成都七中数学中考模拟试卷
四川省成都市七中2024届中考数学对点突破模拟试卷含解析
![四川省成都市七中2024届中考数学对点突破模拟试卷含解析](https://img.taocdn.com/s3/m/e0e3bb8b6037ee06eff9aef8941ea76e59fa4a68.png)
四川省成都市七中2024届中考数学对点突破模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列长度的三条线段能组成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,42.81的算术平方根是()A.9 B.±9 C.±3 D.33.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为()A.6 B.5 C.4 D.34.不等式的最小整数解是()A.-3 B.-2 C.-1 D.25.在实数225,,0,36,-1.41472,,有理数有()A.1个B.2个C.3个D.4个6.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=45,反比例函数y=48x在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )A.30 B.40 C.60 D.807.如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F,若AC=BD ,AB=ED ,BC=BE ,则∠ACB 等于( )A .∠EDB B .∠BEDC .∠EBD D .2∠ABF8.下列运算正确的是( )A .2a+3a=5a 2B .(a 3)3=a 9C .a 2•a 4=a 8D .a 6÷a 3=a 2 9.估计8-1的值在( )A .0到1之间B .1到2之间C .2到3之间D .3至4之间10.如图,在直角坐标系xOy 中,若抛物线l :y =﹣12x 2+bx +c (b ,c 为常数)的顶点D 位于直线y =﹣2与x 轴之间的区域(不包括直线y =﹣2和x 轴),则l 与直线y =﹣1交点的个数是( )A .0个B .1个或2个C .0个、1个或2个D .只有1个二、填空题(共7小题,每小题3分,满分21分)11.对于一元二次方程2520x x -+=,根的判别式24b ac -中的b 表示的数是__________.12.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标:_____.13.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.14.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.15.若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_____.16.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.17.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.19.(5分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求∠BEC的度数;(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.20.(8分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.21.(10分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)实践操作:尺规作图,不写作法,保留作图痕迹.①作∠ABC的角平分线交AC于点D.②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.(2)推理计算:四边形BFDE的面积为.22.(10分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(3,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.(1)在点C1(﹣2,3+22),点C2(0,﹣2),点C3(3+3,﹣3)中,线段AB的“等长点”是点________;(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;(3)若直线y=kx+33k上至少存在一个线段AB的“等长点”,求k的取值范围.23.(12分)化简,再求值:222x-3231,211121x xxxx x x--÷+=+--++24.(14分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选D.2、D【解题分析】根据算术平方根的定义求解.【题目详解】,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.1.故选:D.【题目点拨】考核知识点:算术平方根.理解定义是关键.3、C【解题分析】连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=12BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.【题目详解】解:连接EG、FG,EG、FG分别为直角△BCE、直角△BCF的斜边中线,∵直角三角形斜边中线长等于斜边长的一半∴EG=FG=12BC=12×10=5,∵D为EF中点∴GD⊥EF,即∠EDG=90°,又∵D是EF的中点,∴116322DE EF==⨯=,在Rt EDG∆中,2222534DG EG ED=-=-=,故选C.【题目点拨】本题考查了直角三角形中斜边上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.4、B【解题分析】先求出不等式的解集,然后从解集中找出最小整数即可.【题目详解】∵,∴,∴,∴不等式的最小整数解是x=-2.故选B.【题目点拨】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.5、D【解题分析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:22,?0,?36,?1.4147-是有理数,故选D.考点:有理数.6、B【解题分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=12S菱形OBCA,结合菱形的面积公式即可得出结论.【题目详解】过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45,∴AM=OA•sin∠AOB=45a,22OA AM-35a,∴点A的坐标为(35a,45a).∵点A在反比例函数y=48x的图象上,∴35a•45a=1225a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四边形OACB是菱形,点F在边BC上,∴S△AOF=12S菱形OBCA=12OB•AM=2.故选B.【题目点拨】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=12S菱形OBCA.7、C【解题分析】根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案. 【题目详解】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,所以△ABC≅△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【题目点拨】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.8、B【解题分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.【题目详解】A、2a+3a=5a,故此选项错误;B、(a3)3=a9,故此选项正确;C、a2•a4=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【题目点拨】此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.9、B试题分析:∵23,∴1<2,在1到2之间,故选B .考点:估算无理数的大小.10、C【解题分析】根据题意,利用分类讨论的数学思想可以得到l 与直线y =﹣1交点的个数,从而可以解答本题.【题目详解】∵抛物线l :y =﹣12x 2+bx +c (b ,c 为常数)的顶点D 位于直线y =﹣2与x 轴之间的区域,开口向下, ∴当顶点D 位于直线y =﹣1下方时,则l 与直线y =﹣1交点个数为0,当顶点D 位于直线y =﹣1上时,则l 与直线y =﹣1交点个数为1,当顶点D 位于直线y =﹣1上方时,则l 与直线y =﹣1交点个数为2,故选C .【题目点拨】考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.二、填空题(共7小题,每小题3分,满分21分)11、-5【解题分析】分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.【题目详解】解:b 表示一元二次方程2520x x -+=的一次项系数5-.【题目点拨】此题考查根的判别式,在解一元二次方程时程根的判别式△=b 2-4ac ,不要盲目套用,要看具体方程中的a ,b ,c 的值.a 代表二次项系数,b 代表一次项系数,c 是常数项.12、(4,2).利用图象旋转和平移可以得到结果.【题目详解】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).【题目点拨】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.13、40【解题分析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.14、﹣18【解题分析】要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,故答案为:﹣18.【题目点拨】本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.15、AC⊥BD【解题分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【题目详解】∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为:AC⊥BD.此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.16、2 2【解题分析】设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=2222AB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.【题目详解】解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB=2222AB=cm,∴扇形OAB的弧AB的长=90222180π⋅⋅=π,∴2πr=2π,∴r=22(cm).故答案为22.【题目点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.17、【解题分析】根据概率的公式进行计算即可.【题目详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是. 故答案为:.【题目点拨】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)40︒;拓展:5090BDA ︒<∠<︒【解题分析】(1)由题意得BD =CE ,得出BE =CD ,证出AB =AC ,由SAS 证明△ABE ≌△ACD 即可;(2)由等腰三角形的性质和三角形内角和定理求出∠BEA =∠EAB =70°,证出AC =CD ,由等腰三角形的性质得出∠ADC =∠DAC =70°,即可得出∠DAE 的度数;拓展:对△ABD 的外心位置进行推理,即可得出结论.【题目详解】(1)证明:∵点D 、点E 分别从点B 、点C 同时出发,在线段BC 上作等速运动,∴BD =CE ,∴BC -BD =BC -CE ,即BE =CD ,∵∠B =∠C =40°,∴AB =AC ,在△ABE 和△ACD 中,AB AC B C BE CD =⎧⎪∠∠⎨⎪=⎩=,∴△ABE ≌△ACD (SAS );(2)解:∵∠B =∠C =40°,AB =BE ,∴∠BEA=∠EAB=12(180°-40°)=70°,∵BE=CD,AB=AC,∴AC=CD,∴∠ADC=∠DAC=12(180°-40°)=70°,∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;拓展:解:若△ABD的外心在其内部时,则△ABD是锐角三角形.∴∠BAD=140°-∠BDA<90°.∴∠BDA>50°,又∵∠BDA<90°,∴50°<∠BDA<90°.【题目点拨】本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.19、(1)补全图形如图1所示,见解析,∠BEC=60°;(2)BE=2DE,见解析;(3)∠MAC=90°.【解题分析】(1)根据轴对称作出图形,先判断出∠ABD=∠ADB=y,再利用三角形的内角和得出x+y即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出∠CBD=30°,进而得出∠BCD=90°,即可得出结论;(3)先作出EF=2BE,进而判断出EF=CE,再判断出∠CBE=90°,进而得出∠BCE=30°,得出∠AEC=60°,即可得出结论.【题目详解】(1)补全图形如图1所示,根据轴对称得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y.