高中数学:空间向量运算的坐标表示
高中数学第三章空间向量与立体几何1空间向量及其运算5空间向量运算的坐标表示3课件新人教A版选修2
变式训练
已知 a=(1,2,12),b=(12,-12,1),c=(-2,3, -12),d=(1,-32,14).
求证:a⊥b,c∥d.
证明: ∵ a= (1,2,12), b= (12,-12,1), ∴a·b=1×12+2×(-12)+12×1=0. ∴ a⊥ b. ∵ c= (- 2,3,-12), d= (1,-32,14), ∴ c=- 2(1,-32,14)=- 2d. ∴ c∥ d.
(1)求证:EF⊥CF; (2)求E→F与C→G所成角的余弦值; (3)求 CE 的长. [分析] 可建立空间直角坐标系,利用向量的坐 标形式解题.
[解] 建立如图 3 所示的空间直角坐标系 D-xyz, 则 D(0,0,0),E(0,0,12),C(0,1,0), F(12,12,0),G(1,1,12).
[解] (1)如图 1,以 D 为原点,DA,DC,DD1 所在的直线为 x,y,z 轴建立空间直角坐标系,设 AA1=a,
则 B(4,4,0),N(2,2,a), A(4,0,0),M(2,4,a2),
图1
∴B→N= (- 2,- 2, a), A→M= (- 2, 4,a),
2 由B→N⊥A→M得B→N·A→M = 0, ∴4-8+a2=0,a=2 2,
b32.
2.空间中向量的坐标及两点间的距离公式 在空间直角坐标系中,设 A(a1,a2,a3),B(b1, b2, b3),则: (1)A→B= (b1- a1, b2- a2, b3- a3); (2)AB= |A→B|=
b1- a1 2+ b2- a2 2+ b3- a3 2.
如何理解空间向量的坐标运算与平面向量的坐 标运算间的关系?
|E→F|= |C→G|=
空间向量及其运算的坐标表示_课件
数量积
a·
b
_____a_1_b__1+__a__2b__2_+_______ a3b3
已知a=(1,-2,1),a-b=(-1,2,-1),则b 等于( )
A.(2,-4,2)
B.(-2,4,-2)
C.(-2,0,-2)
D.(2,1,-3)
解析 依题意,得b=a-(-1,2,-1)=a+(1,-2,1)=2(1,-2,1) =(2,-4,245°), ∠yOz=90°,如下图
空间直角坐标系
空间直角坐标系
坐标表示:对于空间任意一个向量p,存在有序实数组{x,y,z} , 使得p=xi+yj+zk,则把x,y,z称作向量p在单位正交基底i,j , k下的坐标,记作p=(x,y,z),其中数x就叫做点P的横坐标,数 y就叫做点P的纵坐标,数z就叫做点P的竖坐标
在棱长为1的正方体ABCD—A1B1C1D1中,E,F分别是D1D , B中D点的,中试点建,立点适G当在的棱坐CD标上系,,且写|C出GE|=,F|,CDG|,,HH的坐 标.
解 建立如图所示的空间直角坐标系 . 点E在z轴上,它的横坐标、纵坐标均为0
, 而过EF作为FDMD⊥1的A中D点, F故N⊥其D坐C标, 由为平面几何知识 ,
空间向量运算的坐标表示
空间向量a,b,其坐标形式为a=(a1,a2,a3),b=(b1,b2,
b3). 向量运算
向量表示
坐标表示
加法 减法 数乘
a+b a-b λa
(_a_1_+__b__1,___a_2_+__b_2_,__a_3_+___ b_(_3a)_1_-_b__1,__a__2-_b__2,___a_3_-_b_3_)_ _____(λ__a_1_,__λ_a_2_,__λ_a__3)____
人教A版高中数学选择性必修一1.3.2空间向量运算的坐标表示课件
所以BE1
(0,
1 4
,1),DF1
3
4
,1), D(0, 0, (0, 1 ,1),
4
0),
F1(0,
1 4
,1),
所以BE1
DF1
00 ( 1) 1 44
11 0 1 16
1 15, 16
D1 z F1
C1
A1
E1 B1
D A
M C y
B
BE1
02 ( 1 )2 12 4
17 ,同理可得
2.已知a (2, 1,3), b (4, 2, x),且a b,求x的值.
3.如图,正方体OABC D ' A' B 'C '的棱长为a,点N, M 分别在AC,BC '
上,AN 2CN, BM 2MC ',
D'
C'
A'
B'
(1)求MN的长,
M
o
C
(2)求OC与MN所成角的余弦值.
