学案13(学生用)解三角形(2)
解三角形(学案)
第一章 解三角形(学案)1.已知△ABC 中,30A =,105C =,8b =,则等于( )A 4 B2. △ABC 中,45B =,60C =,1c =,则最短边的边长等于( )A 36 B 26 C 21 D 23 3.长为5、7、8的三角形的最大角与最小角之和为 ( )A 90°B 120°C 135°D 150°4.△ABCABC 一定是 ( )A 直角三角形B 钝角三角形C 等腰三角形D 等边三角形5.△ABC 中,60B =,2b ac =,则△ABC 一定是 ( )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形6.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )A 有 一个解B 有两个解C 无解D 不能确定 7. △ABC 中,8b =,16ABC S =,则A ∠等于 ( ) A o 30 B o 60 C o 30或o 150 D o 60或o 120 8.△ABC 中,若60A =,)A 2 B 21 C 3 D 23ABC ,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( )D 010.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )A 锐角三角形B 直角三角形C 钝角三角形D 由增加的长度决定11 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( )C. 200米12 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( ) A.10 海里 B.5海里 海里 海里 13.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 。
14.在△ABC ,150c =,30B =,则边长a = 。
2015年高考数学复习学案:解三角形
【考点概述】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2、能运用正弦、余弦定理等知识和方法解决一些与几何计算和测量有关的实际问题. 【重点难点】三角形中的边角互化、一解两解问题以及动态最值问题.【命题趋势】1、 近几年高考命题加强了对知识综合性和应用性的考察,故三角形中三角问题常常与其他数学知识相联系,既考查解三角形的知识与方法,又考查运用三角公式进行恒等变形的技能及三角函数的应用意识.2、解三角形问题在高考中经常以填空题出现(2010年江苏卷第13题,2010年上海理科卷第18题,2010年全国理科卷第16题、2010年天津理科卷第15题、2010年北京理科卷第10题、2010年广东理科卷第11题、2010年山东理科卷第15题等),但近几年来以解答题形式出现的频率较高(2010年江苏卷第17题、2010年陕西理科卷第17题、2010年福建理科卷第19题、2009年海南理理科卷第17题、2009年天津理科卷第17题、2009年辽宁理科卷第17题、2009年安徽理科卷第16题、2009年浙江理科卷第18题等),因为与实际问题的联系密切,今后这部分仍然是高考命题的一个热点.【知识要点】:1、 正弦定理:CcB b A a sin sin sin ===2R 正弦定理的变形:sin :sin :sin ::A BC a b c =利用正弦定理,可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和一角.(2)已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角. 2、余弦定理:=2a A bc cb cos 222-+; cos A =bca cb 2222-+=2b B ac c a cos 222-+; cos B =acb c a 2222-+=2c C ab b a cos 222-+; cos C =abc b a 2222-+利用余弦定理,可以解决以下三类有关三角形的问题: (1)已知三边,求三个角.(2)已知两边和它们的夹角,求第三边和其他两个角. (3)已知两边和其中一边对角,求第三边和其他两个角. 3、三角形的面积公式:C ab S ABC sin 21=∆=A bc B ac sin 21sin 21=.4、射影定理: a =c cos B +b cos C ,b =a cos C +c cos A ,c =a cos B +b cos A ,【基础训练】1、在ABC △中,已知2AC =,3BC =,4cos 5A =-,求sin B = . 2、在ABC ∆中,若sin A ︰sin B ︰sin C =5︰7︰8,则B = .3、在ABC ∆中,B A sin sin >是A >B 的 条件(填“充分不必要、必要不充分、既不充分也不必要、充要”).4、在ABC ∆中,已知a ,b ,c 分别是角A 、B 、C 的对边,若,cos cos ABb a =则ABC ∆的形状是 .【典例分析】:例1、(1)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =3,b =32,A =30°,则B = .变式1:在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =32,A =30°,则边c = .变式2:在A B C ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,已知a =33,b =32,A =30°,则B 有几解?例2:在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且2sin2)2cos(12CB A +=++π. (Ⅰ)求角A 的大小;(Ⅱ)当a =6时,求其面积的最大值,并判断此时ABC ∆的形状.例3:如图:在ABC ∆中,若4,7b c ==,BC 的中点为D ,且72AD =,求cos A .【巩固练习】1、(2010年北京理10)在△ABC 中,若b = 1,c23C π∠=,则a = . 2、( 2010年上海理18) 某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人根据上述条件,下列说法正确的是 .(1)不能作出这样的三角形 (2)可作出一个锐角三角形 (3)可作出一个直角三角形 (4)可作出一个钝角三角形3、(2009年广东理6) 一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成060角,且1F ,2F 的大小分别为2和4,则3F 的大小为 . 4、(2010年广东理11)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,bA +C =2B ,则sinC = .5、 (2010年全国理16)在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2,若△ADC的面积为3∠BAC =______ _ .【课外作业】1、(2010年山东理15)在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +=,则角A 的大小为 .2、(2007年山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的序号是 .(1)2AC AC AB =⋅ (2) 2BC BA BC =⋅ (3)2AB AC CD =⋅ (4) 22()()AC AB BA BC CD AB⋅⨯⋅=3、(2008年海南理3)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 .4、(08江苏高考13)满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值是 .5、(2010年天津理7)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -=, sin C =B ,则A = .6、(2010年天津理15)如图,在ABC ∆中,AD AB ⊥,1==BC ,则AC AD ⋅=7、(2010年江苏高考17)(14分)某兴趣小组测量电视塔AE 的高度H (单位m ),如示意图,垂直放置的标杆BC 高度h =4m ,仰角∠ABE =α,∠ADE =β (1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,,请据此算出H 的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大E【反思感悟】1、 解三角形常用方法:“化边为角”, “化角为边”.2、 已知两边和其中一边的对角,解三角形时,注意解的个数问题.3、 正、余弦两个定理的的灵活运用及内涵(余弦定理的向量本质).4、 应熟练掌握和运用内角和定理:A +B +C =兀,2222π=++C B A 中互补和互余的关系,结合诱导公式可以减少角的种数. 5、三角形中的动态最值问题的解法.课外探究:已知a ,b 及一边对角A ,则三角形解的情况.。
人教A版高中数学必修五河南省安阳二中最新学案第课时解三角形复习课学生