在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,证明:∵△ABC是等边三角形,∴AB=BC=AC,由对称知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等边三角形,∴CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明∠CBD=90°,画图时,没画在一条直线上)延长EB至F使BE=BF,∴EF=2BE,由轴对称得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,连接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等边三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【题目点拨】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.20、(1);(2)5π;(3)PB的值为或.【解题分析】(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.【题目详解】解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四边形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如图2中,连接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的长==5π.(3)如图3中,当点Q落在直线AB上时,∵△EPB∽△AMB,∴==,∴==,∴PB=.如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.设PB=x,则AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.综上所述,满足条件的PB的值为或.【题目点拨】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.21、(1)详见解析;(2)83【解题分析】(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.【题目详解】(1)如图,DE、DF为所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=3Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE的面积=4×33.故答案为:3【题目点拨】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22、(1)C1,C3;(2)D30)或D(233);(3)﹣33≤k≤3325【解题分析】(1)直接利用线段AB的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直线3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.【题目详解】(1)∵A(0,3),B(3,0),∴AB=23,∵点C1(﹣2,3+22),∴AC1=48+=23,∴AC1=AB,∴C1是线段AB的“等长点”,∵点C2(0,﹣2),∴AC2=5,BC2=34+=7,∴AC2≠AB,BC2≠AB,∴C2不是线段AB的“等长点”,∵点C3(3+3,﹣3),∴BC3=93+=23,∴BC3=AB,∴C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在Rt△AOB中,OA=3,3∴3,tan∠OAB=OBOA=33,∴∠OAB=30°,当点D在y轴左侧时,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵点D(m,n)是线段AB的“等长点”,∴AD=AB,∴D(﹣3,0),∴m=3,n=0,当点D在y轴右侧时,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵点D(m,n)是线段AB的“等长点”,∴AD=AB=23,∴m=23;∴D(23,3)(3)如图2,∵直线3k=k(3),∴直线3k恒过一点P(﹣3,0),∴在Rt△AOP中,OA=3,3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,当PF与⊙B相切时交y轴于F,∴PA 切⊙B 于A ,∴点F 就是直线y=kx+33k 与⊙B 的切点,∴F (0,﹣3),∴3k=﹣3,∴k=3 当直线3k 与⊙A 相切时交y 轴于G 切点为E ,∴∠AEG=∠OPG=90°,∴△AEG ∽△POG ,∴AE AG OP PG=, 23332333333k k -+3342+或3342-(舍去) ∵直线3k 上至少存在一个线段AB 的“等长点”,33342+, 【题目点拨】此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A ,B 相切时是分界点. 232【解题分析】试题分析:把分式化简,然后把x 的值代入化简后的式子求值就可以了.试题解析:原式=23(1)1(1)(1)(1)(3)1x x x x x x x -+⨯++-+-- =21x - 当21x =时,原式2211=+-考点:1.二次根式的化简求值;2.分式的化简求值.24、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.【解题分析】(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.【题目详解】(1)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴抛物线开口向下,当x<30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【题目点拨】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.。
2023年四川省成都七中初中学校中考数学适应性试卷(6月份)
![2023年四川省成都七中初中学校中考数学适应性试卷(6月份)](https://img.taocdn.com/s3/m/4f020f010a1c59eef8c75fbfc77da26925c596c3.png)
2023年四川省成都七中初中学校中考数学适应性试卷(6月份)一、选择题(本大题共8小题,每小题4分,共32分)1.(4分)的相反数是()A.B.C.D.2.(4分)2022年卡塔尔世界杯决赛场馆——卢塞尔体育场吸引了全球的目光,海外网友称其为卡塔尔世界杯“皇冠上的明珠”.卢塞尔体育场由中国铁建国际集团建设,这是中企以设计施工总承包身份承建的首个世界杯体育场项目,该项目总耗资约767000000美元,用科学记数法表示数据767000000为()A.767×106B.7.67×107C.7.67×108D.7.67×1093.(4分)如图几何体的主视图为()A.B.C.D.4.(4分)下列运算中,正确的是()A.x3•x3=x9B.(x2)3=x6C.3x2÷2x=x D.(x+y)2=x2+y25.(4分)如图,正六边形ABCDEF内接于⊙O,∠ADB的度数是()A.20°B.30°C.45°D.60°6.(4分)如图,在平面直角坐标系中,矩形OEFG与矩形ABCD是位似图形,其中对应点C和F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标是()A.(0,2)B.(0,2.5)C.(0,3)D.(0,4)7.(4分)在对一组样本数据进行分析时,小华列出了方差的计算公式:,由公式提供的信息,则下列说法错误的是()A.样本的众数是3B.样本的平均数是3C.样本的总数n=2D.样本的中位数是38.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1,则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.a﹣b+c<0二、填空题(本大题共5小题,每小题4分,共20分)9.(4分)已知x2y+xy2=48,xy=6,则x+y=.10.(4分)我国古代《九章算术》中记载这样一个问题:“今有上禾五秉,损实一斗一升,当下禾七秉;上禾七秉,损实二斗五升,当下禾五秉.”翻译后的大致意思是:5捆上等稻子少结1斗1升稻谷,相当于7捆下等稻子结的稻谷;7捆上等稻子少结2斗5升稻谷,相当于5捆下等稻子结的稻谷,问上等稻子和下等稻子1捆分别能结多少稻谷(1斗=10升)?设上等稻子和下等稻子1捆分别能结稻谷x升和y升,则可列方程组为.11.(4分)已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且y1>y2,则m的取值范围是.12.(4分)巴台农神庙的设计代表了古希腊建筑艺术的最高水平,它的平面图可看作宽与长之比为的矩形,我们将这种宽与长的比为的矩形称为“黄金矩形”,如图,已知四边形ABCD是黄金矩形,若,则矩形ABCD的面积为.13.(4分)如图,在菱形ABCD中,按如下步骤作图:①分别以点C和点D为圆心,大于长为半径作弧,两弧交于点M、N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,若AD=4,则AE的长为.三、解答题(本大题共5小题,满分48分,解答应写出文字说明,证明过程或演算步骤)14.(12分)(1)计算:﹣1﹣2+(π﹣2023)0+2sin60°﹣|1﹣|;(2)解不等式组:.15.(8分)某学校为积极落实“立德树人”根本任务,构建“五育并举”课程体系,在七年级试点开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅统计图(不完整):(1)本次随机调查的学生人数为人;(2)在图中补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”类劳动课程中任选两类参加学校阶段展示活动,求恰好选中“园艺、编织”这两类劳动课程的概率.16.(8分)如图是某飞机模型的示意图,其中AE为固定支架,机身CD可以绕点E旋转调节摆放角度.经测量,支架AE的长为30cm,旋转点E到机头D的距离ED为40cm,且支架AE与底座AB的夹角∠BAE =70°.已知当ED与底座AB的夹角为30°时,模型摆放最稳定,求此时机头D到底座AB的距离.(结果精确到1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73,底座厚度忽略不计)17.(10分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,交BC于点E,直线AF与⊙O相切于点A,与BC的延长线交于点F,∠F=∠BAD.(1)求证:BD=BE;(2)若,BE=5,求AF的长.18.(10分)如图,在平面直角坐标系中,一次函数与反比例函数交于第一象限内A,B两点(B在A右侧),分别交x轴,y轴于C,D两点.(1)若点B的坐标为(6,1),求k和b的值;(2)在(1)的条件下,是否存在x轴上一点P,使△ACP与△CDO相似,若存在,求出点P的坐标.若不存在,请说明理由;(3)过点A作AE⊥AB交y轴于点E,过点E作EF∥AB,交x轴于点F,连接AE,AB,当点E的坐标为(0,1)时恰有AB=2EF,求△ABE的面积.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)满足不等式的整数x的个数是.20.(4分)如图,点A为x轴负半轴上一点,过点A作AB⊥x轴,与直线y=x交于点B,将△ABO沿直线y=x平移后得到△A′B′O′,若点A的坐标为(﹣2,0),点A′的横坐标为1,则平移距离是.21.(4分)从﹣2,﹣1,0,1,2这五个数中,随机抽取一个数作为m的值,使关于x的一元二次方程(m ﹣1)x2﹣(2m﹣1)x+m+2=0有实数根的概率是.22.(4分)如图,“爱心”图案是由函数y=﹣x2+6的部分图象与其关于直线y=x的对称图形组成.点A 是直线y=x上方“爱心”图案上的任意一点,点B是其对称点.若,则点A的坐标是.23.(4分)如图,点D为等边三角形ABC边BC上一动点,AB=4,连接AD,以AD为边作正方形ADEF,连接CE、CF,当BD=时,△CEF的面积为.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)“爱成都•迎大运”,成都大运会来临之际,“2023年天府绿道健康行活动”重磅开启,某体育运动器材商店的滑板和护具成了热销商品,已知滑板比护具的进价高50元,商店用4000元购进的滑板与用3000元购进的护具数量一样多.(1)求滑板和护具的进价;(2)该商店计划购进滑板和护具共200个,且护具的数量不少于滑板的2倍,购进后,滑板按高于进价15%定价,护具按高于进价18%定价,假设该商店购进的这两种商品最后均能按定价售出,请你求出该商店能获得最大利润的进货方案.25.(10分)已知抛物线y=ax2﹣2ax+c与x轴交于A(﹣1,0)、B两点,与y轴交于C点,D(2,0),且△ABC的面积为6.(1)求抛物线的对称轴和解析式;(2)如图1,若E、F为抛物线上两点,以C、D、E、F为顶点的四边形是平行四边形,设E点横坐标为m,求m的值;(3)如图2,过定点K(2,1)的直线交抛物线于M、N两点,过N点的直线y=﹣2x+r与抛物线交于点P,求证:直线MP必过定点.26.(12分)问题提出(1)如图1,正方形ABCD,点E、F分别在边AB、BC上,连接AF与DE交于点O,有∠FOD=90°,则=;(2)如图2,平行四边形ABCD,AB=,BC=,点E、F分别在边AB、BC上,连接AF与DE 交于点O,当∠FOD=∠B时,你能求出的比值吗?请写出求比值的过程;问题解决(3)如图3,四边形ABCD,AB=113,∠B=∠ADC=120°,BC=45,,点E在边AB上,连接AC与DE交于点O,当∠COD=∠B时,求的值.。
2024年四川省成都七中育才学校中考数学三诊试卷(含答案)
![2024年四川省成都七中育才学校中考数学三诊试卷(含答案)](https://img.taocdn.com/s3/m/ad37914c15791711cc7931b765ce05087632752e.png)
