正切函数的导数:d/dx(arctan(x)) = 1/(1+x^2)。

(4) 乘法法则:如果f(x) = u(x)v(x),那么d/dx(f(x)) =u'(x)v(x) + u(x)v'(x)。

(5) 除法法则:如果f(x) = u(x)/v(x) (其中v(x)不等于0),那么d/dx(f(x)) = (u'(x)v(x) - u(x)v'(x))/[v(x)]^22.基本积分公式(1) 幂函数积分公式:∫x^n dx = (1/n+1)x^(n+1) + C (n不等于-1)a. 常数函数的积分:∫k dx = kx + C。

b. 正弦函数的积分:∫sin(x) dx = -cos(x) + C。

c. 余弦函数的积分:∫cos(x) dx = sin(x) + C。

d. 正切函数的积分:∫tan(x) dx = -ln,cos(x), + C。

考研数学公式大全(考研必备)

考研数学公式大全(考研必备)

(sin (tan (cot x )x )x )cos xsec 2 x(ln x )x(arcsin x )1(sec x ) (csc x ) ( a x )cscsec x2 xtan x1(arccos x )x121 x 2a xa x )csc xln a1x ln acot x(arctan x )11 x 21(log ( arc cot x )1 x 2kdx kx C x a dx11 dx x ln x C e x d xae x1x a 1 C, (a 1)Ca x dx a xln aC ( a 0, a 1) sin xdx cosx Ccosxdx sin x C1 tanxdx ln cosx C 1x 2dxdx arctanx Csec2 xdx tan x Ccot xdx ln sin x C secxdx ln secx tan x C cos2 xdxsin 2 xcsc2 xdx cot x Ccscxdxdx ln cscx cot x C secx tanxdx secx Ccscx cot xdx cscx Ca 2 x 2 1 arctan adx xaaaxxCa x dxx 2 a 21lnx2a x1lnaCshxdxa xln achxCCdxa2 x 2dx 2a aCa2 x 2 arcsinxaCchxdxdxx 2shx Ca 2ln(x 2x 2 a ) C导数公式:基本积分表:高等数学公式篇( C ) 0 (cos x )( e x ) e xsin x( X a ) aX a 1 1xa cos x bsin x dx AxB ln c cos xd sin x Cc cos xd sin x其中, a cos xb sin x A (c cos xd sin x) B(c cos x d sin x )AcBd aAd Bc bA ,B三角函数的有理式积分:2u1 u 2x2du sin x1 u 2,cos x 1 u 2, u tan , dx 21 u 2一些初等函数:两个重要极限:双曲正弦 : shxe e lim sin x 1 2 e x e x x 0x 1 x双曲余弦双曲正切 : chx: thx2shx e x e xchx e x e xlim (1 ) xxe 2.718281828459045... arshx archxarthx ln( x ln( x1 ln 1 x2 1) x 2 1)x2 1 x三角函数公式: ·诱导公式:函数 sincostancot角 A-α-sin α cos α -tan α -cot α90 °-α cos α sin α cot α tan α 90 °+α cos α -sin α -cot α -tan α 180 °-α sin α -cos α -tan α -cot α 180 °+α -sin α -cos α tan α cot α 270 °-α -cos α -sin α cot α tan α 270 °+α -cos α sin α -cot α -tan α 360 °-α -sin α cos α -tan α -cot α 360 °+αsin α cos α tan α cot αxn·和差角公式:·和差化积公式:sin( cos() ) sin cos cos cos cos sin sin sinsin sin 2 s in2 cos2tan() tan 1 tan tan tansin sin 2 cos2 sin2cot(·倍角公式:)cot cotcot 1cotcos coscos cos2 c os 2 2 sin2cos 2 sin2sin 2 cos22sin 2cos cos 1 1 2sincossinsin 33 s in 34 sin 3cot 2tan 2cot2 12 cot 2 tan2cos3 tan34 cos 3 tan1 3 c os 3tan3 tan 21 tan·半角公式:sin1 2 tan121 cos2 cos cos1 cos sinsin 1 coscos2cot21 cos21 cos 1 cos1 cos sinsin 1 cos·正弦定理:a sin Ab sin B c2Rsin C ·余弦定理:c 2a 2b 22 a b cosC·反三角函数性质:arcsin xarccos x2arctan xarc cot x 2高阶导数公式——莱布尼兹( Leibniz )公式:n(uv)( n)C k u( n k 0k) v( k )u ( n )v nu ( n 1) vn(n 2!1) u( n2)vn( n 1)nk k!1) u(nk ) v ( k )uv(n)2222中值定理与导数应用:拉格朗日中值定理:f (b)f (a)f ( )( b a)柯西中值定理: f (b) f (a)f ( ) F (b) F (a)F ( )当F( x) 曲率:x 时,柯西中值定理就是 拉格朗日中值定理。