A
NB
数乘:a (a1, a2 ), R 数量积:a b a1b1 a2b2
空间向量运算的坐标表示
设a (a1, a2 , a3), b (b1, b2, b3)
a b (a1 b1, a2 b2 , a3 b3 ) 对应坐标相加
a b (a1 b1, a2 b2 , a3 b3 ) 对应坐标相减
a (a1, a2 , a3), R
每个坐标乘 λ
a b a1b1 a2b2 a3b3
对应坐标乘积的和
下面我们证明空间向量数量积运算的坐标表示
设i, j,k为空间的一个单位正交基底,
则a a1i a2 j a3k, b b1i b2 j b3k, 所以a b (a1i a2 j a3k) (b1i b2 j b3k)
高中数学第三章空间向量与立体几何3空间向量基本定理及空间向量运算的坐标表示3-2第1课时空间向量运算
(1)对于空间任意两个向量a=(a1,a2,a3),b=(b1,b2,b3),若a与
1 2 3
b共线,则 = = .( × )
1
2
3
(2)若向量AB=(x1,y1,z1),则点B的坐标为(x1,y1,z1).( × )
(3)“两向量同向”是“两向量平行”的充分不必要条件.( √ )
列条件时,实数x的值.
行和垂直的条件,借助此条件可将立体几何中的
平行垂直问题转化为向量的坐标运算.在应用坐标形式下的平行条件
时,一定注意结论成立的前提条件,在条件不明确时要分类讨论.
跟踪训练2 已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,
写成a2-b2后计算.
跟踪训练1 已知在空间直角坐标系中A(1,-2,4),B(-2,3,0),
C(2,-2,-5).
(1)求AB+CA,CB-2BA,AB·AC;
1
3
(2)若点M满足AM= AB+ AC,求点M的坐标.
2
4
题型二 空间向量平行、垂直的坐标表示
例2 设向量a=(1,x,1-x),b=(1-x2,-3x,x+1),求满足下
4),设a=AB,b=AC.
(1)设|c|=3,c∥BC,求c;
(2)若ka+b与ka-2b互相垂直,求k.
[课堂十分钟]
1.已知a=(1,0,-1),b=(1,-2,2),c=(-2,3,-1)那么向
量a-b+2c=(
)
A.(0,1,2)
B.(4,-5,5)
C.(-4,8,-5) D.(2,-5,4)
所以(ka+b)·b=0,即-(k-1)+4=0,解得k=5.
空间向量运算的坐标表示(20张PPT)——高中数学人教A版选择性必修第一册1
向量表示
坐标表示
加法
a+b
减法
a—b
数乘
λa
λ∈R
数量积
空间向量的坐标运算a2,
知 识 点1设a=(a₁,
有
做一做:设{i,j,k} 是空间向量的一个单位正交基底,a= 2i—4j+5k,b=i+2j—3k, 则a+b 的坐标是(3,—2,2) _.
[解析] a=(2,—4,5),b=(1,2,—3),故a+b=(3,—2,2).
设P₁(x₁,y₁,z₁),P₂(x₂,y₂,z₂) 是空间中任意两点,则|P ₁ P₂ I=IP₁ P₂ I(x₂-x₁)²+(y₂-y₁)²+(z₂-z₁)² .思考2: 已知点A(x,y,z), 则 点A 到原点的距离是多少?提示:| OAI=10A|= √x²+y²+z.
(1)一个向量的坐标等于这个向量的终点的坐标减去起点的坐标.(2)空间向量的坐标运算法则类似于平面向量的坐标运算,牢记运算 公式是应用的关键.(3)运用公式可以简化运算:(a±b)²=a²± 2a.b+b²;(a+b)·(a—b)=a²—b2.
空间向量的坐标运算注意以下几点:
[规律方法]
[规律方法] 向量平行与垂直问题主要题型(1)平行与垂直的判断.(2)利用平行与垂直求参数或解其他问题,即平行与垂直的应用.解 题时要注意:①适当引入参数(比如向量a,b 平行,可设a=λb), 建立关 于参数的方程;②最好选择坐标形式,以达到简化运算的目的.
第一章空间向量与立体几何
1.3 空间向量及其运算的坐标表示1.3.2 空间向量运算的坐标表示
课程目标1. 掌握空间向量的线性运算的坐标表示.2.掌握空间向量的数量积的坐标表示.教学目标1.会利用空间向量的坐标运算解决简单的运算问题. (数学运算)2.掌握空间向量运算的坐标表示,并会判断两个向量是否共线或 垂直. (逻辑推理、数学运算)3.掌握空间向量的模、夹角公式和两点间的距离公式,并能运用 这些公式解决简单几何体中的问题. (逻辑推理、数学运算)
数学人教A版高中选择性必修一(2019新编)1-3-2 空间向量运算的坐标表示(课件)
课后作业
对应课后练习
a21+a22+a23
cos〈a,b〉=|aa|·|bb|
cos〈a,b〉=
a1b1+a2b2+a3b3 a12+a22+a23 b21+b22+b32
自主学习
思考:已知点A(x,y,z),则点A到原点的距离是多少? OA=|O→A|= x2+y2+z2.