2024年四川省成都七中育才学校中考数学三诊试卷一、选择题:本题共8小题,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−13的倒数是( )A. −13B. 13C. −3D. 32.2024年2月16日,世界最大清洁能源走廊六座梯级电站累计发电量突破3.5万亿千瓦时,相当于减排二氧化碳超28亿吨,将数据28亿用科学记数法表示为( )A. 2.8×108B. 2.8×109C. 28×108D. 28×1093.下列式子计算正确的是( )A. m+m=m2B. (−3m)2=6m2C. (m+2n)2=m2+4n2D. (m+3n)(m−3n)=m2−9n24.如图,在矩形ABCD中,对角线AC和BD相交于点O,则下列结论一定正确的是( )A. ∠BAC=∠DACB. AB=AOC. AC=BDD. AC⊥BD5.第十四届全国冬季运动会已成功举办,山西某运动俱乐部赛前预备在三位短道速滑运动员中选取一名发挥优秀且稳定的运动员参赛.他们的训练成绩如下表所示,那么派出的队员应为( )甲乙丙丁平均时间(s)50.151.350.150.0方差0.90.9 1.357.8A. 甲B. 乙C. 丙D. 丁6.某口袋中有10个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜,要使游戏对甲、乙双方公平,则x 应该是( )A. 3B. 4C. 1D. 27.我国古代数学著作之一《孙子算经》中记载著这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?意思是:今有若干人乘车,若每3人共乘1辆车,最终剩余2辆车;若每2人共乘1辆车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x辆车,根据题意所列方程正确的是( )A. 3(x +2)=2x +9B. 3(x−2)=2x +9C. 3x−2=2x +9D. 3x +2=2x−98.抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如表; x…−2−1012…y …50−3−4−3…从表中可知,下列说法中正确的是( )A. 抛物线的对称轴是y 轴B. 抛物线与x 轴的一个交点为(3,0)C. 函数y =ax 2+bx +c 的最小值为−5D. 当x >2时,y 随x 增大而减小二、填空题:本题共5小题,每小题4分,共20分。
四川省成都市天府第七中学2024届中考数学五模试卷含解析
![四川省成都市天府第七中学2024届中考数学五模试卷含解析](https://img.taocdn.com/s3/m/f21fb824a55177232f60ddccda38376baf1fe0d3.png)
四川省成都市天府第七中学2024学年中考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.152.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是()A.点A落在BC边的中点B.∠B+∠1+∠C=180°C.△DBA是等腰三角形D.DE∥BC3.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A.19B.14C.16D.134.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.3B.3C.3D.85.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-16.如图的立体图形,从左面看可能是()A .B .C .D .7.下列式子成立的有( )个 ①﹣12的倒数是﹣2 ②(﹣2a 2)3=﹣8a 5③2(32-)=5﹣2④方程x 2﹣3x+1=0有两个不等的实数根A .1B .2C .3D .48.如图,△ABC 中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为( )A .2.3B .2.4C .2.5D .2.69.数轴上有A ,B ,C ,D 四个点,其中绝对值大于2的点是( )A .点AB .点BC .点CD .点D 10.下列各点中,在二次函数2y x =-的图象上的是( )A .()1,1B .()2,2-C .()2,4D .()2,4--二、填空题(共7小题,每小题3分,满分21分)11.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.12.如图,已知//9060 BC 24AD BC B C AD ∠=︒∠=︒==,,,,点M 为边BC 中点,点E F 、在线段AB CD 、上运动,点P 在线段MC 上运动,连接EF EP PF 、、,则EPF ∆周长的最小值为______.13.已知△ABC 中,BC=4,AB=2AC ,则△ABC 面积的最大值为_______.14.化简()()201720182121-+的结果为_____.15.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).16.如图,在正方形ABCD 中,等边三角形AEF 的顶点E ,F 分别在边BC 和CD 上,则∠AEB =__________.17.如图,在正方形ABCD 中,O 是对角线AC 、BD 的交点,过O 点作OE ⊥OF ,OE 、OF 分别交AB 、BC 于点E 、点F ,AE=3,FC=2,则EF 的长为_____.三、解答题(共7小题,满分69分)18.(10分)如图,在三角形ABC 中,AB=6,AC=BC=5,以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,直线DF 是⊙O 的切线,D 为切点,交CB 的延长线于点E .(1)求证:DF ⊥AC ;(2)求tan ∠E 的值.19.(5分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)20.(8分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)21.(10分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.22.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(12分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)24.(14分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【题目详解】根据题意:从袋中任意摸出一个球,是白球的概率为=210=15.故答案为D【题目点拨】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.2、A【解题分析】根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.【题目详解】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A错,BA≠CA.故选A.【题目点拨】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.3、A【解题分析】作出树状图即可解题.【题目详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是1 9 ,故选A.【题目点拨】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.4、A【解题分析】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=32OC=23,∴AC=2CD=43.故选A.【题目点拨】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.5、C【解题分析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.6、A【解题分析】根据三视图的性质即可解题.【题目详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【题目点拨】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.7、B【解题分析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.【题目详解】解:①﹣12的倒数是﹣2,故正确;②(﹣2a2)3=﹣8a6,故错误;③2(3-2)=6﹣2,故错误;④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.故选B.【题目点拨】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.8、B【解题分析】试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=12AC×BC=12AB×CD,∴AC×BC=AB×CD,即CD=AC BCAB⋅=345⨯=125,∴⊙C的半径为125,故选B.考点:圆的切线的性质;勾股定理.9、A【解题分析】根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.【题目详解】解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A .故选A .【题目点拨】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.10、D【解题分析】将各选项的点逐一代入即可判断.【题目详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象;当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象;故答案为:D .【题目点拨】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.二、填空题(共7小题,每小题3分,满分21分)11、15【解题分析】分析:设输出结果为y ,观察图形我们可以得出x 和y 的关系式为:32y x =-,将y 的值代入即可求得x 的值. 详解:∵32,y x =-当y =127时,32127,x -= 解得:x =43;当y =43时,3243,x -=解得:x =15;当y=15时,3215,x -= 解得17.3x =不符合条件. 则输入的最小正整数是15.故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.12、【解题分析】作梯形ABCD 关于AB 的轴对称图形,将BC'绕点C'逆时针旋转120°,则有GE'=FE',P 与Q 是关于AB 的对称点,当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,F'M 为所求长度;过点F'作F'H ⊥BC',M 是BC 中点,则Q 是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=3,HC'=1,在Rt △MF'H 中,即可求得F'M .【题目详解】作梯形ABCD 关于AB 的轴对称图形,作F 关于AB 的对称点G ,P 关于AB 的对称点Q ,∴PF=GQ ,将BC'绕点C'逆时针旋转120°,Q 点关于C'G 的对应点为F',∴GF'=GQ ,设F'M 交AB 于点E',∵F 关于AB 的对称点为G ,∴GE'=FE',∴当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,∴F'M 为所求长度;过点F'作F'H ⊥BC',∵M 是BC 中点,∴Q 是BC'中点,∵∠B=90°,∠C=60°,BC=2AD=4,∴C'Q=F'C'=2,∠F'C'H=60°,∴3HC'=1,∴MH=7,在Rt △MF'H 中,F'M ()2222F H MH 37213=+=+=';∴△FEP 的周长最小值为故答案为:【题目点拨】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键.13、163【解题分析】设AC =x ,则AB =2x ,根据面积公式得S △ABC =2 ,由余弦定理求得 cos C 代入化简S △ABC ,由三角形三边关系求得443x << ,由二次函数的性质求得S △ABC 取得最大值. 【题目详解】设AC =x ,则AB =2x ,根据面积公式得:c =1sin 2sin 2AC BC C x C ⋅⋅= =2.由余弦定理可得:2163cos 8x C x-= ,∴S △ABC =2 由三角形三边关系有2442x x x x+>⎧⎨+>⎩ ,解得443x <<,故当x =时, 443x <<取得最大值163, 故答案为:163. 【题目点拨】本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.14+1【解题分析】利用积的乘方得到原式=[﹣1))]2017•+1),然后利用平方差公式计算.【题目详解】原式=[﹣1)+1)]2017•)=(2﹣1)2017•+1+1.+1.【题目点拨】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15、>【解题分析】分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.详解:抛物线y=﹣x2+2x的对称轴是x=﹣22-=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.16、75【解题分析】因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案为75.17【解题分析】由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,从而求得EF的值.【题目详解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,45{OCB OBEOB OCEOB FOC∠∠︒∠∠====,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴【题目点拨】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)tan∠CBG=7 24.【解题分析】(1)连接OD,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【题目详解】解:(1)证明:连接OD,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴OD⊥DF,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC ,∴EF ∥BG ,∴∠CBG=∠E ,Rt △BDC 中,∵BD=3,BC=5,∴CD=4,∵S △ABC =11··22AB CD AC BG =,即6×4=5BG , ∴BG=245, 由勾股定理得:CG=222475()55-=, ∴tan ∠CBG=tan ∠E=77524245CG BG ==.【题目点拨】本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG 的长是解决本题的难点.19、古塔AB 的高为(103+2)米.【解题分析】试题分析:延长EF 交AB 于点G .