考研数学定积分物理应用公式

考研数学定积分物理应用公式

考研数学定积分物理应用公式?
答:考研数学定积分物理应用公式包括:
1. 变力做功:∫(从a到b) F(x) dx,其中F(x)是变力,a和b分别是初位置和末位置。

2. 质心公式:∫(从a到b) xρ(x) dx / ∫(从a到
b) ρ(x) dx,其中ρ(x)是线密度,用于求细棒的质量中心。

3. 引力公式:∫(从a到b) km1m2/r^2 dr,用于求两质点间的引力,其中k是引力常数,m1和m2是两质点的质量,r是两质点间的距离。

4. 压力公式:P = pA,其中p是压强,A是面积。

5. 液体静压力:∫(从h1到h2) ρgh dA,其中ρ是液体密度,g是重力加速度,h是液体深度,dA是水平面积微元。

6. 旋转体体积:∫(从a到b) π[f(x)]^2 dx,其中f(x)是旋转曲线的函数表达式。

7. 液体对侧壁的压力:∫(从a到b) 2πxlρg dx,其中l是液体高度,ρ是液体密度,g是重力加速度。

8. 物体在液体中所受的浮力:∫(从a到b) ρVg dx,其中ρ是液体密度,V是物体体积,g是重力加速度。

9. 物体绕定轴旋转的转动惯量:∫(从a到b) r^2 dm,其中r是物体上各点到转轴的距离,dm是物体上的质量微元。

10. 细棒对过端点且与棒垂直的轴的转动惯量:∫(从0到l) (1/3)ml^2 dx = (1/3)ml^2。

以上是考研数学定积分物理应用的一些常见公式。

希望这些信息对您有帮助,如果您还有其他问题,欢迎告诉我。

考研数学公式大全--高数--线代--必背公式

考研数学公式大全--高数--线代--必背公式

数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。

考研数学公式

考研数学公式
二维随机变量(X ,Y)的分布函数
边缘分布函数与边缘密度函数
8.连续型二维随机变量
(1)区域G上的均匀分布,U(G)
(2)二维正态分布
9.二维随机变量的条件分布
10.随机变量的数字特征
数学期望
随机变量函数的数学期望
X的k阶原点矩
X的k阶绝对原点矩
X的k阶中心矩
X的方差
X ,Y的k + l阶混合原点矩
X ,Y的k + l阶混合中心矩
X ,Y的二阶混合原点矩
X ,Y的二阶混合中心矩X ,Y的协方差
X ,Y的相关系数
X的方差
D(X) =E((X - E(X))2)
协方差
相关系数
简单整理了一下,中心极限定理及数理统计部分多概念少公式故未详细列出
另外,公式不是大纲,只是参考方便而已
线性代数公式
高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数:两个重要极限:
三角函数公式:
·诱导公式:
函g

-sinα
cosα
-tgα
-ctgα
90°-α
cosα
sinα
ctgα
tgα
90°+α
cosα
-sinα
-ctgα
-tgα
180°-α
sinα
-cosα
-tgα
-ctgα
180°+α
-sinα
-cosα
tgα
ctgα
270°-α
-cosα
-sinα
ctgα
tgα
270°+α
-cosα
sinα