学习复习课学习要求1. 掌握正弦定理、余弦定理,并能初步运用它们解斜三角形; 2. 能利用计算器解决三角形的计算问题。
【课堂互动】自学评价1.正弦定理: (1)形式一:CcB b A a sin sin sin === 2R ; 形式二:R 2a A sin =;R 2b B sin =;R2c C sin =;(角到边的转换) 形式三:A sin R 2a ⋅=,B sin R 2b ⋅=,C sin R 2c ⋅=;(边到角的转换)形式四:B sin ac 21A sin bc 21C sin ab 21S ===;(求三角形的面积)(2)解决以下两类问题:1)、已知两角和任一边,求其他两边和一角;(唯一解)2)、已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角)。
(3)若给出A ,b a ,那么解的个数为:(A 为锐角) 若A sin b a <,则_________; 若b a A b a ≥=或者sin ,则_________; 若b a A sin b <<,则__________; 2.余弦定理:(1)形式一:A cos bc 2c b a 222⋅-+=,B cos ac 2c a b 222⋅-+=,C cos ab 2b a c 222⋅-+=形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)(2)解决以下两类问题:1)、已知三边,求三个角;(唯一解)2)、已知两边和它们的夹角,求第三边和其他两个角;(唯一解)【精典范例】一、判定三角形的形状【例1】根据下列条件判断三角形ABC 的形状: (1) a 2tanB=b 2tanA ;(2) b 2sin 2C + c 2sin 2B=2bccosBcosC;(3)(3)(sinA + sinB + sinC) – (cosA + cosB + cosC)=1.【解】二、三角形中的求角或求边长问题【例2】△ABC中,已知:AB=2,BC=1,CA=,分别在边AB、BC、CA上取点D、E、F,使△DEF是等边三角形.设∠FEC=α,问sinα为何值时,△DEF的边长最短?并求出最短边的长。
解三角形学案
解三角形知识点1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4.正弦定理:2sin sin sin a b c R A B C === 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 6、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---7.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩. 8.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.9、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C < ;③若222a b c +<,则90C > .10、三角形的五心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点外心——三角形三边垂直平分线相交于一点内心——三角形三内角的平分线相交于一点旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点已知条件定理应用一般解法一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。
5.10 解斜三角形应用举例2学案
5.10.2解斜三角形应用举例(2)课型:新授课备课组:卢应龙、余发文、冯明富、邓定琼、王传云学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定教学过程: 一、复习引入:上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题,要求大家尝试用上一节所学的方法加以解决二、例题讲解:例1 如图,是曲柄连杆机的示意图当曲柄CB 0绕C 点旋转时,通过连杆AB 的传递,活塞作直线往复运动当曲柄在CB 0位置时,曲柄和连杆成一条直线,连杆的端点A 在A O 处设连杆AB 长为340 mm,曲柄CB 长为85 mm,曲柄自CB 0按顺时针方向旋转80°,求活塞移动的距离(即连杆的端点A 移动的距离A 0A )(精确到1 mm)分析:如图所示,因为A 0A =A O C -AC ,又知A O C =AB +BC =340+85=425,所以只要求出AC 的长,问题就解决了在△ABC 中,已知两边和其中一边的对角,可由正弦定理求出AC评述:注意在运用正弦定理求角时应根据三角形的有关性质具体确定角的范围要求学生注意解题步骤的总结:用正弦定理求A −−−→−内角和定理求B −−−→−正弦定理求AC →求A O A三、课堂练习:1.如图,为了测量河对岸A、B两点间的距离,在这一岸定一基线CD,现已测出CD=a和∠ACD=α,∠BCD=β,∠BDC=γ,∠ADC=s,试求AB的长分析:如图所示:对于AB求解,可以在△ABC中或者是△ABD中求解,若在△ABC中,由∠ACB=α-β,故需求出AC、BC,再利用余弦定理求解而AC 可在△ACD内利用正弦定理求解,BC可在△BCD内由正弦定理求解解:2.据气象台预报,距S岛300 km的A处有一台风中心形成,并以每小时30 km的速度向北偏西30°的方向移动,在距台风中心270 km以内的地区将受到台风的影响问:S岛是否受其影响?若受到影响,从现在起经过多少小时S岛开始受到台风的影响?持续时间多久?说明理由分析:设B为台风中心,则B为AB边上动点,SB也随之变化S岛是否受台风影响可转化为SB≤27O这一不等式是否有解的判断,则需表示SB,可设台风中心经过t小时到达B点,则在△ABS中,由余弦定理可求SB解:四、课堂小结五、作业自我反思与总结。
高考数学:解三角形(复习学案)
专题09 解三角形(一) 三角形中的求值问题1.例题【例1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( )A . 3B .2C .2 2D .3【例2】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =,cos )cos 0A C C b A ++=,则角A =( )A .23π B .3π C .6π D .56π 【例3】在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,4a =,b =cos (2)cos c B a b C =-,则ABC ∆的面积为______.【例4】(2017·全国高考真题(理))△ABC 的内角、、A B C 的对边分别为a b c 、、, 已知△ABC 的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【例5】如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.2.巩固提升综合练习【练习1】(2019·全国高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【练习2】(2018·全国高考真题)△ABC 的内角A , B , C 的对边分别为a , b , c ,已知bsinC +csinB =4asinBsinC ,b 2+c 2−a 2=8,则△ABC 的面积为________. 【练习3】 在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【练习4】在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( ) A .1 B .2 C . 3 D .2【练习5】已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .【练习6】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c 已知c cos B =(3a -b )cos C . (1)求sin C 的值;(2)若c =26,b -a =2,求△ABC 的面积.(二)三角形中的最值或范围问题1.例题【例1】在△ABC中,已知c=2,若sin2A+sin2B-sin A sin B=sin2C,则a+b的取值范围为________.【例2】已知在锐角ABC∆中,角A,B,C的对边分别为a,b,c,若2cos cosb Cc B=,则111tan tan tanA B C++的最小值为()A B C D.【例3】已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若a sin B cos C +32c sin C=2R,则△ABC面积的最大值为( )A.25B.45C.255D.125【例4】在ABC∆中,角A,B,C的对边分别为a,b,c,且cos Ccos cos cos2ab Ac A B+=,ABC∆,则ABC∆周长的最小值为______.2.