利用AB 表示出EG ,AC .让EG-AC=1即可求得AB 长.试题解析:如图,延长EF 交AB 于点G .设AB=x 米,则BG=AB ﹣2=(x ﹣2)米.则EG=(AB﹣2)÷tan∠BEG=3(x﹣2),CA=AB÷tan∠ACB=33x.则CD=EG﹣AC=3(x﹣2)﹣33x=1.解可得:x=103+2.答:古塔AB的高为(103+2)米.20、(1)证明见解析;(2)23 3π-;【解题分析】(1)连接OD,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD,∠COD=∠ODB,又因为OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,Rt△ODC与Rt△OAC是含30°的直角三角形,从而得到∠DOB=60°,即△BOD为等边三角形,再用扇形的面积减去△BOD的面积即可.【题目详解】(1)证明:连接OD,∵CD与圆O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,OA OD AOC COD OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△EOC (SAS ),∴∠CAO=∠CDO=90°,则AC 与圆O 相切;(2)∵AB=OC=4,OB=OD ,∴Rt △ODC 与Rt △OAC 是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD 为等边三角形,图中阴影部分的面积=扇形DOB 的面积﹣△DOB 的面积,=260212236023ππ⨯-⨯=. 【题目点拨】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.21、(1)①y=400x ﹣1.(5<x≤10);②9元或10元;(2)能, 11元.【解题分析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x 的值得出答案.【题目详解】解:(1)①y=400(x ﹣5)﹣2.(5<x≤10),②依题意得:400(x ﹣5)﹣2≥800, 解得:x≥8.5,∵5<x≤10,且每份套餐的售价x (元)取整数, ∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣2,当y=1560时, (x ﹣5)[400﹣40(x ﹣10)]﹣2=1560,解得:x 1=11,x 2=14,为了保证净收入又能吸引顾客,应取x 1=11,即x 2=14不符合题意.故该套餐售价应定为11元.【题目点拨】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.22、(1)见解析(2)见解析【解题分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【题目详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形23、(1)13;(2)19;(3)第一题.【解题分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.【题目详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=13;故答案为13;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为19;(3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=18,因为18>19,所以建议小明在第一题使用“求助”.【题目点拨】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.24、(1);(2)5π;(3)PB的值为或.【解题分析】(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.【题目详解】解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四边形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如图2中,连接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的长==5π.(3)如图3中,当点Q落在直线AB上时,∵△EPB∽△AMB,∴==,∴==,∴PB=.如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.设PB=x,则AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.综上所述,满足条件的PB的值为或.【题目点拨】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.。
2024-2025学年四川省成都七中学九上数学开学学业水平测试模拟试题【含答案】
![2024-2025学年四川省成都七中学九上数学开学学业水平测试模拟试题【含答案】](https://img.taocdn.com/s3/m/e8e7f4a6c9d376eeaeaad1f34693daef5ff7137c.png)
2024-2025学年四川省成都七中学九上数学开学学业水平测试模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,矩形ABCD 中,2AB =,1BC =,点P 从点B 出发,沿B C D →→向终点D 匀速运动,设点P 走过的路程为x ,ABP ∆的面积为S ,能正确反映S 与x 之间函数关系的图象是()A .B .C .D .2、(4分)有意义,则x 的取值范围是()A .3x ≠B .3x >C .3x ≤D .3x ≥3、(4分)如图,已知平行四边形ABCD ,6AB =,9BC =,120A ∠=︒,点P 是边AB 上一动点,作PE BC ⊥于点E ,作120EPF ∠=︒(PF 在PE 右边)且始终保持PE PF +=CF 、DF ,设m CF DF =+,则m 满足()A .m ≥B .m ≥C .9m <+D .9m +<<4、(4分)用反证法证明“若a ⊥c ,b ⊥c ,则a ∥b”时,应假设()A .a 不垂直于c B .a 垂直于b C .a 、b 都不垂直于c D .a 与b 相交5、(4分)如图,在同一直线上,甲、乙两人分别从A ,B 两点同时向右出发,甲、乙均为匀速,图2表示两人之间的距离y (m )与所经过的时间t (s )之间的函数关系图象,若乙的速度为1.5m/s ,则经过30s ,甲自A 点移动了()A .45m B .7.2m C .52.2m D .57m 6、(4分)一根长为20cm 的长方形纸条,将其按照图示的过程折叠,若折叠完成后纸条两端超出点P 的长度相等,且PM=PN=5cm ,则长方形纸条的宽为()A .1.5cm B .2cm C .2.5cm D .3cm 7、(4分)如图,在ABCD 中,E 为边CD 上一点,将ADE ∆沿AE 折叠至'AD E ∆处,'AD 与CE 交于点F ,若52B ∠=,20DAE ∠=,则'AED ∠的大小为()A .110B .108C .105D .1008、(4分)如图,点O 是矩形ABCD 的对角线AC 的中点,点M 是AD 的中点.若3,4AB BC ==,则四边形ABOM 的周长是()A .7B .8C .9D .10二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,菱形ABCD 对角线AC=6cm ,BD=8cm ,AH ⊥BC 于点H ,则AH 的长为_______.10、(4分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.11、(4分)如图,123,,P P P 是同一双曲线上的三点过这三点分别作y 轴的垂线,垂足分别为123A A A 、、,连结123,OP OP OP 、、得到112233A OP A OP A OP 、、的面积分别为123,,S S S .那么123,,S S S 的大小关系为____.12、(4分)如图,菱形ABCD 的边长为4,∠BAD=120°,点E 是AB 的中点,点F 是AC 上的一动点,则EF+BF 的最小值是.13、(4分)如图,在正方形ABCD 中,以A 为顶点作等边三角形AEF ,交BC 边于点E ,交DC 边于点F ,若△AEF 的边长为2,则图中阴影部分的面积为_____.三、解答题(本大题共5个小题,共48分)14、(12分)已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是.(2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ;(3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.15、(8分)如图1,把一张正方形纸片对折得到长方形ABCD ,再沿∠ADC 的平分线DE 折叠,如图2,点C 落在点C′处,最后按图3所示方式折叠,使点A 落在DE 的中点A′处,折痕是FG ,若原正方形纸片的边长为9cm ,则FG=_____cm .16、(8分)先化简,再求值:221241442x x x x x x x -+⎛⎫⎛⎫-÷- ⎪ ⎪-+-⎝⎭⎝⎭,其中x 是不等式253x -≤x ﹣3的最小整数解.17、(10分)为了解某中学学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:(1)x =,a =,b =;(2)补全上面的条形统计图;(3)若该校共有学生5000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.18、(10分)为了宣传2018年世界杯,实现“足球进校园”的目标,任城区某中学计划为学校足球队购买一批足球,已知购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)求A ,B 两种品牌的足球的单价.(2)学校准备购进这两种品牌的足球共50个,并且B 品牌足球的数量不少于A 品牌足球数量的4倍,请设计出最省钱的购买方案,求该方案所需费用,并说明理由.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,平行四边形ABCD 中,点E 为BC 边上一点,AE 和BD 交于点F ,已知ABF ∆的面积等于6,BEF ∆的面积等于4,则四边形CDFE 的面积等于__________.20、(4分)设m ,n 分别为一元二次方程x 2+2x ﹣1=0的两个实数根,则m +n +mn =_____.21、(4分)一个装有进水管出水管的容器,从某时刻起只打开进水管进水,经过一段时间,在打开出水管放水,至15分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(升)与时间x (分钟)之间的关系如图所示,关停进水管后,经过_____________分钟,容器中的水恰好放完.22、(4分)如图,在平面直角坐标系中,△ABC 与△A′B'C′关于点P 位似且顶点都在格点上,则位似中心P 的坐标是______.23、(4分)如图,在一次测绘活动中,某同学站在点A 处观测停放于B 、C 两处的小船,测得船B 在点A 北偏东75°方向160米处,船C 在点A 南偏东15°方向120米处,则船B 与船C 之间的距离为________米.二、解答题(本大题共3个小题,共30分)24、(8分)如图,正方形ABCD ,点P 为对角线AC 上一个动点,Q 为CD 边上一点,且90BPQ ∠=︒.(1)求证:PB PQ =;(2)若四边形BCQP 的面积为25,试探求BC 与CQ 满足的数量关系式;(3)若Q 为射线DC 上的点,设AP x =,四边形ABCD 的周长为y ,且4CQ =,求y 与x 的函数关系式.25、(10分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).26、(12分)如图,在Rt △ABC 中,∠C =90°.(1)求作:△ABC 的一条中位线,与AB 交于D 点,与BC 交于E 点.(保留作图痕迹,不写作法)(2)若AC =6,AB =10,连结CD ,则DE =_,CD =_.一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x (0≤x≤1);然后判断出从点C到点D,△ABP的底AB的长度一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.【详解】解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:.故选:C.此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.2、D【解析】根据二次根式有意义的条件进行求解即可.【详解】x-≥∴30x≥解得3故答案为:D.本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………3、D 【解析】设PE=x ,则PB=233x ,PF=33x ,AP=6-233x ,由此先判断出AF PF ⊥,然后可分析出当点P 与点B 重合时,CF+DF 最小;当点P 与点A 重合时,CF+DF 最大.从而求出m 的取值范围.【详解】如上图:设PE=x ,则PB=233x ,PF=33x ,AP=6-233x ∵0030,120BPE EPF ∠=∠=∴030APE ∠=由AP 、PF 的数量关系可知AF PF ⊥,060PAF ∠=如上图,作060BAM ∠=交BC 于M ,所以点F 在AM 上.当点P 与点B 重合时,CF+DF 最小.此时可求得33,37CF DF ==如上图,当点P 与点A 重合时,CF+DF 最大.此时可求得9CF DF ==∴9m +<<故选:D 此题考查几何图形动点问题,判断出AF PF ⊥,然后可分析出当点P 与点B 重合时,CF+DF 最小;当点P 与点A 重合时,CF+DF 最大是解题关键.4、D 【解析】反证法的步骤中,第一步是假设结论不成立,反面成立,即可解答.【详解】解:用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”,应假设:a 不平行b 或a 与b 相交.故选择:D .本题考查了反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.5、C 【解析】设甲与乙的距离为s ,根据图像可求出解析式,即可进行求解.