小试牛刀
1.思考辨析(正确的打“√”,错误的打“×”)
(2)由(1)知A→B1=( 3,1, 2),B→C=(- 3,1,0),因为|A→B1|= ( 3)2+12+( 2)2= 6,|B→C|= (- 3)2+12+02
=2,A→B1·B→C=( 3,1, 2)·(- 3,1,0)=-( 3)2+1×1=-2,
所以
cos〈A→B1,B→C〉=||AA→→BB11|·|BB→→CC||=
自主学习
二.空间向量的平行、垂直及模、夹角
设 a=(a1,a2,a3),b=(b1,b2,b3),则
名称
向量表示形式
满足条件 坐标表示形式
a∥b a⊥b
模
夹角
a=λb(λ∈R)
a1=λb1,a2=λb2,a3=λb3(λ∈R)
a·b=0
a·b= a1b1+a2b2+a3b3=0
|a|= a·a
|a|=
解(1)设侧棱长为 b,则 A(0,-1,0),B1( 3,0,b),B( 3,0,0),C1(0,1,b),
所以A→B1=( 3,1,b),B→C1=(- 3,1,b).因为 AB1⊥BC1,所以A→B1·B→C1=( 3,1,b)·(- 3,1,b)=-( 3)2+12+b2
=0,解得 b= 2.故侧棱长为 2.
∴线段 BN 的长为 3 .
高中数学选择性必修一课件:1.3.2空间向量运算的坐标表示
课后提能训练
2.在空间直角坐标系中,已知 A(2,3,5),B(3,1,4),则 A,B 两点间
的距离为
()
A.6
B. 6
C. 30
【答案】B
D. 42
【解析】|AB|= 3-22+1-32+4-52= 6.
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
3.若点 A(1,2,a)到原点的距离为 11,则 a 的值为________. 【答案】± 6 【解析】由已知得 12+22+a2= 11,所以 a2=6,解得 a=± 6.
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
|课堂互动|
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
题型1 空间向量的坐标运算
已知a=(2,-1,-2),b=(0,-1,4),求a+b,2a·(-b),(a+b)·(a-b).
素养点睛:考查逻辑推理、数学运算的核心素养.
【答案】解:a+b=(2,-1,-2)+(0,-1,4)=(2,-2,2),
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
1.向量夹角的计算步骤 (1)建系:结合图形建立适当的空间直角坐标系,建系原则是让尽可能多的点落到坐标轴上. (2)求方向向量:依据点的坐标求出方向向量的坐标. (3)代入公式:利用两向量的夹角公式将方向向量的坐标代入求出夹角. 2.求空间两点间的距离的关键及步骤 (1)求空间两点间的距离问题就是把点的坐标代入距离公式进行计算,其中确定点的坐标或合理设出 点的坐标是关键.
-x1,y2-y1,z2-z1),|P→1P2|=_____x2_-__x_1_2_+___y2_-__y_1_2_+___z2_-__z_1_2____.
人教A版高中数学选修2-1课件-空间向量运算的坐标表示
=12a2-12a2cos
60°+a2cos
60°-12a2cos
60°
=12a2-a42+a22-a42=a22.
又∵|A→N|=|M→C|= 23a,
∴A→N·M→C=|A→N||M→C|cos θ= 23a× 23a×cos θ=a22.
∴cos θ=23.
∴向量
A→N
②设P(x,y,z),则A→P=(x-2,y+1,z-2).
x-2=3, ∵A→P=12(A→B-A→C)=3,32,-2,∴y+1=32,
z-2=-2,
解得x=5,y=21,z=0,则点P的坐标为5,12,0.
1.一个向量的坐标等于表示这个向量的有向线段的终点坐标减 去起点坐标.
2.在确定了向量的坐标后,使用空间向量的加减、数乘、数量 积的坐标运算公式进行计算就可以了,但要熟练应用下列有关乘法 公式:(1)(a+b)2=a2+2a·b+b2;(2)(a+b)·(a-b)=a2-b2.
m+1=3λ,
∴n-2=-λ, -2=λ,
解得λ=-2,m=-7,n=4.
∴m+n=-3.]
4.已知a=(- 2,2, 3),b=(3 2,6,0),则|a|=________, a与b夹角的余弦值等于________.
3
6 9
[|a|= - 22+22+ 32= 9=3,
cos〈a,b〉=|aa|·|bb|=3× -36+2122+62= 96.]