考研数学积分公式表-背诵版

考研数学积分公式表-背诵版

基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠−(3)1ln ||dx x C x =+⎰(4)2tan 1=++⎰dxarc x C x (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =−+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =−+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =−+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a −=+−+⎰ (18)sinxarc C a=+ (19)ln(x C =++(20)ln |x C =++(21)tan ln |cos |xdx x C =−+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =−+⎰注:1、从导数基本公式可得前15个积分公式 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。

3、复习三角函数公式:2222sin cos 1tan 1sec sin 22sin cos ,+=+==x x x x x x x 221cos 2cos 21cos 2sin 2+=−=xx xx ,注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。

考研数学必背公式

考研数学必背公式

考研数学必背公式数学是考研的一门重要科目,无论是理工科还是文科,数学都是考研必考科目之一、在备考期间,掌握并背诵一些重要的数学公式是非常重要的,因为公式是解题的基础,可以帮助我们快速解决问题。

下面是一些考研数学中常见的重要公式,供大家背诵和复习使用:1.三角函数公式:sin(x ± y) = sinxcosy ± cosxsinycos(x ± y) = cosxcosy ∓ sinxsinytan(x ± y) = (tanx ± tany) / (1 ∓ tanxtany)sin²x +cos²x = 11 + tan²x = sec²x1 + cot²x = csc²x2.指数和对数公式:ab × ac = ab+c(ab)c = abca⁰=1,a¹=aaⁿ×aⁿ=aⁿ⁺ⁿ(a/b)ⁿ=aⁿ/bⁿalogba = alogba + logbc = logba*clogba - logbc = logba/c3.三角函数的基本关系:sin(π/2 - x) = cosxcos(π/2 - x) = sinxtan(π/2 - x) = cotxcot(π/2 - x) = tanxsin²x + cos²x = 1secx = 1/cosxcscx = 1/sinxcotx = 1/tanx4.高中数学知识:三角函数的定义:sinx = y/r, cosx = x/r, tanx = y/x, cotx = x/y, secx = r/x, cscx = r/ysin(-x) = -sinx, cos(-x) = cosx, tan(-x) = -tanxsin(π + x) = -sinx, cos(π + x) = -cosx, tan(π + x) = tanx sin(2π - x) = sinx, cos(2π - x) = cosx, tan(2π - x) = tanxsin(π/2 + x) = cosx, cos(π/2 + x) = -sinx, tan(π/2 + x) = -cotxsin(3π/2 - x) = -cosx, cos(3π/2 - x) = sinx, tan(3π/2 - x) = -cotx5.极限公式:lim(x→0) (sinx / x) = 1lim(x→0) (1 - cosx) / x = 0lim(x→∞) (1 + 1/x)^x = elim(x→0) (a^x - 1) / x = ln(a)6.求导公式:(d/dx) (c) = 0(d/dx) (x^n) = nx^(n-1)(d/dx) (sinx) = cosx(d/dx) (cosx) = -sinx(d/dx) (tanx) = sec²x(d/dx) (cotx) = -csc²x(d/dx) (secx) = secxtanx(d/dx) (cscx) = -cscxcotx(d/dx) (e^x) = e^x(d/dx) (lnx) = 1/x7.积分公式:∫(k)dx = kx + C∫(x^n)dx = (x^(n+1)) / (n+1) + C (n ≠ -1)∫(cosx)dx = sinx + C∫(sinx)dx = -cosx + C∫(sec²x)dx = tanx + C∫(csc²x)dx = -cotx + C∫(secx * tanx)dx = secx + C∫(cscx * cotx)dx = -cscx + C∫(e^x)dx = e^x + C∫(1/x)dx = ln,x, + C。