【详解】解:设甲与乙的距离为s ,则关于t 的函数为s =kt+b (k≠0),将(0,12)(50,0)代入得12500b k b =⎧⎨+=⎩,解得k =﹣0.24,b =12,函数表达式,s =﹣0.24t+12(0≤t≤50),则30秒后,s =4.8设甲自A 点移动的距离为y ,则y+s =12+1.5×30解得:y =52.2∴甲自A 点移动52.2m .故选:C .此题主要考查一次函数的图像,解题的关键是熟知一次函数解析式的求解.6、B 【解析】设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,除了AP 和BM 的长度中间的长度为5x ,将折叠的纸条展开,根据题意列出方程式求出x 的值即可.【详解】解:如图:设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,MN=20由题意可得:5×2+5x=20解得:x=2故选:B .本题考查了翻折变换的知识以及学生的动手操作能力,解答本题的关键是仔细观察图形,得到各线段之间存在的关系.7、B 【解析】由平行四边形的性质可得∠B =∠D =52°,由三角形的内角和定理可求∠DEA 的度数,由折叠的性质可求∠AED '=∠DEA =108°.【详解】∵四边形ABCD 是平行四边形,∴∠B =∠D =52°,且∠DAE =20°,∴∠DEA =180°﹣∠D -∠DAE =108°.∵将△ADE 沿AE 折叠至△AD 'E 处,∴∠AED '=∠DEA =108°.故选B .本题考查了翻折变换,平行四边形的性质,三角形内角和定理,熟练运用这些性质是本题的关键.8、C 【解析】根据三角形的中位线及直角三角形斜边上的中线等于斜边的一半即可求解.【详解】∵AB=3,BC=4,∴,∵O 点为AC 中点,∴BO=12AC =2.5,又M 是AD 中点,∴MO 是△ACD 的中位线,故OM=12CD =1.5,∴四边形ABOM 的周长为AB+BO+MO+AM=3+2.5+2+1.5=9,故选C.此题主要考查矩形的性质,解题的关键是熟知直角三角形的性质及中位线定理的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、245cm 【解析】根据菱形的性质求出BC=5,然后根据菱形ABCD 面积等于BC∙AH 进一步求解即可.【详解】∵四边形ABCD 是菱形,∴CO=12AC=3cm ,BO=12BD=4cm ,AO ⊥BO ,∴,∴S 菱形ABCD =2BD AC ⋅=12×6×8=24cm 2,∵S 菱形ABCD =BC×AH ,∴BC×AH=24,∴AH=245cm .故答案为:245cm .本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键.10、87.1.【解析】根据加权平均数的含义和求法,可求出甲的平均成绩.面试和笔试的成绩分别为81分和90分,面试成绩和笔试成绩的权分别是1和4,∴甲的平均成绩为:64869087.61010⨯+⨯=(分).故答案为:87.1.考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.11、S 1=S 2=S 1【解析】根据反比例函数k 的几何意义进行判断.【详解】解:设P 1、P 2、P 1三点都在反比例函数y =k x 上,则S 1=12|k |,S 2=12|k |,S 1=12|k |,所以S 1=S 2=S 1.故答案为S 1=S 2=S 1.本题考查了反比例函数比例系数k 的几何意义:在反比例函数y =k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.12、.【解析】试题分析:首先连接DB ,DE ,设DE 交AC 于M ,连接MB ,DF .证明只有点F 运动到点M 时,EF+BF 取最小值,再根据菱形的性质、勾股定理求得最小值.试题解析:连接DB ,DE ,设DE 交AC 于M ,连接MB ,DF ,延长BA ,DH ⊥BA 于H ,∵四边形ABCD 是菱形,∴AC ,BD 互相垂直平分,∴点B 关于AC 的对称点为D ,∴FE+FB=FE+FD≥DE .只有当点F 运动到点M 时,取等号(两点之间线段最短),△ABD 中,AD=AB ,∠DAB=120°,∴∠HAD=60°,∵DH ⊥AB ,∴AH=AD ,DH=AD ,∵菱形ABCD 的边长为4,E 为AB 的中点,∴AE=2,AH=2,∴EH=4,DH=,在RT △EHD 中,DE=∴EF+BF 的最小值为.【考点】1.轴对称-最短路线问题;2.菱形的性质.13、1【解析】先根据直角边和斜边相等,证出△ABE ≌△ADF ,从而得CE=CF ,继而在△ECF 利用勾股定理求出CE 、CF 长,再利用三角形的面积公式进行求解即可.【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠C=∠D=90°,∵△AEF 是等边三角形,∴AE=EF=AF=2,∴Rt △ABE ≌Rt △ADF(HL),∴BE=DF ,∴EC=CF ,又∵∠C=90°,∴CE 2+CF 2=EF 2=22,∴,∴S △ECF =12,故答案为:1.本题考查了正方形的性质,等边三角形性质,勾股定理,三角形的面积等知识,熟练掌握和灵活运用相关知识是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)△AEF 是等边三角形,理由见解析;(2)见解析;(3)点F 到BC 的距离为3﹣.【解析】(1)连接AC ,证明△ABC 是等边三角形,得出AC =AB ,再证明△BAE ≌△DAF ,得出AE =AF ,即可得出结论;(2)连接AC ,同(1)得:△ABC 是等边三角形,得出∠BAC =∠ACB =60°,AB =AC ,再证明△BAE ≌△CAF ,即可得出结论;(3)同(1)得:△ABC 和△ACD 是等边三角形,得出AB =AC ,∠BAC =∠ACB =∠ACD =60°,证明△BAE ≌△CAF ,得出BE =CF ,AE =AF ,证出△AEF 是等边三角形,得出∠AEF =60°,证出∠AEB =45°,得出∠CEF =∠AEF ﹣∠AEB =15°,作FH ⊥BC 于H ,在△CEF 内部作∠EFG =∠CEF =15°,则GE =GF ,∠FGH =30°,由直角三角形的性质得出FG =2FH ,GH =FH ,CF =2CH ,FH =CH ,设CH =x ,则BE =CF =2x ,FH =x ,GE =GF =2FH =2x ,GH =FH =3x ,得出EH =4+x =2x +3x ,解得:x =﹣1,求出FH =x =3﹣即可.【详解】(1)解:△AEF 是等边三角形,理由如下:连接AC ,如图1所示:∵四边形ABCD 是菱形,∴AB =BC =AD ,∠B =∠D ,∵∠ABC =60°,∴∠BAD =120°,△ABC 是等边三角形,∴AC =AB ,∵点E 是线段CB 的中点,∴AE ⊥BC ,∴∠BAE =30°,∵∠EAF =60°,∴∠DAF =120°﹣30°﹣60°=30°=∠BAE ,在△BAE 和△DAF 中,,∴△BAE ≌△DAF (ASA ),∴AE =AF ,又∵∠EAF =60°,∴△AEF 是等边三角形;故答案为:等边三角形;(2)证明:连接AC ,如图2所示:同(1)得:△ABC 是等边三角形,∴∠BAC =∠ACB =60°,AB =AC ,∵∠EAF =60°,∴∠BAE =∠CAF ,∵∠BCD =∠BAD =120°,∴∠ACF =60°=∠B ,在△BAE 和△CAF 中,,∴△BAE ≌△CAF (ASA ),∴BE =CF ;(3)解:同(1)得:△ABC 和△ACD 是等边三角形,∴AB =AC ,∠BAC =∠ACB =∠ACD =60°,∵∠ABC=60°,∴∠ABE=120°=∠ACF,∵∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(ASA),∴BE=CF,AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,∴∠AEB=45°,∴∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:则GE=GF,∠FGH=30°,∴FG=2FH,GH=FH,∵∠FCH=∠ACF﹣∠ACB=60°,∴∠CFH=30°,∴CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,∵BC=AB=4,∴CE=BC+BE=4+2x,∴EH=4+x=2x+3x,解得:x=﹣1,∴FH=x=3﹣,即点F到BC的距离为3﹣.本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.【解析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′=4.5,首先证明△AKC′≌△GFM,可得GF=AK,由AN=6cm,A′N=3cm,C′K∥A′N,推出=KC ACA N AN''',可得92=92744KC',得出C′K=2cm,在Rt△AC′K中,根据AK即可解决问题.【详解】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK ,∵AN=274cm ,A′N=94cm ,C′K ∥A′N ,∴=KC AC A N AN ''',∴92=92744KC ',∴C′K=1.5cm ,在Rt △AC′K 中,=cm ,∴FG=AK=cm ,.本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.16、19【解析】先根据分式混合运算的法则把原式进行化简,再求出不等式的取值范围,找出符合条件的x 的最小整数解代入进行计算即可.【详解】原式=2124(2)(2)x x x x x x x x ⎡⎤-+⎛⎫-÷- ⎪⎢⎥--⎝⎭⎣⎦=222244(2)(2)x x x xx x x x x⎡⎤----÷⎢⎥--⎣⎦=24(2)4xxx x x-⋅--=21(2)x -,解不等式253x -≤x ﹣3,得:x ≥4,则不等式得最小整数解为x =4,当x =4时,分式无意义,所以符合条件的x 的最小整数解为x =5,则原式=19.17、(1)50;20;30;(2)图见解析;(3)2000人。
2024年四川省成都七中初中学校中考数学一模试卷及参考答案
![2024年四川省成都七中初中学校中考数学一模试卷及参考答案](https://img.taocdn.com/s3/m/8247b022f342336c1eb91a37f111f18583d00c90.png)
2024年四川省成都七中初中学校中考数学一模试卷一、选择题(每小题4分,共32分)1.(4分)﹣2024的绝对值是()A.2024B.﹣2024C.D.2.(4分)据报道2023年国庆出游的全国旅客数达到754000000人次,754000000用科学记数法可表示为()A.7.54×109B.7.54×108C.75.4×108D.0.754×109 3.(4分)下列运算正确的是()A.3x2y+2xy=5x3y2B.(﹣2ab2)3=﹣6a3b6C.(2a+b)2=4a2+b2D.(2a+b)(2a﹣b)=4a2﹣b24.(4分)要调查下列两个问题:(1)了解班级同学中哪个月份出生的人数最多;(2)了解全市七年级学生早餐是否有喝牛奶的习惯.这两个问题分别采用什么调查方式更合适()A.全面调查,全面调查B.抽样调查,抽样调查C.抽样调查,全面调查D.全面调查,抽样调查5.(4分)正多边形的一个外角的度数为30°,则这个正多边形的边数为()A.12B.10C.8D.66.(4分)如图,在扇形AOB中,AO⊥OB,∠AOC=∠BOC,若扇形AOB的半径为2,则扇形AOC的面积为()A.2πB.C.πD.7.(4分)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多六客,一房八客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有6人无房可住;如果一间客房住8人,那么就空出一间客房,若设该店有客房x间,可列方程为()A.7x﹣6=8x﹣1B.7x﹣6=8(x﹣1)C.7x+6=8x﹣1D.7x+6=8(x﹣1)8.(4分)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1,其中结论正确的为()A.abc<0B.b2﹣4ac=0C.a﹣b+c>0D.4a+2b+c<0二、填空题(每小题4分,共20分)9.(4分)分解因式:xy2+6xy+9x=.10.(4分)若正比例函数y=﹣2x与反比例函数的图象交于(1,﹣2),则另一个交点坐标为.11.(4分)如图,△ABC与△DEF是位似图形,点O是位似中心,OB:BE=1,若S△ABC =.=2,则S△DEF12.(4分)分式方程的解是.13.(4分)如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为.三、解答题(共48分)14.(12分)(1)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.(2)解不等式组:.15.(8分)为全面增强中学生的体质健康,某学校开展“阳光体育活动”,开设了:A.跳绳;B.篮球;C.排球;D.足球,这4门选修课,要求每名学生只能选择其中的一项参加.全校共有100名男同学选择了A项目,为了解选择A项目男同学的情况,从这100名男同学中随机抽取了30人在操场进行测试,并将他们的成绩x(个/分钟)绘制成频数分布直方图.(1)若抽取的同学的测试成绩落在160≤x<165这一组的数据为160,162,162,163,161,164,则该组数据的中位数是,众数是;(2)根据题中信息,估计选择B项目的男生共有人,扇形统计图中D项目所占圆的圆心角为度;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全区的跳绳比赛,请用画树状图法或列表法计算出甲和乙同学同时被选中的概率.16.(8分)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB与水平线AD的夹角∠BAD为37°,倾斜屋顶上的E处到水平线的距离DE为1.3米,C、D、E在同一直线上,且CD⊥AD.求安装热水器的铁架水平横管BC的长度(参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈,结果精确到0.1米).17.(10分)如图,AB为⊙O的直径,C、D为圆上两点,∠ABD=2∠BAC,AB与CD交于点M过点C作CE⊥BD交DB延长线于点E.(1)求证:CE是⊙O的切线;(2)若BE=1,BD=7,求CE和cos∠ABD的值.18.(10分)如图,一次函数y=x﹣1的图象与反比例函数y=的图象交于A(a,1),B(﹣2,b)两点,M为反比例函数图象第一象限上的一动点.