(4)∵2a=(4,-2,-4), ∴2a·(-b)=(4,-2,-4)·(0,1,-4) =4×0+(-2)×1+(-4)×(-4)=14. (5)(a+b)·(a-b)=a2-b2=4+1+4-(0+1+16)=-8.
利用向量的坐标运算解决平行、垂直问题
高中数学(新人教A版)选择性必修一:空间向量运算的坐标表示【精品课件】
,(2m)·(-3n)= 168
,
.
解析:m+n=(1,-3,5)+(-2,2,-4)=(-1,-1,1),3m-n=3(1,-3,5)-(-2,2,-4)=(5,-11,19),
(2m)·(-3n)=(2,-6,10)·(6,-6,12)=168.
2
2.已知空间向量a=(2,λ,-1),b=(λ,8,λ-6),若a∥b,则λ=
(a-b)=a2-b2.
2.解决空间中的
平行、垂直问题
例 2 已知空间三点 A(-2,0,2),B(-1,1,2),C(-3,0,4).设 a=,b= .
(1)若|c|=3,c∥ ,求 c;
(2)若ka+b与ka-2b互相垂直,求k.
思路分析(1)根据 c∥,设 c=λ,则向量 c 的坐标可用 λ 表示,再利用|c|=3 求 λ 值;
(2)把ka+b与ka-2b用坐标表示出来,再根据数量积为0求解.
解:(1)∵ =(-2,-1,2)且 c∥ ,
∴设 c=λ =(-2λ,-λ,2λ)(λ∈R).
∴|c|= (-2)2 + (-)2 + (2)2 =3|λ|=3,解得 λ=±1.
∴c=(-2,-1,2)或 c=(2,1,-2).
空间向量运算的坐标表示
目
录
01空间向量的坐标运算
02解决空间中的平行、垂直问题
03向量夹角与长度的计算
04利用空间向量解决探索性问题
学习目标
1.会利用空间向量的坐标运算解决简单的运算问
题.(数学运算)
2.掌握空间向量运算的坐标表示,并会判断两个向量
是否共线或垂直.(逻辑推理、数学运算)
空间向量及其运算的坐标表示(15张PPT)——高中数学人教A版选择性必修第一册
点的位置
向量位置
坐标
特点
x轴上
平行于x轴
(x,0,0)
纵、竖坐标均为0
y轴上
平行于y轴
(0,y,0)
横、竖坐标均为0
z轴上
平行于z轴
(0,0,z)
横、纵坐标均为0
Oxy平面上
平行于Oxy平面
(x,y,0)
竖坐标为0
Oyz平面上
平行于Oyz平面
(0,y,z)
横坐标为0
Ozx平面上
平行于Ozx平面
典例分析
例4如图,在正方体ABCD-A₁B₁C₁D₁ 中 ,E,F分别是BB₁ ,D₁B₁ 的中点,求证:EF⊥DA₁证明:不妨设正方体的棱长为1,建立如图所示的空间直角坐标系Oxyz, 则
典例分析
所以EF ·所以EF⊥DA₁,即EF⊥DA₁
,又A₁(1,0,1),D(0,0,0),
所以DA₁=(1,0,1)
深度探究
空间向量的坐标:在空间直角坐标系0xyz 中,给定向量a,作 0A=a,
由空间向量基本定理,
(1) 垂面法:过点A作三个平面分别垂直于x轴 ,y 轴 ,z轴于B,C,D三点,点B,C,D在x轴 ,y 轴 ,z 轴上的坐标分别为x,y,z,则(x,y,z)就是点 A的坐标。(2) 垂线段法:先确定点A在0xy平面内的射影A₁,由A₁A的长度及与z轴正方向的异同,确定竖坐标z, 再在0xy平面内确定点A₁ 的横坐标x 和纵坐标y, 那么点A的坐标就是(x,y,z).(3) 向量法:当向量的起点是原点时,向量坐标与向量终点的坐标相同。
例 1 如图,在长方体OABC-D'A'B'C′中 ,OA=3,0C=4,0D'=2,以为单位正交基底,建立如图所示的直角坐标系Oxyz。
高中数学选择性必修一(人教版)《1.3.2空间向量运算的坐标表示》课件
表示,即 a=(x,y).而在空间中则表示为 a=(x,y,z).
(2)运算结果:空间向量的加法、减法、数乘坐标运算结果依 然是一个向量;空间向量的数量积坐标运算的结果是一个实数.
∴―BA→1 =(1,-1,2), ―CB→1 =(0,1,2),
∴―BA→1 ·―CB→1 =1×0+(-1)×1+2×2=3.