巩固提升综合练习【练习1】 设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【练习2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( ) A .2+3 B .2+2 C .3D .3+2【练习3】已知ABC ∆1,且满足431tan tan A B+=,则边AC 的最小值为_______.【练习4】在ABC ∆中,23BAC π∠=,已知BC 边上的中线3AD =,则ABC ∆面积的最大值为__________.(三)解三角形的实际应用必备知识:实际测量中的有关名称、术语南偏西60°指以正南方向为始边,转向目标方向线形成的角1.例题【例1】在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【例2】如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【例3】某人在点C测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进100米到D,测得塔顶A的仰角为30°,则塔高为____________米.2.巩固提升综合练习【练习1】甲船在A处,乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?【练习2】如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为( )A.1762海里/时B .346海里/时 C.1722海里/时D .342海里/时【练习3】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217秒.在A 地测得该仪器弹至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B =( )A .32B .233C .33D .32.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,c =23,b sin A =a cos ⎪⎭⎫⎝⎛+6πB 则b =( ) A .1 B.2 C.3D.53.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =2,c =32,tan B =2tan A ,则△ABC 的面积为( ) A .2 B .3 C .32D .423.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( ) A .223B .24C .64D .634.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( ) A .(2,2) B .(2,6) C .(2,3)D .(6,4)5.在ΔABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,a =2,B =45°,若三角形有两解,则b 的取值范围是_______.6.已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.7.设△ABC 的内角A ,B ,C 的对边a ,b ,c 成等比数列,cos(A -C )-cos B =12,延长BC至点D ,若BD =2,则△ACD 面积的最大值为________.8.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 9.若满足3ABC π∠=, AC =3, ,BC m ABC =恰有一解,则实数m 的取值范围是______.10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan A tan B =2c -bb ,则△ABC 面积的最大值为________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B . (1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积.12.已知ABC ∆中,角A B C 、、的对边分别为a b c ,,,若cos sin a b C c B =+(Ⅰ)求B ;(Ⅰ)若2b = ,求ABC ∆面积的最大值。
1.3解直角三角形(3)学案 2021—2022学年浙教版数学九年级下册
1.3 解直角三角形(3)课题 1.3 解直角三角形(3)单元第一单元学科数学年级九年级下册学习目标1.理解方位角、仰角与俯角的概念;2.运用解直角三角形来解决方位角问题;3.运用解直角三角形来解决仰角、俯角问题.重点解直角三角形的运用.难点例5,例6均需化归为解两个直角三角形问题.但例6涉及的两个直角三角形交叠在一起,图形和计算都较例5复杂,是本节教学的难点.教学过程导入新课【引入思考】引例:灯塔上发现在它的南偏东30°,距离500m的A处有一艘船,该船向正西方向航行,经过3分钟到达灯塔西北方向的B处,求这船的航速是每时多少千米(3取1.7新知讲解提炼概念如图,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.典例精讲【例5】某海防哨所O发现在它的北偏西30°,距离哨所500m的A处有一艘船向正东方向航行,经过3分钟后到达哨所东北方向的B处.求船从A处到B处的航速(精确到1km/h).【例6】如图,测得两楼之间的距离为32.6m,从楼顶点A观测点D的俯角为35°12ʹ,点C的俯角为43°24ʹ.求这两幢楼的高度(精确到0.1m).课堂练习巩固训练1.王英同学从A地沿北偏西60°方向走100 m到B地,再从B地向正南方向走200 m到C地,此时王英同学离A地 ( )2.如图所示,两建筑物AB和CD的水平距离为30 m,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为_______m(用根号表示).3.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:3≈1.73)4.在地面上的A点测得树顶端C的仰角为30°,沿着向树的方向前进6m到达B点,在B点测得树顶端C的仰角为45°.请画出示意图,并求出树高(精确到0.1m).5.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?答案引入思考提炼概念根据问题的描述画出船的位置和航行路线,借助图形的直观加以分析,用数形结合的方法将实际问题转化为解直角三角形问题,这是解决问题的关键,也是教学中要让学生重点体验和积累的经验之处.典例精讲例5 解:根据题意画出示意图,如图在Rt △AOC 中,OA =500m ,∠AOC =30°,∴AC =OA sin ∠AOC =500×sin30°=500×12=250(m ), OC =OA ×c os ∠AOC =500×cos30°=500×32=2503(m ) 在Rt △BOC 中,∠BOC =45°,∴BC =OC =2503(m ),∴AB =AC +BC =250+2503=250(1+3)(m ).∴船的航速为250(1+3)÷3×60≈14000(m/h )=14(km/h ). 答:船从A 处到B 处的航速约为14km/h . 例6解:如图,作DE ⊥AB 于点E , 在Rt △ABC 中,∠ACB =∠FAC =43°24ʹ,∴AB =BC ×tan ∠ACB =32.6×tan43°24ʹ≈30.83≈30.8(m ). 在Rt △ADE 中,∠ADE =∠DAF =35°12ʹ,DE =BC =32.6(m ).∴AE =DE ×tan ∠ADE =32.6×tan35°12'≈23.00(m ). ∴CD =AB -AE ≈30.83-23.00=7.83≈7.8(m ). 答:两幢楼高分别约为30.8m 和7.8m .巩固训练1.D2.2033.解: 过点A 作AD ⊥BC ,垂足为D ,根据题意,可得∠BAD =30°,∠CAD =60°,AD =66 m.在Rt △ADB 中,由tan ∠BAD =BD AD,得BD =AD ·tan ∠BAD =66×tan 30°=66×33=22 3. 在Rt △AD C 中,由tan ∠CAD =CD AD,得CD =AD ·tan ∠CAD =66×tan 60°=66×3=663,∴BC =BD +CD =223+663=883≈152.2(m). 答:这栋楼高约为152.2 m. 4.解:如图.解法一:设树高CD 为x (m ),则(6+x )2+x 2=4x 2, 解得x 1=3-33(舍去),x 2=3+33≈8.2. 答:树高约为8.2m .解法二:设树高CD 为x (m ),在Rt △ACD 中,tan30°=CD AD =x AD ,则AD =xtan30°. 同理,在Rt △BCD 中,BD =xtan45°.由AB =AD -BD =6,得x tan30°-xtan45°=6,解得x ≈8.2. 答:树高约为8.2m . 5.解:由点A 作BD 的垂线交BD 的延长线于点F ,垂足为F ,∠AFD=90° 由题意图示可知∠DAF=30° 设DF= x , AD=2x则在Rt △ADF 中,根据勾股定理()222223AF AD DF x x x=-=-=在Rt △ABF 中,tanAFABFBF∠=3tan3012xx=+解得x=666310.4AF x==≈10.4 > 8没有触礁危险课堂小结。