(1)求反比例函数的表达式;(2)当∠MBA=45°时,求点M的坐标;(3)我们把对角线互相垂直且相等的四边形称为“垂等四边形”.设点N是平面内一点,是否存在这样的N,M两点,使四边形ABNM是“垂等四边形”,且∠ABM=∠MAN?若存在,求出M,N两点的坐标;若不存在,请说明理由.一、填空题(每小题4分,共20分)19.(4分)若2x2+2xy﹣5=0,则代数式的值为.20.(4分)如图是一个正六棱柱的主视图和左视图,则这个六棱柱的一个侧面面积是________m2.(单位:m)21.(4分)如图所示,扇形AOB的圆心角是直角,半径为,C为OA边上一点,将△BOC沿BC边折叠,圆心O恰好落在弧AB上的点D处,则阴影部分的面积为.22.(4分)如图,二次函数y=的图象交x轴于点A,B(点A在点B 的左侧),交y轴于点C.现有一长为3的线段DE在直线y=上移动,且在移动过程中,线段DE上始终存在点P,使得三条线段PA,PB,PC能与某个等腰三角形的三条边对应相等.若线段DE左端点D的横坐标为t,则t的取值范围是.23.(4分)如图,矩形ABCD中,已知AB=3,BC=6,E为AD边上一动点,将△ABE沿BE边翻折到△FBE,点A与点F重合,连接DF、CF.则DF+FC的最小值为.二、解答题(共30分)24.(8分)春节期间,晓东计划和家人自驾来阿掖山游玩,晓东家汽车是某型号油电混合动力汽车,有用油和用电两种驱动方式,两种驱动方式不能同时使用.经过计算,该汽车从晓东家行驶到阿掖山,全程用油驱动需60元油费,全程用电驱动需12元电费,已知每行驶1千米,用油比用电的费用多0.6元.(1)求该汽车用电驱动方式行驶1千米的电费;(2)若驾驶该汽车从晓东家行驶至阿掖山,游玩后再返回家,需要燃油和用电两种驱动方式,往返全程用电和用油的总费用不超过78元,则最多用油行驶多少千米?25.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B、C两点,与x轴的另一交点为点A.(1)如图1,求抛物线的解析式;(2)如图2,点D为直线BC上方抛物线上一动点,连接AC、CD,设直线BC交线段AD于点E,△CDE的面积为S1,△ACE的面积为S2,当最大值时,求点D的坐标及的最大值;(3)如图3,P、Q分别为抛物线上第一、四象限两动点,连接AP、AQ,分别交y轴于M、N两点,若在P、Q两点运动过程中,始终有MO与NO的积等于2.试探究直线PQ 是否过某一定点.若是,请求出该定点坐标;若不是,请说明理由.26.(12分)(1)如图1,在直角△ABC中,∠ACB=90°,过C作CD⊥AB交AB于点D,求证:CD2=AD•BD;(2)如图2,在菱形ABCD中,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD边于点F.①若,求的值;②若(n>2),直接写出的值(用含n的式子表示);(3)如图3,在菱形ABCD中,∠A=60°,点E在CD上,EC=2且=a,点F为BC上一点,连接EF,过E作EG⊥EF交AD于点G,EG•EF=a,求AG的值(用含a的式子表示).2024年四川省成都七中初中学校中考数学一模试卷参考答案一、选择题(每小题4分,共32分)1.A;2.B;3.D;4.D;5.A;6.B;7.D;8.D二、填空题(每小题4分,共20分)9.x(y+3)2;10.(﹣1,2);11.8;12.x=﹣2;13.65°三、解答题(共48分)14.(1)2;(2)﹣1≤x<2.;15.162;162;175;108;16.安装热水器的铁架水平横管BC的长度约为0.9米.;17.(1)答案见解答过程(2).;18.(1)y=;(2)点M(,6);(3)存在,点M(,8),点N(﹣6,).;一、填空题(每小题4分,共20分)19.;20.6;21.﹣9;22.﹣≤t≤2;23.;二、解答题(共30分)24.(1)0.15元;(2)90千米.;25.(1)y=﹣x2+2x+3;(2)有最大值为,此时D(,);(3)直线PQ经过点(3,﹣2).;26.(1)见解析;(2)①,②;(3)AG=2+3a﹣或AG=2+3a﹣a.。
成都七中数学中考模拟试卷
![成都七中数学中考模拟试卷](https://img.taocdn.com/s3/m/652854f0ab00b52acfc789eb172ded630a1c984e.png)
成都七中数学中考模拟试卷姓名:班级:学号:成都七中数学中考模拟试卷(满分150分,考试时间120分钟)出题人:XXX、XXX 审题人:XXXA卷(共100分)一、选择题(每小题3分,共30分)1.4的平方根是()A。
±2 B。
2 C。
± D。
无解2.如图,在长方体中挖去一个圆柱体后,得到的几何体的左视图为(删除图)3.花粉的质量很小,一粒某种花粉的质量约为0.毫克,那么0.用科学计数法表示为()A。
10.3×10⁻⁵ B。
1.03×10⁻⁴ C。
0.10.×10⁻³ D。
1.03×10⁻³4.在直角三角形ABC中,∠C=90°,BC=2,AB=4,则cosA=()A。
1/2 B。
2/3 C。
3/4 D。
4/55.如图,一个正六边形转盘被分成6个全等的三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是(删除图)6.下列计算正确的是()A。
a+a=a B。
3(a-2b)=3a-2b C。
a÷a=1 D。
(2a-b)÷2=a-b/27.若一个多边形的内角和是900°,则这个多边形的边数是()A。
5 B。
6 C。
7 D。
88.将抛物线y=2(x-1)⁻¹,先向上平移2个单位,再向右平移1个单位后其顶点坐标是()A。
(2,1) B。
(1,2) C。
(1,-1) D。
(1,1)9.已知在正方形ABCD中,对角线AC与BD相交于点O,OE//AB交BC于点E,若AD=8cm,则OE的长为()A。
3cm B。
4cm C。
6cm D。
8cm10.如图,在圆O中,∠C=30°,AB=2,则弧AB的长为(删除图)二、填空题(每小题4分,共16分)11.如图,路灯距离地面8米,身高1.6米的XXX站在距离灯的底部(点O)20米的A处,则XXX的影子AM长为4米。
12.关于x的一元二次方程x²-4x+2m=0没有实数根,则实数m的取值范围是(-1,1/2]。
2024届四川省成都七中中考数学五模试卷含解析
![2024届四川省成都七中中考数学五模试卷含解析](https://img.taocdn.com/s3/m/561c1dec294ac850ad02de80d4d8d15abf230079.png)
2024学年四川省成都七中中考数学五模试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.下列运算正确的是( ) A .3a 2﹣2a 2=1B .a 2•a 3=a 6C .(a ﹣b )2=a 2﹣b 2D .(a+b )2=a 2+2ab+b 22.下列实数中,结果最大的是( ) A .|﹣3| B .﹣(﹣π)C .7D .33.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒4.计算1211x xx x +---的结果是( ) A .1B .﹣1C .1﹣xD .311x x +- 5.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB 6 cmC .2.5cmD 5cm6.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE ,过点A 作AE 的垂线交DE 于点P ,若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S=4+6.其中正确结论的序号是()正方形ABCDA.①③④B.①②⑤C.③④⑤D.①③⑤7.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2B.3cm2C.4πcm2D.3πcm28.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣79.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差10.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.节约用水量(单位:吨) 1 1.1 1.4 1 1.5家庭数 4 6 5 3 1这组数据的中位数和众数分别是()A.1.1,1.1;B.1.4,1.1;C.1.3,1.4;D.1.3,1.1.二、填空题(共7小题,每小题3分,满分21分)11.分解因式2x2﹣4x+2的最终结果是_____.12.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣1.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.13.已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且1tan3EAC∠=,则BE的长为__________.14.如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APB=_____________ .15.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1 B.4 C.﹣4 D.116.计算:(﹣2a3)2=_____.17.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.三、解答题(共7小题,满分69分)18.(10分)如图1,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A、B 分别在x 轴与y 轴上,已知OA=6,OB=1.点 D 为y 轴上一点,其坐标为(0,2),点P 从点 A 出发以每秒 2 个单位的速度沿线段AC ﹣CB 的方向运动,当点P 与点 B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数解析式;(2)如图②,把长方形沿着OP 折叠,点 B 的对应点B′恰好落在AC 边上,求点P 的坐标.(3)点P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.19.(5分)如图,直线y=kx+b (k≠0)与双曲线y=mx(m≠0)交于点A (﹣12,2),B (n ,﹣1).求直线与双曲线的解析式.点P 在x 轴上,如果S △ABP =3,求点P 的坐标.20.(8分)(5分)计算:.21.(10分)如图,在平面直角坐标系中,点1O 的坐标为()4,0-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60的角,且交y 轴于C 点,以点()213,5O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式;(2)将2O 以每秒1个单位的速度沿x 轴向左平移,当2O 第一次与1O 外切时,求2O 平移的时间.22.(10分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?23.(12分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?24.(14分)解方程组3{3814x yx y-=-=参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】根据合并同类项法则,可知3a2﹣2a2= a2,故不正确;根据同底数幂相乘,可知a2•a3=a5,故不正确;根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.故选D.【题目详解】请在此输入详解!2、B【解题分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【题目详解】根据实数比较大小的方法,可得<|-3|=3<-(-π),所以最大的数是:-(-π).故选B.【题目点拨】此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3、B【解题分析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【题目详解】连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故选B.【题目点拨】此题考查圆周角定理,关键是利用直径得出∠ABD=65°.4、B【解题分析】根据同分母分式的加减运算法则计算可得.【题目详解】解:原式=121 x x x+--=1-1 x x-=() --11 x x-=-1,故选B.【题目点拨】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.5、D【解题分析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.详解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,22224845BE EC+=+=∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴OF OCBE BC=,即445OF=,解得:5故选D.点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.6、D【解题分析】①首先利用已知条件根据边角边可以证明△APD≌△AEB;②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB 是等腰Rt △,故B 到直线AE 距离为,故②是错误的; ③利用全等三角形的性质和对顶角相等即可判定③说法正确;④由△APD ≌△AEB ,可知S △APD +S △APB =S △AEB +S △APB ,然后利用已知条件计算即可判定;⑤连接BD ,根据三角形的面积公式得到S △BPD =12PD×BE=32,所以S △ABD =S △APD +S △APB +S △BPD 判定. 【题目详解】由边角边定理易知△APD ≌△AEB ,故①正确;由△APD ≌△AEB 得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°, 所以∠BEP=90°,过B 作BF ⊥AE ,交AE 的延长线于F ,则BF 的长是点B 到直线AE 的距离,在△AEP 中,由勾股定理得,在△BEP 中,,,由勾股定理得:, ∵∠PAE=∠PEB=∠EFB=90°,AE=AP , ∴∠AEP=45°,∴∠BEF=180°-45°-90°=45°, ∴∠EBF=45°, ∴EF=BF ,在△EFB 中,由勾股定理得: 故②是错误的;因为△APD ≌△AEB ,所以∠ADP=∠ABE ,而对顶角相等,所以③是正确的; 由△APD ≌△AEB ,∴可知S △APD +S △APB =S △AEB +S △APB =S △AEP +S △BEP =12+2连接BD ,则S △BPD =12PD×BE=32,所以S △ABD =S △APD +S △APB +S △BPD =2+2所以S正方形ABCD=2S△ABD=4+6.