又|―BA→1 |= 6,|―CB→1 |= 5,
∴cos〈―BA→1 ,―CB→1 〉=
―→ ―→ BA1 ·CB1 ―→ ―→
=
30 10 .
| BA1 || CB1 |
[对点练清] 1.[变条件]将本例(2)中“若 ka+b 与 ka-2b 互相垂直”改为
“若 ka+b 与 a+kb 互相平行”,其他条件不变,求 k 的值.
解:因为 a=(-1+2,1-0,2-2)=(1,1,0),
b=(-3+2,0-0,4-2)=(-1,0,2),
所以 ka+b=(k,k,0)+(-1,0,2)=(k-1,k,2).
故
A1B
与
B1C
所成角的余弦值为
30 10 .
[方法技巧] 1.利用向量坐标求异面直线所成角的步骤 (1)根据几何图形的特点建立适当的空间直角坐标系; (2)利用已知条件写出有关点的坐标,进而获得相关向量的 坐标; (3)利用向量数量积的坐标公式求得异面直线上有关向量的 夹角,并将它转化为异面直线所成的角. 2.利用向量坐标求空间中线段的长度的步骤 (1)建立适当的空间直角坐标系; (2)求出线段端点的坐标; (3)利用两点间的距离公式求出线段的长.
高中数学-空间向量及其运算的坐标表示
第3讲 空间向量及其运算的坐标表示知识梳理1.空间向量运算的坐标表示若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则: (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3); (2)a -b =(a 1-b 1,a 2-b 2,a 3-b 3); (3)λa =(λa 1,λa 2,λa 3)(λ∈R ); (4)a ·b =a 1b 1+a 2b 2+a 3b 3;(5)a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); (6)a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0; (7)|a |=a ·a =a 21+a 22+a 23;(8)cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 2.空间中向量的坐标及两点间的距离公式在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则: (1)AB →=(a 2-a 1,b 2-b 1,c 2-c 1); (2)d AB =|AB→|= (a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2 .考点1 空间直角坐标系【例1-1】(武汉期末)点(1P ,2,3)-关于xOz 平面对称的点的坐标是( ) A .(1,2,3)B .(1,2-,3)-C .(1-,2,3)-D .(1-,2-,3)【变式训练1-1】(河南月考)在空间直角坐标系Oxyz 中,点(1,2-,4)关于y 轴对称的点为( ) A .(1-,2-,4)- B .(1-,2-,4) C .(1,2,4)-D .(1,2,4)考点2 空间向量的坐标运算【例2-1】(钦州期末)已知(1a =,2,1),(2b =,4-,1),则2a b +等于( ) A .(4,2-,0)B .(4,0,3)C .(4-,0,3)D .(4,0,3)-【例2-2】(济南模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 与b 夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求k 的值; (3)设|c |=3,c ∥BC→,求c .【变式训练2-1】(菏泽期末模拟)已知a =(2,-1,3),b =(0,-1,2).求:(1)a +b ; (2)2a -3b ; (3)a ·b ;(4)(a +b )·(a -b ).【变式训练2-2】(烟台期末)已知A (1,0,0),B (0,-1,1),若OA →+λOB →与OB →(O 为坐标原点)的夹角为120°,则λ的值为( )A.66 B .-66C .±66D .±6考点3 空间两点间的距离【例3-1】(淄博调研)已知△ABC 的三个顶为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .5【变式训练3-1】(温州期中)点(1M -,2,3)是空间直角坐标系Oxyz 中的一点,点M 关于x 轴对称的点的坐标为 ,||OM = .A 组-[应知应会]1.(安徽期末)空间直角坐标系中,点(2P ,1-,3)关于点(1M -,2,3)的对称点Q 的坐标为(( ) A .(4,1,1)B .(4-,5,3)C .(4,3-,1)D .(5-,3,4)2.(金牛区校级期中)点(3A ,2,1)关于xOy 平面的对称点为( ) A .(3-,2-,1)- B .(3-,2,1)C .(3,2-,1)D .(3,2,1)-3.(东阳市校级月考)已知点(1A ,2-,3),则点A 关于原点的对称点坐标为( ) A .(1-,2,3)B .(1-,2,3)-C .(2,1-,3)D .(3-,2,1)-4.(茂名期末)已知向量(1,1,2)a =--及(4,2,0)b =-则a b +等于( ) A .