2021考研高等数学重点公式详解-定积分及其应用

2021考研高等数学重点公式详解-定积分及其应用
fJ(x讪 = !lT-I1<x讪:
f 此时也称反常积分J:J(x灿收敛,否则称反常积分 J(x讪发散
J: 3)设函数 f(x) 在[a,小 (c,b] 上连续,出 f(x) =oo,如果反常积分 J(x'ylx 和
I: J: f(x灿都收敛,则称f:J<抽+ f(树为函数/(x)刮风b] 上的反常积分,即
= (3)曲线方程为极坐标方程r =r(θ),α豆θ β,则
J:2 S倒 = 矿(O)sin o.Jr2 (的+r'2
4.平丽曲线的弧长 〈数学-,二〉
r: F+λ (1)曲线方程 y = f(x) , aSxSb ,则S=
ι°? d
(2)曲线方程 x=x(y), c 豆 y!::d ,则s= L
dx.
r 2)类似地,设函数f(x) 定义在(咽,b]上连续,取 t<b ,如果但 f(x讪存在,则
称此极限为函数f(x) 在(-oo,b]上的反常积分,即
f (!(抽 . = 坐立 1c抽1
( ( 此时也称反常积分 f(x灿收敛,否则称反常积分 f(x)dx发散
i- ( 叫函数/(机义在(-oo,+oo)上连续,如果反常积分 f(树和 f(x)dx都收敛,
豆豆?一一一 称为函数 f(x) 在区间 [a,b]上的平均值. a
性服6如果 f(x) 为奇函数时,汇/(柏=0;
如果f(均为奇函数时,巳 f(对此= 2J:f(x)耐
性质7如果f(x) 是以T为周期的周期函数,则有
J: T
r /(X)命= f(x)dx.
nT
r f(x)由=nJ: /(x)
三、积分上限函数 (1)积分上限函数定义
I 则有 J:1<抽 =

考研高数必背公式

考研高数必背公式

对于考研高等数学,以下是一些常见的必背公式:1. 导数公式:- $(c)'=0$(常数的导数为零)- $(x^n)'=nx^{n-1}$(幂函数的导数)- $(e^x)'=e^x$(指数函数的导数)- $(\ln x)'=\frac{1}{x}$(自然对数函数的导数)- $(\sin x)'=\cos x$(正弦函数的导数)- $(\cos x)'=-\sin x$(余弦函数的导数)- $(\tan x)'=\sec^2 x$(正切函数的导数)2. 积分公式:- $\int k \,dx=kx+C$(常数的积分)- $\int x^n \,dx=\frac{1}{n+1}x^{n+1}+C$(幂函数的积分)- $\int e^x \,dx=e^x+C$(指数函数的积分)- $\int \frac{1}{x} \,dx=\ln |x|+C$(倒数函数的积分)- $\int \sin x \,dx=-\cos x+C$(正弦函数的积分)- $\int \cos x \,dx=\sin x+C$(余弦函数的积分)- $\int \sec^2 x \,dx=\tan x+C$(正切函数的积分)3. 三角函数关系:- $\sin^2 x + \cos^2 x = 1$(三角恒等式)- $\sin (2x) = 2\sin x \cos x$(双角正弦公式)- $\cos (2x) = \cos^2 x - \sin^2 x$(双角余弦公式)- $\tan x = \frac{\sin x}{\cos x}$(正切的定义)这些是考研高等数学中的一些常见公式,但并非全部。