黑龙江省哈尔滨市高中数学 第一章 解三角形 1.1.1 正
1.1.1 正弦定理(二)【学习目标】1.能应用正弦定理解三角形;2.掌握三角形面积公式;3.能利用条件判断三角形解的个数【重点难点】正弦定理及其应用;解三角形中知两边一对角型中解的判断.【知识梳理】1.正弦定理:a sin A =b sin B =c sin C=2R 的常见变形: (1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C=2R ; (3)a =2R sin A ,b =2R sin B ,c =2R sin C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R. 2.正弦定理的应用 从理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角 3.三角形面积公式:S =12ab sin C =12bc sin A =12acsin B . 4.ABC ∆中,已知,a b 及锐角A ,则a 、b 、sin A 满足什么关系时,三角形无解,有一解,有两解?⑴若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ),( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a ⑵若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a【课内练习】1、已知△ABC 的面积为23,且3,2==c b ,则∠A 等于 ( ) A .30° B .30°或150° C .60°D .60°或120° 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3, b =1,则c =________.3.(1)在C A a c B b ABC ,,1,60,30和求中,===∆;(2)在C B b a A c ABC ,,2,45,60和求中,===∆.4.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4, cos B 2=255,求△ABC 的面积S .【课外练习】1.△ABC 中,∠A、∠B 的对边分别为a ,b ,且∠A=60°,4,6==b a ,那么满足条件的△ABC( )A .有一个解B .有两个解C .无解D .不能确定2.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( ) A .1 B .2C. 12D .4 3.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 4.(1)在ABC △中,3,6,30a c A ===o ,求ABC △的面积S .(2)在ABC △中,4,30,45a B C ===o o,求ABC △的外接圆半径R 和面积S .。
第08讲 正余弦定理解三角形(学生版) 备战2025年高考数学一轮复习学案(新高考通用)
第08讲正余弦定理解三角形(10类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较中等,分值为13-15分【备考策略】1掌握正弦定理、余弦定理及其相关变形应用2会用三角形的面积公式解决与面积有关的计算问题.3会用正弦定理、余弦定理等知识和方法解决三角形中的综合问题【命题预测】本节内容是新高考卷的必考内容,一般给以大题来命题、考查正余弦定理和三角形面积公式在解三角形中的应用,同时也结合三角函数及三角恒等变换等知识点进行综合考查,需重点复习。
1.正弦定理(1)基本公式:R CcB b A a 2sin sin sin ===(其中R 为ABC ∆外接圆的半径)(2)变形C B c b C A c a B A b a C B A c b a R C cB b A a sin sin sin sin sin sin sin sin sin 2sin sin sin ++=++=++=++++====CB A c b a sin :sin :sin ::=2.三角形中三个内角的关系π=++C B A ,A +B 2=π2-C2A CB sin )sin(=+∴,AC B cos )cos(-=+,AC B tan )tan(-=+2cot22πtan 2tan(,2sin 22πcos 2cos(,2cos 22πsin )2sin(C C B A C C B A C C B A =⎪⎭⎫ ⎝⎛-=+=⎪⎭⎫ ⎝⎛-=+=⎪⎭⎫ ⎝⎛-=+∴3.余弦定理(1)边的余弦定理A bc c b a cos 2222-+=,B ac c a b cos 2222-+=,Cab b a c cos 2222-+=(2)角的余弦定理bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,ab c b a C 2cos 222-+=4.三角形的面积公式ah S ABC 21=∆A bc B ac C ab S ABCsin 21sin 21sin 21===∆1.(2023·全国·高考真题)在ABC V 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C p=,则B Ð=( )A .10pB .5pC .310pD .25p 2.(2024·湖南永州·三模)已知在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 2cos a B b A c C +=-,π7sin 268A ⎛⎫+= ⎪⎝⎭,则()cos A B -=.3.(2024·四川凉山·二模)设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos 1cos cos a B b A ba Bb A c-+=+,则A = .4.(2024·全国·高考真题)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC V 的周长.1.(2024·江西九江·三模)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知22cos c a b A -=,则B =( )A .π6B .π3C .2π3D .5π62.(2024·河北沧州·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,若3cos cos cos b B a C c A =+,且34b c =,则C =.3.(2024·内蒙古呼和浩特·二模)在ABC V 中,记角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin =+B c B .(1)求角C ;(2)已知点D 在AC 边上,且2AD DC =,6BC =,BD =,求ABC V 的面积.1.(2023·浙江·模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,a b c .若π,43B a ==,且该三角形有两解,则b 的范围是( )A .()+¥B .()C .()0,4D .()42.(2024·陕西渭南·模拟预测)已知ABC V 的内角A ,B ,C 的对边分别为,,a b c ,则能使同时满足条件π,66A b ==的三角形不唯一的a 的取值范围是( )A .()36,B .()3,+¥C .()0,6D .()0,33.(2023·广东茂名·三模)(多选)ABC V 中,角,,A B C 所对的边分别为,,a b c .以下结论中正确的有( )A .若40,20,25a b B ===o ,则ABC V 必有两解B .若sin2sin2A B =,则ABC V 一定为等腰三角形C .若cos cos a B b A c -=,则ABC V 一定为直角三角形D .若π,23B a ==,且该三角形有两解,则b 的范围是)+¥1.(23-24高二下·浙江·期中)在ABC V 中,π,4,3A AB BC a Ð===,且满足该条件的ABC V 有两个,则a 的取值范围是( )A .()02,B .(2,C .()2,4D .()42.(2023·安徽·模拟预测)(多选)在ABC V 中,60AB B ==o ,若满足条件的三角形有两个,则AC 边的取值可能是( )A .1.5B .1.6C .1.7D .1.83.(2024·辽宁沈阳·模拟预测)(多选)在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,且已知2a =,则( )A .若45A =o ,且ABC V 有两解,则b 的取值范围是(2,B .若45A =o ,且4b =,则ABC V 恰有一解.C .若3c =,且ABC V 为钝角三角形,则b 的取值范围是D .若3c =,且ABC V 为锐角三角形,则b 的取值范围是1.(2023·北京·高考真题)在ABC V 中,()(sin sin )(sin sin )a c A C b A B +-=-,则C Ð=( )A .π6B .π3C .2π3D .5π62.(2021·全国·高考真题)在ABC V 中,已知120B =︒,AC 2AB =,则BC =( )A .1B C D .33.