(3-,1,2)-B .(5,5,2)-C .(3,1-,2)D .(5-,5-,2)5.(高安市校级期末)已知空间向量()()()1,,1,3,1,,,0,0,,(a x b y c z a b c xyz =-==+=则的值为 ) A .2±B .2-C .2D .06.(丰台区期末)已知(2AB =,3,1),(4AC =,5,3),那么向量(BC = ) A .(2-,2-,2)- B .(2,2,2)C .(6,8,4)D .(8,15,3)7.(多选)(三明期末)如图,在长方体1111ABCD A B C D -中,5AB =,4AD =,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为(4,5,3)B .点1C 关于点B 对称的点为(5,8,3)- C .点A 关于直线1BD 对称的点为(0,5,3) D .点C 关于平面11ABB A 对称的点为(8,5,0)8.(公安县期末)在空间直角坐标系中,已知两点(5P ,1,)a 与(5Q ,b ,4)关于坐标平面xOy 对称,则a b += .9.(温州期末)在平面直角坐标系中,点(1,2)A -关于x 轴的对称点为(1,2)A '--,那么,在空间直角坐标系中,(1B -,2,3)关于x 轴的对称轴点B '坐标为 ,若点(1C ,1-,2)关于xOy 平面的对称点为点C ',则||B C ''= .10.(浙江期中)空间直角坐标系O xyz -中,点(1M ,1-,1)关于x 轴的对称点坐标是 ;||OM = .11.(兴庆区校级期末)已知(2a =,3-,1),(2b =,0,3),(1c =,0,2),则68a b c +-= . 12.(辽阳期末)已知向量(2,3,1)a =-,(1,2,4)b =-,则a b += .13.(越秀区期末)已知点(1A ,2,0)和向量(3a =,4,12)-,若2AB a =,则点B 的坐标是 . 14.(黄浦区校级月考)已知向量(7,1,5),(3,4,7)a b =-=-,则||a b +=15.(青铜峡市校级月考)已知点A ,B 关于点(1P ,2,3)的对称点分别为A ',B ',若(1A -,3,3)-,(3A B ''=,1,5),求点B 的坐标.16.(福建期中)已知空间三点(1A -,2,1),(0B ,1,2)-,(3C -,0,2) (1)求向量AB AC 与的夹角的余弦值,(2)若向量3AB AC AB k AC -+与向量垂直,求实数k 的值.17.(扶余县校级月考)(Ⅰ)设向量(3a =,5,4)-,(2b =,0,3),(0c =,0,2),求:()a b c -+、68a b c +-. (Ⅱ)已知点(1A ,2-,0)和向量(1a =-,2,3)求点B 坐标,使向量AB 与a 同向,且.1.(襄阳期中)已知向量a ,b ,c 是空间的一个单位正交基底,向量a b +,a b -,c 是空间的另一个基底,若向量p 在基底a ,b ,c 下的坐标为(3,2,1),则它在a b +,a b -,c 下的坐标为( )A .15(,,1)22B .51(,1,)22C .15(1,,)22D .51(,,1)222. (安庆质检)已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)若AP →∥BC →,且|AP →|=214,求点P 的坐标; (2)求以AB →,AC →为邻边的平行四边形的面积.。
高中数学第1章 1.31.3.2空间向量运算的坐标表示课件新人教A版选择性必修第一册
2.已知 a=(1,0,1),b=(2,-2,0),则〈a,b〉=_______.
60° [因为 a·b=1×2+0×(-2)+1×0=2,
|a|= 12+02+12= 2,
|b|= 22+-22+02=2 2,
所以 cos〈a,b〉=|aa|·|bb|=
2 2×2
2=12,
因此〈a,b〉=60°.]
[解] 建立如图所示空间直角坐标系 Oxyz,则有 E0,0,12, F12,12,0,C(0,1,0),C1(0,1,1),B1(1,1,1),G0,34,0,H0,78,12.
(1)E→F=12,21,0-0,0,12=12,21,-12, C→1G=0,34,0-(0,1,1)=0,-14,-1, ∴|C→1G|= 417.
知识点 2 空间向量的平行、垂直、模与夹角公式的坐标表示
设 a=(a1,a2,a3),b=(b1,b2,b3),则
平行(a∥b)
a1=λb1, a2=λb2,λ∈R
a∥b(b≠0)⇔a=λb⇔____a_3=__λ_b_3___________
垂直(a⊥b)
a⊥b⇔a·b=0⇔ a1b1+a2b2+a3b3=0 (a,b 均为非 零向量)
∴FH=|F→H|=
-212+382+122=
41 8.
用空间向量的坐标运算解决夹角和距离问题的基本思路是什 么?
[提示] 1根据条件建立适当的空间直角坐标系; 2写出相关点的坐标,用向量表示相关元素; 3通过向量的坐标运算求夹角和距离.
[跟进训练] 3.在直三棱柱 ABC-A1B1C1 中,AC=BC=1,∠BCA=90°,AA1 =2,Q 为 A1A 的中点. (1)求B→Q的长; (2)求 cos〈B→Q,C→B1〉,cos〈B→A1,C→B1〉,并比较〈B→Q,C→B1〉, 〈B→A1,C→B1〉的大小.