在复习过程中,建议根据自己的教材和课程重点,对相关公式进行系统性的整理和复习。

不仅要记住公式,还要了解其推导和应用方法,以便在解题过程中能够熟练运用。

同时,还要注重理解概念和原理,培养灵活的思维和解题能力。

考研数学一公式大全

考研数学一公式大全

考研数学涉及多个领域,而每个领域都有大量的公式和概念。

以下是一些考研数学中常见的公式:### 高等数学1. 微积分- 极限定义:$$\lim_{x \to a} f(x) = L$$- 求导法则:$\frac{d}{dx}(u \pm v) = u' \pm v'$,$\frac{d}{dx}(uv) = uv' + vu'$,$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v -uv'}{v^2}$- 不定积分:$\int f(x) \,dx$- 定积分:$\int_a^b f(x) \,dx$2. 微分方程- 一阶线性微分方程:$y' + P(x)y = Q(x)$- 二阶线性常系数齐次微分方程:$ay'' + by' + cy = 0$### 线性代数1. 矩阵- 矩阵乘法:$C = A \cdot B$- 逆矩阵:$A^{-1}$- 行列式:$|A|$2. 向量- 向量点积:$ \mathbf{a} \cdot \mathbf{b} =|\mathbf{a}| |\mathbf{b}| \cos{\theta}$- 向量叉积:$ \mathbf{a} \times \mathbf{b} =|\mathbf{a}| |\mathbf{b}| \sin{\theta}$### 概率论与数理统计1. 概率- 条件概率:$P(A|B) = \frac{P(A \cap B)}{P(B)}$- 贝叶斯定理:$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$2. 统计- 样本均值:$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$- 样本方差:$s^2 = \frac{\sum_{i=1}^{n} (x_i -\bar{x})^2}{n-1}$这只是一小部分的公式。

考研数学公式大全

考研数学公式大全
1 tg tg ctg ( ) ctg ctg 1
ctg ctg
·和差化积公式:
sin sin 2sin cos
2
2
sin sin 2 cos sin
2
2
cos cos 2 cos cos
2
2
cos cos 2sin sin
cos
i
sin
j,为l方向上的
l
单位向量。
f 是gradf (x, y)在l上的投影。 l
多元函数的极值及其求法:
第 6 页 共 25 页
设f x (x0 , y0 ) f y (x0 , y0 ) 0,令:f xx (x0 , y0 ) A, f xy (x0 , y0 ) B, f yy (x0 , y0 ) C
z z0 pt
二次曲面:
1、椭球面:x2 y 2 z 2 1 a2 b2 c2
2、抛物面:x2 y2 z(, p, q同号) 2 p 2q
3、双曲面:
单叶双曲面:x 2 a2
y2 b2
z2 c2
1
双叶双曲面:x 2 a2
y2 b2
z2 c2
(1 马鞍面)
多元函数微分法及应用
全微分:dz z dx z dy du u dx u dy u dz
2、一般方程:Ax By Cz D 0
3、截距世方程:x y z 1 abc
平面外任意一点到该平面的距离:d Ax0 By0 Cz0 D A2 B2 C2
空间直线的方程:x x0 m
y y0 n
z z0 p
t,其中s
x x0 mt {m, n, p};参数方程: y y0 nt
x y
x y z