(2023·全国·高考真题)在ABC V 中,60,2,BAC AB BC Ð=︒==BAC Ð的角平分线交BC 于D ,则AD =.4.(2023·全国·高考真题)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC V 面积.1.(2021·安徽安庆·二模)在ABC V 中,a b c ,,分别是A Ð,B Ð,C 的对边.若2b ac =,且22a c ac +=+,则A Ð的大小是( )A .π6B .π3C .2π3D .5π62.(2024·安徽合肥·一模)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,若()2cos 2b C a c =-,且π3B =,则=a ( )A .1B C D .23.(2023·广东广州·三模)在ABC V 中,点D 在边BC 上,AB =,3CD =,45B =︒,60ADB Ð=︒,则AC 的长为.4.(2023·全国·高考真题)在ABC V 中,已知120BAC Ð=︒,2AB =,1AC =.(1)求sin ABC Ð;(2)若D 为BC 上一点,且90BAD Ð=︒,求ADC △的面积.1.(22-23高三·吉林白城·阶段练习)已知ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,那么ABC V 是( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形2.(22-23高三上·河北·阶段练习)在ABC V 中,角,,A B C 对边为,,a b c ,且22cos2Ac b c ×=+,则ABC V 的形状为( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形3.(2024高三·全国·专题练习)设△ABC 的三边长为BC a =,=CA b ,AB c =,若tan2A a b c=+,tan2B ba c =+,则△ABC 是( ).A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形1.(2024高三·全国·专题练习)在ABC V 中,若cos cos a A b B =,则ABC V 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形2.(22-23高三·河南商丘·阶段练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin22A c bc-=,则△ABC 是( )A .直角三角形B .锐角三角形C .等边三角形D .30A =︒的三角形3.(22-23高三·阶段练习)设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若222b c a ca =+-,且sin 2sin A C =,则ABC V 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4.(2023·四川凉山·二模)在ABC V 中,角A ,B ,C 对边分别为a ,b ,c .命题221tan cos()2:01tan2Ab A C p A a -++=+,命题:q ABC V 为等腰三角形.则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件1.(2023·全国·高考真题)在ABC V 中,已知120BAC Ð=︒,2AB =,1AC =.(1)求sin ABC Ð;(2)若D 为BC 上一点,且90BAD Ð=︒,求ADC △的面积.2.(2022·浙江·高考真题)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 的面积.3.(2024·全国·高考真题)记ABC V 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC V的面积为3c .4.(2022·北京·高考真题)在ABC V中,sin 2C C =.(1)求C Ð;(2)若6b =,且ABC V的面积为ABC V 的周长.1.(2024·北京大兴·三模)ABC V 中,角A ,B ,C 对边分别为a ,b ,c,cos a B =,sin 1b A =.(1)求B Ð的大小;(2)若b =ABC V 的面积.2.(2024·福建莆田·三模)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且()()cos 12cos b C c B +=-.(1)证明:2a b c +=.(2)若6a =,9cos 16C =,求ABC V 的面积.3.(2024·浙江·模拟预测)已知ABC V 中,角,,A B C 所对的边分别为,,.a b c 已知23,sin ABC c S b C ==V .(1)求a 的取值范围;(2)求B Ð最大时,ABC V 的面积.4.(2024·安徽滁州·三模)在ABC V 中,角,,A B C 的对边分别为,,,2cos 2a b c b C c a -=.(1)求B 的大小;(2)若3a =,且AC ABC V 的面积.1.(2024·贵州六盘水·三模)在ABC V 中,2AB =,3AC =, π3A Ð=,则ABC V 外接圆的半径为( )A B C D 2.(2024·浙江·模拟预测)如图,在平面内的四个动点A ,B ,C ,D 构成的四边形ABCD 中,1AB =,2BC =,3CD =,4=AD .(1)求ACD V 面积的取值范围;(2)若四边形ABCD 存在外接圆,求外接圆面积.3.(2023·湖北·二模)已知在ABC V 中,其角A 、B 、C 所对边分别为a 、b 、c ,且满足cos sin b C C a c =+.(1)若b =ABC V 的外接圆半径;(2)若a c +=,且6BA BC ×=uuu r uuu r,求ABC V 的内切圆半径1.(2024·河南信阳·模拟预测)设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知9,8,5a b c ===,则ABC V 的外接圆的面积为( )A .225π11B .125π11C .123π6D .113π62.(2024·辽宁大连·一模)在ABC V 中,π,3,23A AB AC Ð=== (1)求点A 到边BC 的距离:(2)设P 为边AB 上一点,当22PB PC +取得最小值时,求PBC V 外接圆的面积.3.(2024·山西晋城·一模)在ABC V 中,AB =AC =,BC =.(1)求A 的大小;(2)求ABC V 外接圆的半径与内切圆的半径.4.(2024·全国·模拟预测)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22sin 2sin 2sin sin 4A BA B ××=.(1)求C ;(2)若2c =,求ABC V 内切圆半径取值范围.1.(2024·福建泉州·一模)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos c B b C a b -=-,点D 是BC 上靠近C 的三等分点(1)若ABC V 的面积为AD 的最小值;(2)若π6BAD Ð=,求sin 2B .2.(2024·山东日照·二模)ABC V 的内角,,A B C 的对边分别为,,a b c .分别以,,a b c 为边长的正三角形的面积依次为123,,S S S ,且123S S S --=.(1)求角A ;(2)若4BD CD =uuu r uuu r ,π6CAD Ð=,求sin ACB Ð.3.(2024·山东菏泽·模拟预测)在ABC V 中,D 为BC 边的中点.(1)若AC =π6ACD DAC Ð=Ð=,求AB 的长;(2)若π2BAD ACD ÐÐ+=,0AC AB ¹×u u r uu r uu,试判断ABC V 的形状.4.(2024·河北衡水·模拟预测)如图,在平面四边形ABCD 中,120AB AC ADC CAB ==Ð=Ð=︒,设DAC Ðq =.(1)若2AD =,求BD 的长;(2)若15ADB Ð=︒,求tan q .1.(2024·河北沧州·模拟预测)在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,已知()2a c c b =+.(1)求证:3πB C +=;(2)若ABC Ð的角平分线交AC 于点D ,且12a =,7b =,求BD 的长.2.(2024·河南·三模)已知P 是ABC V 内一点,π3π,,,44PB PC BAC BPC ABP ÐÐÐq ====.(1)若π,24BC q =,求AC ;(2)若π3q =,求tan BAP Ð.3.(23-24高三下·安徽·阶段练习)已知a ,b ,c 分别是△ABC 的三个内角的对边,且sin cos A a C b c +=+.(1)求A ;(2)若2BC =,将射线BA 和CA 分别绕点B ,C 顺时针方向旋转15o ,30o ,旋转后相交于点D (如图所示),且30DBC Ð=o ,求AD .1.(2024·全国·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,tan A =πsin 2sin()3b C C =+.