空间向量及其运算的坐标表示 人教A版(2019)选择性必修第一册高中数学精品课件
A.30°
B.45°
C.60°
D.90°
→
→
→
设向量P→
1P2与P1P3的夹角为θ,因为P1P2=(3,1,0)-(1,-1,2)=(2,2,-2),P1P3=(0,1,3)-(1,
-1,2)=(-1,2,1),所以 cos θ=
→
P→
1P2·P1P3
=0.因为 0°≤θ≤180°,所以θ=90°.故选 D.
标为( D )
1
1
A.( ,1,- )
2
2
1
1
C.(- ,1, )
2
2
1
1
B.( ,-1, )
2
2
1
1
D.( ,1, )
2
2
由题可知,M 为 DC1 的中点,
1
1
1
1
→
→
→
→
→
→
→
→
→
→
→
→,
∴AM=AD+DM=AD+ (DD1+DC)=AD+ (AA1+AB)= AA1+AD+ AB
2
2
2
2
1
1
∴坐标为( ,1, ).
B
)
A. (0,-4,6)
B. (0,-2,3)
C. (0,2,3)
D. (0,-2,6)
【答案】B
−3+3 1−5 −4+10
【解析】根据线段的中点坐标公式可得线段 AB 的中点 M 的坐标是(
即(0,-2,3).故选 B.
2
,2 ,
2
),
例题解析
例 4.点 A(2,-3,1)关于原点的对称点 A′的坐标是(
原创1:3.1.4 空间向量的直角坐标运算
跟踪训练
设a=(1,-2,4),求同时满足下列条件的向量x:
①Ԧx⊥a;②|Ԧx|=10;③Ԧx在yOz平面上.
解:由③知,可设Ԧx=(0,y,z)
由①知,-2y+4z=0
由②知,y2+z2=100
解得:y=4 5,z=2 5
或y=−4 5,z=−2 5
∴Ԧx=(0,4 5, 2 5)或Ԧx=(0,−4 5, −2 5).
(a1+b1,a2+b2,a3+b3)
则a+b=_______________________,
(a1-b1,a2-b2,a3-b3)
a-b=_______________________,
λa=(λa1,λa2,λa3)(λ∈R),
a1b1+a2b2+a3b3
a·b=___________________,
空间直角坐标系Oxyz.
对于空间任一向量a,由空间向量分解定理可知,
存在有序实数组{x,y,z},使得a= xԦi + Ԧj +zkԦ
x,y,z称为向量p在单位正交基底下的坐标,
记作a=(x,y,z).
Ԧi
x
kԦ
a
O
Ԧj
y
知识点二:空间向量的坐标运算
若a=(a1,a2,a3),b=(b1,b2,b2),
解:由已知, a ∙ < 0
即6m-6<0
解得:m<1
又显然a与b不共线
∴m的取值范围是(-∞,1)
归纳小结
1.注意正确写出各点的坐标,利用坐标运算可解决许多
以前的复杂问题.
2.数量积及夹角公式也是计算立体角相关题的有力工具,但要记
住角的范围,避免错误.
3.有关平行与垂直及共面、共线的结论应用广泛一定要掌握好!
3.1.5空间向量运算的坐标表示
求 a b, a b,8a, a b
解: a b (2, 3,5) (3,1, 4) (1, 2,1)
a b (2, 3,5) (3,1, 4) (5, 4,9)
8a 8(2, 3,5) (16, 24, 40) a b (2, 3,5) (3,1, 4) 29
5
例5 如图, 在正方体ABCD A1B1C1D1中,B1E1
D1F1
z
A1B1 ,求
4
BE1 与 DF1 所成的角的余弦值.
解:设正方体的棱长为1,如图建
D1
F1
C1
立空间直角坐标系 O xyz ,则
A1
D
O
A
E1 B1
C B
B(1 , 1Βιβλιοθήκη , 0),E1
1
,
3 4
,
1
证明:如图,不妨设正方体的棱长为 1,
分别以 DA 、 DC 、 DD1 为单位正交基底
建立空间直角坐标系 Oxyz ,
则 E(1 , 1 , 1 ) , F (1 , 1 , 1)
2
22
所以 EF ( 1 , 1 , 1 ) , 2 22
又 A1(1 , 0 , 1) , D(0 , 0 , 0) ,
每两个坐标轴的平面叫做坐标平面.