考研数学积分方法总结

考研数学积分方法总结

考研数学积分方法总结一、基本积分公式。

1.1 这就像是我们的基础装备。

基本积分公式是积分的根基啊,就像盖房子的砖头一样重要。

像∫x^n dx =(1/(n + 1))x^(n+1)+C(n≠ 1)这个公式,那是相当常见的。

很多简单函数的积分都得靠它。

例如求∫x^2 dx,直接套用公式就能得到(1/3)x^3 + C。

这就好比我们做饭,基本的调料得先备齐了,这些基本公式就是我们做积分题的基本调料。

1.2 牢记是关键。

一定要把这些基本公式牢记于心,可不能含糊。

这就好比练武之人要牢记基本功法一样。

要是连基本积分公式都记不住,那面对积分题就只能干瞪眼啦。

有些同学总是觉得公式太多记不住,其实就像背单词一样,多背几遍,多做几道题运用一下,自然而然就记住了。

二、换元积分法。

2.1 第一类换元法(凑微分法)这个方法可有点像变魔术呢。

比如说∫2xcos(x^2)dx,我们发现2x是x^2的导数,那我们就可以把它凑成∫cos(x^2)d(x^2),然后就可以轻松得到sin(x^2)+C啦。

这就像是把原本不太好处理的东西,通过巧妙的变形,变成我们熟悉的形式,就像把一团乱麻给理清楚了一样。

不过这得需要我们有敏锐的观察力,能看出哪部分可以凑成一个整体的微分。

2.2 第二类换元法。

这第二类换元法就更像是走一条迂回的道路来解决问题。

当我们遇到像∫√(a^2 x^2)dx这种式子时,我们可以设x = asint,然后把整个式子进行替换化简。

这就好比我们要去一个地方,正面走不通,那就换个方向绕一下。

但这个方法在换元之后要记得把变量再换回来,可不能换完元就把自己给绕晕了,那就成了“丢了西瓜捡芝麻”,得不偿失了。

三、分部积分法。

3.1 公式及原理。

分部积分法的公式是∫u dv = uv ∫v du。

这个公式看起来有点复杂,但理解起来也不难。

就好比我们把一个复杂的任务分成两个部分来做。

比如说求∫x e^x dx,我们可以设u = x,dv = e^x dx,然后按照公式一步步来计算。

考研数学常用积分公式

考研数学常用积分公式

8
8
41. x x2 a2 dx = 1 ( x2 a2 )3 C
3
x2 a2 ) C
42. x2 x2 a2 dx = x (2x2 a2 ) x2 a2 a4 ln(x x2 a2 ) C
8
8
43. x2 a2 dx = x2 a2 a ln x2 a2 a C
考研数学助手 您考研的忠实伴侣
常用积分公式(一)含有 ax Nhomakorabea b 的积分( a 0 )
1.
dx ax
b

1 a
ln
ax

b

C
2. (ax b)dx = 1 (ax b)1 C ( 1 )
a( 1)
3.
x ax
dx b

1 a2
(ax

b

dx x2 (ax2

b)


1 bx

a b
dx ax2 b
27.
dx x3(ax2 b)
=a 2b2
ln
ax2 b x2

1 2bx2
C
28.
dx (ax2 b)2

x 2b(ax2
b)

1 2b
dx ax2 b
(五)含有 ax2 bx c (a 0) 的积分

x
dx ax b
17.
ax bdx = 2 x
ax b b x
dx ax b
18.
ax x2
b
dx


ax x

数学考研微积分常用公式速记

数学考研微积分常用公式速记

数学考研微积分常用公式速记微积分是数学的重要分支,广泛应用于各个领域。

无论是在学术研究还是在实际问题求解中,熟练掌握微积分的基本公式是非常重要的。

本文将为大家介绍一些常用的微积分公式,并提供一些速记技巧,帮助大家更好地记忆和运用这些公式。

1. 极限和导数1.1 极限(1) 当 x 趋于 a 时,有以下常用极限:- $\lim_{x\to a}x=a$- $\lim_{x\to a}c=c$,其中 c 为常数- $\lim_{x\to a}(x^n-a^n)=(n\cdot a^{n-1})$,其中 n 为自然数- $\lim_{x\to a}(a^x-a^a)=(a^a\cdot \ln a)$- $\lim_{x\to 0}\frac{\sin x}{x}=1$(2) 夹逼定理:如果有两个函数 g(x) 和 h(x),满足 $g(x)\leq f(x)\leqh(x)$,且 $\lim_{x\to a}g(x)=\lim_{x\to a}h(x)=L$,那么 $\lim_{x\toa}f(x)=L$。