(1)求c ;(2)若点D 在边BC 上,且13BD a =,AD =ABC V 的面积.1.(2024·山东济南·二模)如图,已知平面四边形ABCD 中,2,4AB BC CD AD ====.(1)若,,,A B C D 四点共圆,求AC ;(2)求四边形ABCD 面积的最大值.2.(2024·河北·二模)已知ABC V 中,角,,A B C 的对边分别为,,,a b c ABC V 的面积为,2S a b =.(1)若S ABC =V 为等腰三角形,求它的周长;(2)若3sin 5C =,求sin sin A,B .1.(23-24高二下·浙江杭州·期中)在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,满足2cos b a b C =-.(1)求证:2C B =;(2)求2sin cos sin C B B +-的最大值.2.(2024·全国·模拟预测)在ABC V 中,点D ,E 都是边BC 上且与B ,C 不重合的点,且点D 在B ,E 之间,AE AC BD AD AB CE ××=××.(1)求证:sin sin BAD CAE =∠∠.(2)若AB AC ^,求证:222221sin AD AE BD CE DAE+=-Ð.3.(23-24高三上·河南信阳·阶段练习)设ABC V 的内角A 、B 、C 的对边分别为a 、b 、c ,已知1sin 1cos 2cos sin 2A BA B --=.(1)证明:22πA B +=.(2)求22a c的取值范围.1.(23-24高三上·广东·阶段练习)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,D 是边BC 上一点,BAD Ð=a ,CAD b Ð=,AD d =,且2sin 2sin 3ac ab bc a b +=.(1)若5π6A =,证明:3a d =;(2)在(1)的条件下,且2CD BD =,求cos ADC Ð的值.2.(22-23高一下·山东枣庄·期中)ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin sin cos sin cos a A b C A c A B =+.(1)求sin sin AC的值;(2)若BD 是ABC Ð的角平分线.(i )证明:2··BD BA BC DA DC =-;(ii )若1a =,求BD AC ×的最大值.3.(23-24高三上·江苏·开学考试)如图,在△ABC 内任取一点P ,直线AP 、BP 、CP 分别与边BC 、CA 、AB 相交于点D 、E 、F .(1)试证明:sin sin BD AB BADDC AC DACÐ=Ð(2)若P 为重心,5,4,3AD BE CF ===,求ABC V 的面积.1.(2021·全国·高考真题)魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .´+表高表距表目距的差表高B .´-表高表距表目距的差表高C .´+表高表距表目距的差表距D .´-表高表距表目距的差表距2.(2024·陕西西安·模拟预测)在100m 高的楼顶A 处,测得正西方向地面上B C 、两点(B C 、与楼底在同一水平面上)的俯角分别是75o 和15o ,则B C 、两点之间的距离为( ).A .B .C .D .3.(2024·江苏扬州·模拟预测)《海岛算经》是魏晋时期数学家刘徽所著的测量学著作,书中有一道测量山上松树高度的题目,受此题启发,小李同学打算用学到的解三角形知识测量某建筑物上面一座信号塔的高度.把塔底与塔顶分别看作点C ,D ,CD 与地面垂直,小李先在地面上选取点A ,B ,测得AB =,在点A 处测得点C ,D 的仰角分别为30︒,60︒,在点B 处测得点D 的仰角为30︒,则塔高CD 为 m .1.(2024·广东·二模)在一堂数学实践探究课中,同学们用镜而反射法测量学校钟楼的高度.如图所示,将小镜子放在操场的水平地面上,人退后至从镜中能看到钟楼顶部的位置,此时测量人和小镜子的距离为1 1.00m a =,之后将小镜子前移 6.00m a =,重复之前的操作,再次测量人与小镜子的距离为20.60m a =,已知人的眼睛距离地面的高度为5m 1.7h =,则钟楼的高度大约是( )A .27.75mB .27.25mC .26.75mD .26.25m2.(2024·湖南·模拟预测)湖南省衡阳市的来雁塔,始建于明万历十九年(1591年),因鸿雁南北迁徙时常在境内停留而得名.1983年被湖南省人民政府公布为重点文物保护单位.为测量来雁塔的高度,因地理条件的限制,分别选择C 点和一建筑物DE 的楼顶E 为测量观测点,已知点A 为塔底,,,A C D 在水平地面上,来雁塔AB 和建筑物DE 均垂直于地面(如图所示).测得18m,15m CD AD ==,在C 点处测得E 点的仰角为30°,在E 点处测得B 点的仰角为60°,则来雁塔AB 的高度约为( ) 1.732»,精确到0.1m )A .35.0mB .36.4mC .38.4mD .39.6m3.(2024·山东临沂·一模)在同一平面上有相距14公里的,A B 两座炮台,A 在B 的正东方.某次演习时,A 向西偏北q 方向发射炮弹,B 则向东偏北q 方向发射炮弹,其中q 为锐角,观测回报两炮弹皆命中18公里外的同一目标,接着A 改向向西偏北2q方向发射炮弹,弹着点为18公里外的点M ,则B 炮台与弹着点M 的距离为( )A .7公里B .8公里C .9公里D .10公里一、单选题1.(2024·浙江·模拟预测)在ABC V 中,,,a b c 分别为角,,A B C 的对边,若tan 3A =,π4B =,bc ==a ( )A .2B .3C .D .2.(2024·重庆·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,若222π,6,33B b a c ac ==+=,则ABC V 的面积为( )A B .94C D .92二、多选题3.(2024·重庆·三模)在ABC V 中,角,,A B C 的对边为,,,a b c 若2,6b c C p ===,则ABC V 的面积可以是( )A B .3C .D .三、填空题4.(2024·山东威海·二模)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a 4b c +=,cos C =.则sin A = .5.(2024·北京西城·三模)在ABC V 中,若2c =,a =π6A Ð=,则sin C = ,b = .四、解答题6.(2024·陕西西安·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知2b c =.(1)若cos sin B C =,求tan B ;(2)若3cos ,4A a =,求ABC V 的面积.7.(2024·河北·一模)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足222a b c +=.(1)求角C 的大小;(2)若1b =,2cos c b B =,求ABC V 的面积.8.(2024·贵州黔东南·二模)在ABC V 中,角,,A B C 的对边分别为,,a b c ,且()sin sin 02A Cb A Bc ++-=.(1)求B ;(2)若5,8b a c =+=,求ABC V 的面积.9.(2024·江西新余·二模)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且ABC V 的面积()2221sin 2S a c b B =+-.(1)求角B ;(2)若ABC Ð的平分线交AC 于点D ,3a =,4c =,求BD 的长.10.(2024·陕西西安·一模)在ABC V 中,角A B C ,,所对的边分别为,,a b c ,πsin sin 02c A C ⎛⎫+= ⎪⎝⎭,6c =.(1)求角C ;(2)若=c ,求ABC V 的周长.一、单选题1.(2024·安徽芜湖·模拟预测)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,3sin()sin ,2B C A b -+=,则角C =( )A .π6B .π3C .π4D .π22.(2024·陕西·模拟预测)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,()()()sin sin sin sin c A C a b A B -=-+,若ABC V 3b ,则AC 边上的高为( )A B C D .二、多选题3.(2024·江苏宿迁·三模)在ABC V 中,角A B C ,,所对的边分别为a b c ,,.若2cossin 2A Cb C +=,且边AC 上的中线BD )A .π3B =B .b 的取值范围为[2,C .ABC V 面积的最大值为D .ABC V 周长的最大值为三、填空题4.(2024·湖北武汉·二模)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,4cos a bC b a+=.且tan tan tan tan tan tan B A B C A C +=,则cos A = .5.(2024·陕西安康·模拟预测)在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若2b =,22cos cos cos a cC B C=+,则2a c +的最大值为.