对空间任一向量 a ,由空间
za
向量基本定理,存在唯一的有序实
A(a1 , a2 , a3 )
数组 (a1 , a2 , a3 ),使a a1i a2 j a3k. k
有序实数组 (a1 , a2 , a3 ) 就
i Oj
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a b a1b1 a2b2 a3b3 0 ;
二、距离与夹角
1.距离公式 (1)向量的长度(模)公式
| a |2 a a a12 a22 a32
| b |2 b b b12 b22 b32
F A1
C1 B1
E
D A
C B
练习三:
如图:直三棱柱ABC A1B1C1, 底面ABC中,
CA=CB=1,BCA=90o,棱AA1=2,M、
N分别为A1B1、AA1的中点,
C1
1)求BN的长;
A1
B1
M
2)求 cos BA1, CB1 的值; N
3)求证:A1B C1M。
C
A
B
思考题:
17 4 , | DF1 |
17 . 4 15
B
cos
BE1
,
DF1
|
BE1 DF1 BE1 | | DF1
|
16 15 . 17 17 17 44
练习二:
正方体A1B1C1D1-ABCD,E、F分别是C1C
D1A1的中点,1)求 AB, EF
2)求点A到直线EF的距离。 D1
(用向量方法)
Homework:
• P107:1 zxxkw
已知A(0,2,3)、B( 2,1,6), C(1,1,5), 用向量 方法求ABC的面积S。
四、课堂小结:
1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。 2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。
D1F1
A1B1 4
,求
BE1
与
DF1
所成的角的余弦值。
z
解:设正方体的棱长为1,如角坐标系 O xyz ,则
A1
E1 B1
B(1,1, 0)
,
E1 1 ,
3 4
, 1
,
D
O
A
x
Cy
D(0 , 0 , 0)
,
F1
0
,
1 4
,1 .
B
BE1
1 ,
3 4
, 1
(1,1,
0)
d A,B ( x2 x1)2 ( y2 y1)2 (z2 z1)2
2.两个向量夹角公式
cos a,b a b | a || b |
注意:
a1b1 a2b2 a3b3
;
a12 a22 a32 b12 b22 b32
(1)当 cos a , b 1 时,a 与 b 同向; (2)当 cos a , b 1 时,a 与 b 反向;
2.求下列两点间的距离:
(1) A(1,1, 0) , B(1,1,1) ;
(2) C(3 ,1, 5) , D(0 , 2 , 3) .
三、应用举例
例1 已知A(3 , 3 ,1)、B(1, 0 , 5) ,求:A (1)线段 zxxkw AB 的中点坐标和长度;
解:设 M(x , y , z) 是 AB的中点,则
(3)当cos a , b 0 时,a b 。
思考:当 0 cos a , b 1及 1 cos a , b 0时,
的夹角在什么范围内?
练习一:
1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1, 0 , 0) ; (2) a (1, 1,1) , b (1, 0 ,1) ;
M
B
OM
1 2
(OA
OB)
1 2
(3
,
3
, 1)
1 ,
0
,
5
2
,
3 2
,
3
,
O
∴点 M的坐标是
2
,
3 2
,
3
.
dA,B (1 3)2 (0 3)2 (5 1)2 29 .
(2)到 A 、B两点距离相等的点 P(x , y , z) 的
坐标 x , y , z 满足的条件。
解:点P(x , y , z)到 A 、B 的距离相等,则
(x 3)2 ( y 3)2 (z 1)2 (x 1)2 ( y 0)2 (z 5)2 ,
化简整理,得 4x 6 y 8z 7 0 即到 A 、B 两点距离相等的点的坐标 (x , y , z) 满 足的条件是 4x 6 y 8z 7 0
例2 如图,在正方体 ABCD A1B1C1D1 中,B1E1
空间向量运算的坐标表示
一、向量的直角坐标运算
设a (a1, a2 , a3 ), b (b1, b2 , b3 )则 a b (a 1b1,a2 b2 ,a3 b3 ) ; a b (a1b1,a2 b2 ,a3 b3 );
a (a1,a2,a3),( R) ;
a b a1b1 a2b2 a3b3 ;
0
,
1 4
, 1
,
例2 如图,在正方体 ABCD A1B1C1D1 中,B1E1
D1F1
A1B1 4
,求
BE1
与
DF1 所成的角的余弦值。
z
D1
F1
C1
DF1
0
,
1 4
,1
(0
,
0
,
0)
0
,
1 4
,1 .
A1
E1 B1
BE1
DF1
0
0
1 4
1 4
11
15 16
,
D
O
A
x
C
y | BE1 |
注意:此公式的几何意义是表示长方体的对 角线的长度。
(2)空间两点间的距离公式 在空间直角坐标系中,已知 A(x1 , y1 , z1) 、
B(x2 , y2 , z2 ),则 AB ( x2 x1 , y2 y1 , z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2