1.2 导数(1) 常用函数的导数:- $(c)'=0$,c 为常数- $(x^n)'=n\cdot x^{n-1}$,其中 n 为自然数- $(a^x)'=a^x\cdot \ln a$,其中 a>0 且a≠1- $(\ln x)'=\frac{1}{x}$- $(e^x)'=e^x$- $(\sin x)'=\cos x$- $(\cos x)'=-\sin x$(2) 导数的四则运算:- $(c\cdot f(x))'=c\cdot f'(x)$,其中 c 为常数- $(f(x)+g(x))'=f'(x)+g'(x)$- $(f(x)-g(x))'=f'(x)-g'(x)$- $(f(x)\cdot g(x))'=f'(x)\cdot g(x)+f(x)\cdot g'(x)$- $(\frac{f(x)}{g(x)})'=\frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g(x))^2}$,其中g(x)≠02. 积分和微分2.1 不定积分(1) 基本积分表:- $\int x^n \mathrm{d}x=\frac{1}{n+1}\cdot x^{n+1}+C$,其中 n 为自然数,C 为常数- $\int \frac{1}{x} \mathrm{d}x=\ln |x|+C$- $\int e^x \mathrm{d}x=e^x+C$- $\int \sin x \mathrm{d}x=-\cos x+C$- $\int \cos x \mathrm{d}x=\sin x+C$(2) 分部积分公式:$\int u \mathrm{d}v=uv-\int v \mathrm{d}u$2.2 定积分(1) 基本定积分表:- $\int_a^b k \mathrm{d}x=k(b-a)$,其中 k 为常数- $\int_a^b x^n \mathrm{d}x=\frac{1}{n+1}\cdot (b^{n+1}-a^{n+1})$,其中 n 为自然数- $\int_a^b e^x \mathrm{d}x=e^x|_a^b=e^b-e^a$- $\int_a^b \sin x \mathrm{d}x=-\cos x|_a^b=\cos a-\cos b$- $\int_a^b \cos x \mathrm{d}x=\sin x|_a^b=\sin a-\sin b$(2) 牛顿-莱布尼兹公式:若函数 F(x) 是 f(x) 的一个原函数,则$\int_a^b f(x) \mathrm{d}x=F(b)-F(a)$。

考研数学公式大全(经典版)

考研数学公式大全(经典版)

高等数学公式导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec csc sinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxC ctgx x xdx C tgx x xdx Cx ctgxdxC x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dx

a2 x2 arcsin x C
x
a
(九)含有 ax2 bx c (a 0) 的积分
73.
dx
= 1 ln 2ax b 2 a ax2 bx c C
ax2 bx c a
74. ax2 bx cdx = 2ax b ax2 bx c
4a
4ac b2
ln 2ax b 2
a
ax2 bx c C
8 a3
75.
x
dx = 1 ax2 bx c
ax2 bx c
a
b ln 2ax b 2 a ax2 bx c C 2 a3
76.
dx
= 1 arcsin 2ax b C
c bx ax2
a
b2 4ac
77. c bx ax2dx = 2ax b c bx ax2 b2 4ac arcsin 2ax b C
42
88. csc xdx = ln tan x C = ln csc x cot x C
2
89. sec2 xdx = tan x C
90. csc2 xdx = cot x C
91. sec x tan xdx = sec x C
92. csc x cot xdx = csc x C
4
4
b x
(十一)含有三角函数的积分
83. sin xdx = cos x C
(a b)
84. cos xdx = sin x C 85. tan xdx = ln cos x C 86. cot xdx = ln sin x C
87. sec xdx = ln tan( x) C = ln sec x tan x C
dx = 1 ln a a2 x2 C
x a2 x2 a
x
66.
x2
dx = a2 x2
a2 x2 a2x
C
67. a2 x2 dx = x a2 x2 a2 arcsin x C
2
2
a
68. (a2 x2 )3dx = x (5a2 2x2 ) a2 x2 3 a4 arcsin x C
dx bx
c

2 arctan 2ax b C
4ac b2
4ac b2
1
2ax b b2 4ac
ln
C
b2 4ac 2ax b b2 4ac
(b2 4ac) (b2 4ac)
30.
ax2
x bx
dx c

1 2a
ln
ax 2
bx
c
b 2a
dx ax2 bx c
(七)含有 x2 a2 (a 0) 的积分
45.
dx x2 a2

x x
arch
x a
C1 = ln
x
x2 a2 C
46.
dx =
x
C
(x2 a2)3
a2 x2 a2
47.
x dx = x2 a2 C x2 a2
48.
x
dx = 1 C
(x2 a2 )3
x2 a2
2b ln
ax
b
b2 ax
) b
C
9.
dx x(ax b)2
=1 b(ax b)
1 b2
ln
ax b x
C
(二)含有 ax b 的积分
10. ax bdx = 2 (ax b)3 C 3a
11.
x
ax
bdx

2 15a2
(3ax
2b)
(ax b)3 C
12.
x2
ax
bdx
26.
dx x2 (ax2
b)