四、解答题6.(2024·福建泉州·模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知a b c <<且tan ,tan ,tan A B C 均为整数.(1)证明:2tan 1tan tan B A C -=;(2)设AC 的中点为D ,求CDB Ð的余弦值.7.(2024高三下·全国·专题练习)在①()()()sin sin sin sin b A B c a C A +=+-,②tan tan B C +=sinsin 2A Bc B +=这三个条件中任选一个,补充在下面的横线上,并解答.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且______.(1)求角C 的大小;(2)已知7c =,D 是边AB 的中点,且CD CB ^,求CD 的长.8.(2024·全国·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c .已知2222222b b c a c b a c b +-=-+-.(1)求A ;(2)若D 为AB 的中点,且6CD =,求cos ACB Ð.9.(2023·黑龙江佳木斯·三模)ABC V 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sin cos sin cos cos c C B b C C A +=.(1)求∠A ;(2)若A ABC CB =Ð∠,满足3BD =,2CD =,四边形ABDC 是凸四边形,求四边形ABDC 面积的最大值.10.(2024·河北·二模)若ABC V 内一点P 满足PAB PBC PCA q Ð=Ð=Ð=,则称点P 为ABC V 的布洛卡点,q 为ABC V 的布洛卡角.如图,已知ABC V 中,BC a =,AC b =,AB c =,点P 为的布洛卡点,q 为ABCV 的布洛卡角.(1)若b c =,且满足PBPA=ABC Ð的大小.(2)若ABC V 为锐角三角形.(ⅰ)证明:1111tan tan tan tan BAC ABC ACBq =++ÐÐÐ.(ⅱ)若PB 平分ABC Ð,证明:2b ac =.1.(2024·上海·高考真题)已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒ÐÐ,则BCA Ð= (精确到0.1度)2.(2024·北京·高考真题)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A Ð为钝角,7a =,sin 2cos B B =.(1)求A Ð;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.3.(2024·天津·高考真题)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a B b c ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.4.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法S =a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =.5.(2022·天津·高考真题)在ABC V 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值;(2)求sin B 的值;(3)求sin(2)A B -的值.6.(2022·全国·高考真题)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+7.(2022·全国·高考真题)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC V 的周长.8.(2022·全国·高考真题)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C p=,求B ;(2)求222a b c +的最小值.9.(2021·天津·高考真题)在ABC V ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =.(I )求a 的值;(II )求cos C 的值;(III )求sin 26C p ⎛⎫- ⎪⎝⎭的值.10.(2021·北京·高考真题)在ABC V 中,2cos c b B =,23C p=.(1)求B Ð;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC V 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC V 的周长为4+条件③:ABC V 11.(2021·全国·高考真题)记ABC V 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C Ð=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC Ð.1.1.12.(2020·全国·高考真题)如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD =AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =.13.(2020·天津·高考真题)在ABC V 中,角,,A B C 所对的边分别为,,a b c .已知 5,a b c ===(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求sin 24A p ⎛⎫+ ⎪⎝⎭的值.14.(2020·北京·高考真题)在ABC V 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC V 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.15.(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.16.(2020·山东·高考真题)在①ac =②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC V ,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C p=,________?注:如果选择多个条件分别解答,按第一个解答计分.17.(2020·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC Ð=-,求tan DAC Ð的值.18.(2020·全国·高考真题)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC V 的面积;(2)若sin A C ,求C .19.(2020·全国·高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A p ++=.(1)求A ;(2)若b c -=,证明:△ABC 是直角三角形.20.(2020·全国·高考真题)ABC V 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC V 周长的最大值.。
2020年人教版数学八年级上册学案13.3.2《等边三角形》(含答案)
13.3.2等边三角形第1课时等边三角形的性质与判定学习目标理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法.预习阅读教材“思考及例4”,完成预习内容.知识探究1.等边三角形的性质:(1)定义:等边三角形的________都相等;(2)等边三角形的三个内角都________,并且每一个角都等于________.2.等边三角形的判定:(1)定义:________都相等的三角形为等边三角形;(2)三个角都________的三角形是等边三角形;(3)有一个角是60°的____________为等边三角形.自学反馈1.在等边三角形ABC中,∠______=∠______=∠______=______.2.在三角形ABC中,AB=AC=2,∠A=60°,则BC=________.3.课本练习第1、2小题.活动1小组讨论如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.解:(1)证明:∵△ABC为等边三角形∴∠BAE=∠DCA=60°,AB=AC.在△ABE与△CAD中,∵AB=AC,∠BAE=∠ACD,AE=CD,∴△ABE≌△CAD.(2)∵△ABE≌△CAD,∴∠ABE=∠DAC.∵∠BAF+∠DAC=∠BAC=60°,∠BFD=∠ABE+∠BAF,∴∠BFD=∠BAF+∠DAC=60°.点拨:由等边三角形的性质,根据SAS证全等,然后利用全等的性质求∠BFD的度数.课堂小结对于等边三角形,它属于特殊的等腰三角形,特殊到三条边相等,三个角都等于60°,“三线合一”的性质就更能不受限制,淋漓尽致地发挥了.