综上可知,正确的有①③⑤.故选D.【题目点拨】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.7、A【解题分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【题目详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【题目点拨】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.8、B【解题分析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【题目详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【题目点拨】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小. 9、D 【解题分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【题目详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【题目点拨】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 10、D 【解题分析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 详解:这组数据的中位数是1.2 1.41.32+=; 这组数据的众数是1.1. 故选D .点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.二、填空题(共7小题,每小题3分,满分21分) 11、1(x ﹣1)1【解题分析】先提取公因式1,再根据完全平方公式进行二次分解.【题目详解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1.故答案为:1(x﹣1)1【题目点拨】本题考查提公因式法与公式法的综合运用,难度不大.12、②③【解题分析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;②当x=﹣1.1时,[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有三个交点,故④错误,故答案为②③.考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.13、3或1【解题分析】菱形ABCD 中,边长为1,对角线AC 长为6,由菱形的性质及勾股定理可得AC ⊥BD ,BO=4,分当点E 在对角线交点左侧时(如图1)和当点E 在对角线交点左侧时(如图2)两种情况求BE 得长即可.【题目详解】解:当点E 在对角线交点左侧时,如图1所示:∵菱形ABCD 中,边长为1,对角线AC 长为6,∴AC ⊥BD ,BO=222253AB AO -=- =4, ∵tan ∠EAC=133OE OE OA ==, 解得:OE=1,∴BE=BO ﹣OE=4﹣1=3,当点E 在对角线交点左侧时,如图2所示:∵菱形ABCD 中,边长为1,对角线AC 长为6,∴AC ⊥BD ,222253AB AO --, ∵tan ∠EAC=133OE OE OA ==, 解得:OE=1,∴BE=BO ﹣OE=4+1=1,故答案为3或1.【题目点拨】本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长.14、135°【解题分析】通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APB.【题目详解】把△PAB绕B点顺时针旋转90°,得△P′BC,则△PAB≌△P′BC,设PA=x,PB=2x,PC=3x,连PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案为135°.【题目点拨】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把△PAB顺时针旋转90°使得A′与C点重合是解题的关键.15、1【解题分析】据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.【题目详解】∵点A(a,3)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣3,∴a+b=1,故选D .【题目点拨】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.16、4a 1.【解题分析】根据积的乘方运算法则进行运算即可.【题目详解】原式64.a =故答案为64.a【题目点拨】考查积的乘方,掌握运算法则是解题的关键.17、23﹣23π 【解题分析】 过点F 作FE ⊥AD 于点E ,则AE=12AD=12AF ,故∠AFE=∠BAF=30°,再根据勾股定理求出EF 的长,由S 弓形AF =S 扇形ADF -S △ADF 可得出其面积,再根据S 阴影=2(S 扇形BAF -S 弓形AF )即可得出结论【题目详解】如图所示,过点F 作FE ⊥AD 于点E ,∵正方形ABCD 的边长为2,∴AE=12AD=12AF=1,∴∠AFE=∠BAF=30°,∴EF=3. ∴S 弓形AF =S 扇形ADF -S △ADF =6041223336023ππ⨯-⨯⨯=-, ∴ S 阴影=2(S 扇形BAF -S 弓形AF )=2×[304233603ππ⨯⎛⎫-- ⎪⎝⎭]=2×(12333ππ-+)=2 233π-.【题目点拨】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.三、解答题(共7小题,满分69分)18、(1)y=43x+2;(2)y=43x+2;(2)①S=﹣2t+16,②点P 的坐标是(103,1);(3)存在,满足题意的P 坐标为(6,6)或(6,27+2)或(6,1﹣27).【解题分析】分析:(1)设直线DP 解析式为y=kx+b ,将D 与B 坐标代入求出k 与b 的值,即可确定出解析式;(2)①当P 在AC 段时,三角形ODP 底OD 与高为固定值,求出此时面积;当P 在BC 段时,底边OD 为固定值,表示出高,即可列出S 与t 的关系式;②设P (m ,1),则PB=PB′=m ,根据勾股定理求出m 的值,求出此时P 坐标即可;(3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可. 详解:(1)如图1,∵OA=6,OB=1,四边形OACB 为长方形,∴C (6,1).设此时直线DP 解析式为y=kx+b ,把(0,2),C (6,1)分别代入,得2610b k b =⎧⎨+=⎩,解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)①当点P 在线段AC 上时,OD=2,高为6,S=6; 当点P 在线段BC 上时,OD=2,高为6+1﹣2t=16﹣2t ,S=12×2×(16﹣2t )=﹣2t+16; ②设P (m ,1),则PB=PB′=m ,如图2,∵OB′=OB=1,OA=6,∴AB′=22OB OA'-=8,∴B′C=1﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=10 3则此时点P的坐标是(103,1);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP12286-7∴AP1=1﹣7,即P1(6,1﹣7;②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P32286-7∴AP3=AE+EP37+2,即P3(6,7+2),综上,满足题意的P坐标为(6,6)或(6,+2)或(6,1﹣).点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.19、(1)y=﹣2x+1;(2)点P的坐标为(﹣32,0)或(52,0).【解题分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出122x-=,解之即可得出结论.【题目详解】(1)∵双曲线y=mx(m≠0)经过点A(﹣12,2),∴m=﹣1.∴双曲线的表达式为y=﹣1x.∵点B(n,﹣1)在双曲线y=﹣1x上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣12,2),B(1,﹣1),∴1k b=22k b=1⎧-+⎪⎨⎪+-⎩,解得k=2b=1-⎧⎨⎩∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=12,∴点C(12,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣12,2),B(1,﹣1),∴12×3|x﹣12|=3,即|x﹣12|=2,解得:x1=﹣32,x2=52.∴点P 的坐标为(﹣32,0)或(52,0). 【题目点拨】 本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S △ABP =3,得出122x -=. 20、. 【解题分析】试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.试题解析:原式==.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.21、(1)直线l 的解析式为:3123y x =--(2)2O 平移的时间为5秒.【解题分析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1. 在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间. 【题目详解】(1)由题意得OA 4812=-+=,∴A 点坐标为()12,0-.∵在Rt ΔAOC 中,OAC 60∠=︒, OC OAtan OAC 12tan60123∠==⨯︒=,∴C 点的坐标为(0,123-.设直线l 的解析式为y kx b =+, 由l 过A 、C 两点, 得123012b k b ⎧-=⎪⎨=-+⎪⎩, 解得33b k ⎧=-⎪⎨=-⎪⎩∴直线l 的解析式为:y 3x 123=--. (2)如图,设2O 平移t 秒后到3O 处与1O 第一次外切于点P ,3O 与x 轴相切于1D 点,连接13O O ,31O D .则1313O O O P PO 8513=+=+=,∵31O D x ⊥轴,∴31O D 5=,在131Rt ΔO O D 中,2225111331O D O O O D 13512=-=-=.∵11O D O O OD 41317=+=+=,∴1111D D O D O D 17125=-=-=,∴5t 51==(秒), ∴2O 平移的时间为5秒.【题目点拨】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.22、1平方米【解题分析】设原计划平均每天施工x 平方米,则实际平均每天施工1.2x 平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x 的分式方程,解之即可得出结论.【题目详解】解:设原计划平均每天施工x 平方米,则实际平均每天施工1.2x 平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=1.答:实际平均每天施工1平方米.【题目点拨】考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.23、()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解题分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【题目详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【题目点拨】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.24、21x y =⎧⎨=-⎩【解题分析】 解:由①得③ 把③代入②得 把代人③得 ∴原方程组的解为。
成都七中数学考试题及答案
![成都七中数学考试题及答案](https://img.taocdn.com/s3/m/a384fc225bcfa1c7aa00b52acfc789eb162d9e79.png)
成都七中数学考试题及答案成都七中作为中国四川省内知名的重点中学,其数学考试题目通常具有较高的难度和创新性。
以下是一套模拟的成都七中数学考试题及答案,仅供参考。
一、选择题(每题4分,共20分)1. 下列哪个选项不是实数集R的子集?A. 有理数集QB. 整数集ZC. 无理数集D. 复数集C答案:D2. 若函数\( f(x) = x^2 - 4x + 4 \),则\( f(2) \)的值为:A. 0B. 4C. 8D. -4答案:A3. 已知三角形ABC的三个内角分别为A、B、C,若\( \sin A + \sinB + \sinC = 2 \),则三角形ABC的类型是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形答案:B4. 一个圆的半径为1,圆心到直线的距离为0.5,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 直线经过圆心答案:B5. 已知等差数列的前n项和为S,若\( S_{10} = 100 \),且\( a_1 = 2 \),则第10项\( a_{10} \)的值为:A. 12B. 14C. 16D. 18答案:A二、填空题(每题5分,共15分)6. 若\( \cos \alpha = \frac{4}{5} \),且\( \alpha \)为锐角,则\( \sin \alpha = \frac{3}{5} \)。
7. 一个长方体的长、宽、高分别为a、b、c,若体积为120,且a=4b,则c的值为\( \frac{15}{b} \)。