1 bx
a b
dx ax2 b
27.
dx x3(ax2 b)
=a 2b2
ln
ax2 b x2
1 2bx2
C
28.
dx (ax2 b)2

x 2b(ax2
b)
1 2b
dx ax2 b
(五)含有 ax2 bx c (a 0) 的积分
29.
ax2
8
8
57. x2 a2 dx = x2 a2 a arccos a C
x
x
58.
x
2 x2
a
2
dx

x2 a2 ln x x
x2 a2 C
(八)含有 a2 x2 (a 0) 的积分
59. dx = arcsin x C
a2 x2
a
60.
dx =
x
C
(a2 x2)3 a2 a2 x2
考研数学助手 您考研的忠实伴侣
常用积分公式
(一)含有 ax b 的积分( a 0 )
1.
dx ax
b

1 a
ln
ax
b
C
2. (ax b)dx = 1 (ax b)1 C ( 1 )
a( 1)
3.
x ax
dx b

1 a2
(ax
b
b
ln
ax
b
)
C
4.
x2 ax
dx b

(六)含有 x2 a2 (a 0) 的积分
31.
dx x2 a2
= arsh x a
C1 = ln( x
x2 a2 ) C
32.
dx

x
C
( x2 a2 )3 a2 x2 a2
33.
x dx = x2 a2 C x2 a2
34.
x dx = 1 C
(x2 a2 )3
61.
x dx = a2 x2 C a2 x2
62.
x dx = 1 C
(a2 x2 )3
a2 x2
63.
x2 dx = x a2 x2 a2 arcsin x C
a2 x2
2
2
a
64.
x2 dx = x arcsin x C
(a2 x2 )3
a2 x2
a
65.
2 arctan ax b C
b
b
(b 0) (b 0)
16.
dx =
x2 ax b
ax bx
b
a 2b
x
dx ax b
17.
ax bdx = 2 x
ax b b x
dx ax b
18.
ax x2
b
dx

ax x
b
a 2
x
dx ax b
(三)含有 x2 a2 的积分
x2 a2
35.
x2 dx = x x2 a2 a2 ln(x x2 a2 ) C
x2 a2
2
2
36.
x2
dx = x ln( x x2 a2 ) C
(x2 a2)3
x2 a2
37.
dx = 1 ln x2 a2 a C
x x2 a2 a
x
38.
x2
dx = x2 a2
mn
mn
= 1 cosm1 x sinn1 x n 1 cosm x sinn2 xdx
mn
mn
100.
sin
ax
cos
bxdx

1 2(a
b)
cos(a
b)
x
1 2(a
b)
cos(a
b)x
C
101.
sin
ax
sin
bxdx

1 2(a
b)
sin(a
b)x
1 2(a
b)
sin(a
b) x
x2 a2 a2x
C
39. x2 a2dx = x x2 a2 a2 ln( x x2 a2 ) C
2
2
40. ( x2 a2 )3dx = x (2x2 5a2 ) x2 a2 3 a4 ln(x
8
8
41. x x2 a2 dx = 1 ( x2 a2 )3 C
C
102.Biblioteka cosaxcos bxdx

1 2(a
b)
sin(a
b)x
1 2(a
b)
sin(a
b)x
C
103.
dx

2
a tan x b arctan 2 C
a bsin x a2 b2
a2 b2
(a2 b2 )
104.
dx =
a bsin x
1 b2
a2
ln
a tan a tan
b

2
1 arctan ab 1 ln ab
a xC b ax b ax b
C
(b 0) (b 0)
23.
x ax2
dx b

1 2a
ln
ax2
b
C
24.
x2 ax2
dx b

x a
b a
dx ax2 b
25.
dx x(ax2
b)

1 2b
ln
x2 ax2 b
C
xb
xa
x b )C
80.
x a dx = (x b) bx
x a (b a) arcsin bx
xa C b x
81.
dx
= 2 arcsin
(x a)(b x)
相关文档
最新文档