8. 已知\( e^x = 3 \),则\( x = \ln 3 \)。
三、解答题(共65分)9.(15分)证明:若\( a, b, c \)为正数,且\( a + b + c = 1 \),则\( \sqrt{a} + \sqrt{b} + \sqrt{c} \leq \frac{3}{2} \)。
证明:略10.(20分)已知函数\( f(x) = \ln(x) + x^2 \),求\( f(x) \)在区间[1, e]上的最大值和最小值。
四川省成都七中学实验校2024届中考数学仿真试卷含解析
![四川省成都七中学实验校2024届中考数学仿真试卷含解析](https://img.taocdn.com/s3/m/b4d3fe630a4c2e3f5727a5e9856a561253d32170.png)
四川省成都七中学实验校2024届中考数学仿真试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①12AF FD ;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( )A .①②③④B .①④C .②③④D .①②③2.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .333.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )A .32,31B .31,32C .31,31D .32,354.如图,在正方形ABCD 中,AB =12x x ,P 为对角线AC 上的动点,PQ ⊥AC 交折线A ﹣D ﹣C 于点Q ,设AP =x ,△APQ 的面积为y ,则y 与x 的函数图象正确的是( )A .B .C .D .5.2-的相反数是A .2-B .2C .12D .12- 6.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B 的落点依次为B 1,B 2,B 3,…,则B 2017的坐标为( )A .(1345,0)B .(1345.5,32)C .(1345,32)D .(1345.5,0)7.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。
四川省成都市四川省成都市第七中学2024年初中学校中考三模数学试题(含解析)
![四川省成都市四川省成都市第七中学2024年初中学校中考三模数学试题(含解析)](https://img.taocdn.com/s3/m/457e50a6f80f76c66137ee06eff9aef8951e4850.png)
成都2023—2024学年度下2024届第三次质量检测数学(满分150分,120分钟完成)A 卷(满分100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题只有一项符合题目要求)1.下列图案是中心对称图形但不是轴对称图形的是()A .B .C .D .2.下列图形是棱锥侧面展开图的是()A .B .C .D .3.下列运算正确的是()A 382-=B .11a a a a +-=(0a ≠)C 5510=D .235a a a ⋅=4.在相同条件下的多次重复试验中,一个随机事件发生的频率为f ,该事件的概率为P .下列说法正确的是()A .试验次数越多,f 越大B .f 与P 都可能发生变化C .试验次数越多,f 越接近于PD .当试验次数很大时,f 在P 附近摆动,并趋于稳定5.已知一组数据:23,22,24,23,23,这组数据的方差是()A .3B .2C .35D .256.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,驽马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得()A .12240150x x +=B .12240150x x =-C .()24012150x x -=D .()24015012x x =+7.如图所示,把两张矩形纸条交叉叠放在一起,重合部分构成一个四边形ABCD .固定一张纸条,另一张纸条在转动过程中,下列结论一定成立的是()A .四边形ABCD 的周长不变B .四边形ABCD 的面积不变C .AD AB=D .AB CD =8.已知二次函数2122y ax x =-+(a 为常数,且0a >),下列结论:①函数图像一定经过第一、二、四象限;②函数图像一定不经过第三象限;③当0x <时,y 随x 的增大而减小;④当0x >时,y 随x 的增大而增大.其中所有正确结论的序号是()A .①②B .②③C .②D .③④二、填空题(本大题共5个小题,每小题4分,共20分)9.9的算术平方根是.10.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠CAB =55°,则∠D 的度数是.11.已知点()11,A x y ,()22,B x y 在抛物线23y x =-上,且120x x <<,则1y 2y .(填“<”或“>”或“=”)12.已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是.13.如图,ABC 中,90,8,15A AB AC ∠=︒==,以点B 为圆心,适当长为半径画弧,分别交BA BC 、于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点E ,作射线BE 交AC 于点D ,则线段AD 的长为.三、解答题(本大题共5个小题,共48分)14.(1)计算:1012023166π-⎛⎫-+- ⎪⎝⎭;(2)解不等式组45312135x x x -≤⎧⎪-+⎨<⎪⎩.15.为提高学生的安全意识,某学校组织学生参加了“安全知识答题”活动.该校随机抽取部分学生答题成绩进行统计,将成绩分为四个等级:A (优秀),B (良好),C (一般),D (不合格),并根据结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息解答下列问题:(1)这次抽样调查共抽取______人,条形统计图中的m =______;(2)将条形统计图补充完整,在扇形统计图中,求C 等所在扇形圆心角的度数;(3)学校要从答题成绩为A 等且表达能力较强的甲、乙、丙、丁四名学生中,随机抽出两名学生去做“安全知识宣传员”,请用列表或画树状图的方法,求抽出的两名学生恰好是甲和丁的概率.16.徐州电视塔为我市的标志性建筑之一,如图,为了测量其高度,小明在云龙公园的点C 处,用测角仪测得塔顶A 的仰角36AFE ∠=︒,他在平地上沿正对电视塔的方向后退至点D 处,测得塔顶A 的仰角30∠=︒AGE .若测角仪距地面的高度 1.6m,70m FC GD CD ===,求电视塔的高度AB (精确到0.1m).(参考数据:sin360.59,cos360.81,tan360.73,sin300.50,cos300.87,tan300.58︒︒≈≈≈=≈≈︒︒︒︒)17.已知:在ABC 中,以AC 边为直径的O 交BC 于点D ,在劣弧AD 上取一点E ,使EBC DEC ∠=∠,延长BE 依次交AC 于点G ,交O 于H(1)求证:CA EH ⊥;(2)若=45ABC ∠︒,O 的直径等于5,42AB =EC 和AG 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中数学中考模拟试卷
A 卷(共100分)
一、选择题(每小题3分,共30分) 1.4的平方根是( )
A .±2
B .2
C .±
D .
2.如图在长方体中挖去一个圆柱体后,得到的几何体的左视图为( )
3.花粉的质量很小,一粒某种花粉的质量约为0.000103毫克,那么0.000103用科学计数法表示为( )
A .510.310-⨯
B .41.0310-⨯
C .30.10.10-⨯
D .31.0310-⨯ 4.在Rt △ ABC 中,∠ C=90°,BC=2,AB=4,则cosA=( ) A .
B .
C .
D .
5.如图,一个正六边形转盘被分成6个全等的三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )
A .13
B .14
C .16
D .12
6.下列计算正确的是( )
A .448a a a +=
B .3(2)32a b a b -=-
C .532a a a ÷=
D .222(2)4a b a b -=-
7.若一个多边形的内角和是900°,则这个多边形的边数是( ) A .5 B .6 C .7 D .8
8.将抛物线y=2(x ﹣1)2
﹣1,先向上平移2个单位,再向右平移1个单位后其顶点坐标是( ) A .(2,1) B .(1,2) C .(1,﹣1) D .(1,1) 9.已知在正方形ABCD 中,对角线AC 与BD 相交于点O ,//OE AB 交BC 于点E ,若8AD cm =,则OE 的长为( )
A .3cm
B .4cm
C .6cm
D .8cm 10.如图,在圆
O 中,30C ∠=,2AB =,则弧AB 的长为( )
A .π
B .6π
C .4π
D .23
π
二、填空题(每小题4分,共16分)
11.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.
12.关于x 的一元二次方程x 2
﹣4x+2m=0没有实数根,则实数m 的取值范围是 .
13.如图,在△ ABC 中,点D 在线段BC 上且∠ BAD=∠ C ,BD=2,CD=6,则AB 的值是 . 14.如图,在△ABC 中,AB=AC=7,BC=6,AF ⊥BC 于F ,BE ⊥AC 于E ,D 是AB 的中点,则△DEF 的周长是 . 三、解答题(共54分)
15(1)计算:|﹣3|﹣14﹣2tan45°﹣(π﹣1)0 (6分)
(2)解不等式组1123(1)5x x x x
-⎧
-≤⎪⎨⎪-<⎩,在数轴上表示其解集,并写出该不等式组的整数解. (6分)
16.先化简再求值:1
6
5)121(2-+-÷--x x x x ,其中x 从0,1,2,3四个数中适当选取.(6分)
17.(8分)如图,放置在水平桌面上的台灯的灯臂AB 长为42cm ,灯罩BC 长为32cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:≈1.732)
18.(9分)成都市某校在推进新课改的过程中,开设的体育选修课有:A ﹣篮球,B ﹣足球,C ﹣排球,D ﹣羽毛球,E ﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图). (1)求出该班的总人数,并补全频数分布直方图;(3分) (2)求出“足球”在扇形的圆心角是多少度;(3分)
(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.(3分)
19.(9分)如图,一次函数y=ax+b 的图象与反比例函数x
k
y 的图象交于C ,D 两点,与x ,y 轴交于B ,A 两点,且tan ∠ABO=
2
1
,OB=4,OE=2. (1)求一次函数的解析式和反比例函数的解析式;(3分) (2)求△OCD 的面积;(3分)
(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x 的取值范围.(3分)
20.(10分)如图,在Rt △ABC 中,∠C=90°,AD 是角平分线,DE ⊥AD 交AB 于E ,△ADE 的外接圆⊙O 与边AC 相交于点F ,过F 作AB 的垂线交AD 于P ,交AB 于M ,交⊙O 于G ,连接GE . (1)求证:BC 是⊙O 的切线;(3分) (2)若4
3
tan =
∠GEM ,BE=20,求⊙O 的半径;(4分) (3)在(2)的条件下,求AP 的长.(3分)
成都七中数学中考模拟试卷
B 卷(共50分)
一、填空题(每小题4分,共20分)
21.已知实数a ,b 同时满足0112
2
=-+b a ,0552
=--b a ,则b = .
22.从-3,﹣1,1,2这四个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形的面积为41
,且使关于x 的方程x
x a 111=-+有正数解的概率为 .
23.把一副三角板如图放置,∠ACB=∠ADB=90°,E 是AB 的中点,
连接CE 、DE 、CD ,F 是CD 的中点,连接EF .若AB =4,则S △CEF = .
24.等边三角形ABO 的顶点B 的坐标分别为B (﹣2,0),过点C (0,7
3
2)作直线交AB 于点E ,交AO 于点 D ,交x 轴于点F ,点E 在双曲线)0(<=
x x
k
y 上,若S △ADE =S △OFD ,则k = .
25.如图,AB 为半圆直径,AC ⊥AB ,BF ⊥AB ,BF=3,AB=4,CA=5,连接AF 交半圆于D ,连接CD ,作DE ⊥CD 交直径AB 于E ,则tan ∠ACE= .
C
A
B
D
E
F
姓名: 班级: 学号:
二、解答题(共30分)
26.某公司投资1300万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.
(1)求y与x之间的函数关系式,并写出x的取值范围;(3分)
(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;(3分)
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达690万元?若能,求出第二年产品售价;若不能,说明理由.(2分)
27.如图,有一等腰直角三角形ABC ,AC=BC=4,有一条过点B 的直线MN 与BC 形成的夹角∠CBN=45°.点P 为直线MN 上一动点,连接CP ,作∠CPQ=45°,交射线BA 于点Q. (1)如图,若PC ⊥QC ,求证:BP=AQ ;(3分) (2)若AQ=2,求BCP tan 的值;(4分)
(3)直线MN 绕点B 顺时针旋转15°,当点Q 从B 点运动到A 点时,求线段PQ 的中点所经过的路径(线段)长。
(3分)
备用图
备用图
28.如图,抛物线4
15
492+++
=a x ax y 与x 轴交于A 、B 两点(点A 在点B 的左侧)
,与y 轴交于点C (0,3).
(1)求a 的值;(3分)
(2)在抛物线上CB 之间是否存在点M ,使2BCM =△S ?若存在,求出点M 的坐标;若不存在,请说明理由;(4分)
(3)①若点P 为抛物线上一动点,且满足∠BCP=∠ACO ,请求出点P 的坐标;(2分) ②若点E (2,6)、F (5,6),左右平移抛物线,记平移后点C 、B 的对应点分别为C 1、B 1,问是否存在某个位置,使四边形B 1 C 1EF 的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由;(3分)。