第2课时 含30°角的直角三角形的性质学习目标掌握含30°角的直角三角形的性质,并会运用.预习阅读教材P80~81“探究及例5”,完成预习内容.知识探究在直角三角形中,如果一个锐角等于30°,那么它所对的________等于________________. 自学反馈1.在Rt △ABC 中,若∠BCA=90°,∠A=30°,AB=4,则BC=________.2.Rt △ABC 中,∠C=90°,∠B=2∠A ,∠B 和∠A 各是多少度?边AB 与BC 之间有什么关系?活动1 小组讨论如图,∠ACB=90°,∠B=30°,CD ⊥AB.求证:AD=14AB.证明:∵∠ACB=90°,∠B=30°,∴AC=12AB.∵CD ⊥AB ,∴∠CDB=90°.∴∠DCB=60°. ∵∠ACB=90°,∴∠ACD=30°.在Rt △ACD 中,∠ACD=30°.∴AD=12AC=14AB. 课堂小结含30°角的直角三角形中存在线段的比例关系,是证明线段倍数关系的重要途径.课堂小练一、选择题1.如图,在△ABC 中,D 、E 在BC 上,且BD=DE=AD=AE=EC ,则∠BAC 的度数是( )A.30°B.45°C.120°D.15°2.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形3.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于E ,垂足为D.若ED=5,则CE 的长为( )A.10B.8C.5D.2.54.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4cmB.2cmC.1cmD.0.5m5.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=ABB.BD=ABC.BD=ABD.BD=AB6.如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=10m,∠A=30°,则立柱BC的长度是()A.5mB.8mC.10mD.20m7.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为()A.6米B.9米C.12米D.15米8.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°9.如图,过等边△ABC的顶点A作射线,若∠1=20°,则∠2的度数是( )A.100°B.80°C.60°D.40°10.下列推理错误的是( )A.在△ABC中,∵∠A=∠B=∠C,∴△ABC为等边三角形B.在△ABC中,∵AB=AC,且∠B=∠C,∴△ABC为等边三角形C.在△ABC中,∵∠A=60°,∠B=60°,∴△ABC为等边三角形D.在△ABC中,∵AB=AC,∠B=60°,∴△ABC为等边三角形二、填空题11.如图,△ABC是等边三角形,AD⊥BC,DE⊥AB,若AB=8 cm,BD=________,BE=________.12.等腰三角形的底角为15°,腰长是2 cm,则腰上的高为________.13.等腰三角形一底角是30°,底边上的高为9 cm,则其腰长为________,顶角为________.14.在Rt△ACB中,∠C=90°,∠A=30°,AB=10,则BC=________.15.如图,将边长为5 cm的等边△ABC,沿BC向右平移3 cm,得到△DEF,DE交AC于M,则△MEC是________三角形,DM=________cm.参考答案1.答案为:C2.答案为:D3.答案为:A4.答案为:C5.答案为:C6.答案为:A7.答案为:B8.答案为:A9.答案为:A10.答案为:B.11.答案为:4 cm 2 cm12.答案为:1 cm13.答案为:18 cm 120°14.答案为:515.答案为:等边 3。
江苏省镇江实验学校2022年初三中考数学复习教学案:用相似三角形解决问题(2)
江苏省镇江实验学校2022年初三中考数学复习教学案:6主备:罗彬课型:新授严玲凤班级姓名学号【学习目标】1、使学生了解中心投影的意义。
2、通过测量活动,综合运用判定三角形相似的条件和三角形相似的性质解决问题,增强用数学的意识加深对判定三角形相似的条件和三角形相似的性质的明白得。
3、通过操作、观看等数学活动,探究中心投影与平行投影的区别,并运用中心投影的相关知识解决一些实际问题。
【重点难点】运用三角形相似的判定和性质解决实际问题。
【自主学习】读一读:阅读课本79-80页想一想:1.如图所示,在房子外的屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在()A、△ACEB、△ABDC、四边形BCEDD、△BDF练一练:E D某人身高1.6m,在路灯A 的照耀下影长为DE,他与灯杆AB 的距离BD=5m,求(1)AB=6m.求DE(精确到0.1m)(2)DE=2.5m ,求AB【例题教学】1、为了测量路灯(OS )的高度,把一根长1.5米的竹竿(AB )竖直立在水平地面上,测得竹竿的影子(BC )长为1米,然后拿竹竿向远离路灯方向走了4米(BB ‘),再把竹竿竖立在地面上, 测得竹竿的影长(B ‘C ‘)为1.8米,求路灯离地面的高度.2、小华同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发觉身后的影子顶部刚好触到AC 的底部,当他向前再步行12m 到达Q 点时,发觉身前的影子的顶端接触到路灯BD 的底部.已知小华身高为1.6m ,两个路灯的高度差不多上9.6m .(1)求两个路灯之间的距离.(2)当小华同学走到路灯BD 处时,他在路灯AC 下的影子长是多少?【课堂检测】1、下列说法错误的是 ( )A:太阳光线能够看成平行光线.B:在平行光线的照耀下,不同物体的物高与影长成比例. C:在点光源的照耀下,不同物体的物高与影长成比例D: 在点光源的照耀下,物体所产生的投影为中心投影2、这是圆桌正上方的灯泡(看着一个点)发出的光线照耀桌面后,在地面上形成阴影圆形的示意图,已知桌面的直径为1.2米,桌面距离地面1米。
解三角形复习学案
解三角形一、正弦定理:1、正弦定理: (其中R 就就是三角形外接圆得半径)2、变形:①②角化边③边化角练习:△AB C中,①,则△ABC②,则△ABC3、三角形内角平分线定理:如图△ABC 中,A D就就是得角平分线,4、判断三角形解得个数:△AB C中,已知锐角A,边b,则 ①时,无解;②或时,有一个解;③时,有两个解。
注意:由正弦定理求角时,二、三角形面积1、2、 ,其中就就是三角形内切圆半径、注:由面积公式求角时注意解得个数三、余弦定理1、余弦定理:注:后面得变形常与韦达定理结合使用。
2、变形:注意整体代入,练习: 。
3、三角形中线:△A BC 中, D就就是B C得中点,则4、三角形得形状①若时,角就就是 角②若时,角就就是 角 ③若时,角就就是 角 练习:锐角三角形得三边为,求x得取值范围; 钝角三角形得三边为,求x 得取值范围;5、应用用余弦定理求角时只有一个解四、应用题1、步骤:①由已知条件作出图形,②在图上标出已知量与要求得量;③将实际问题转化为数学问题; ④作答2、注意方位角;俯角;仰角;张角;张角等如:方位角就就是指北方向顺时针转到目标方向线得角。
[3,c =1,A =2B 、2b +c )s in B +(2c +b )sin C 、(1)求A 得大小;(2)若sin B +s in C=1,试判断△ABC 得形状、错误!__与三角形面积有关得问题______________(2014·高考浙江卷)在△ABC中,内角A,B,C所对得边分别为a,b,c、已知a≠b,c=错误!,cos2A-cos2B=错误! sin A cos A-\r(3)sin BcosB、(1)求角C得大小;(2)若sin A=错误!,求△ABC得面积、1、(2014·高考江西卷)在△ABC中,内角A,B,C所对得边分别就就是a,b,c、若c2=(a-b)2+6,C=π3,则△ABC得面积就就是()A、3B、错误!C、错误!ﻩD、3错误!2、(2015·安庆模拟)在△ABC中,A∶B=1∶2,sin C=1,则a∶b∶c等于()A、1∶2∶3B、3∶2∶1C、1∶\r(3)∶2D、2∶错误!∶13、(2015·石家庄质检)在△ABC中,角A、B、C所对得边长分别为a、b、c,sin A、sin B、sin C成等比数列,且c=2a,则cos B得值为()A、\f(1,4)B、错误!C、错误!D、错误!4、(2013·高考陕西卷)设△ABC得内角A,B,C所对得边分别为a,b,c,若bcos C+ccos B=a sin A,则△ABC得形状为( )A、锐角三角形B、直角三角形C、钝角三角形D、不确定5、(2015·福建厦门检测)已知△ABC中,设三个内角A,B,C所对得边长分别为a,b,c,且a=1,b=错误!,A=30°,则c=________、6、(2014·高考广东卷)在△ABC中,角A,B,C所对应得边分别为a,b,c,已知bcos C+c cos B=2b,则\f(a,b)=________、7、(2013·高考浙江卷)在锐角△ABC中,内角A,B,C得对边分别为a,b,c, 且2a sin B=错误!b、(1)求角A得大小;(2)若a=6,b+c=8,求△ABC得面积、8、(必修5P118练习(3)改编)在四边形ABCD中,∠DAB与∠DCB互补,AB=1,CD=DA=2,对角线BD=错误!、(1)求BC;(2)求四边形ABCD得面积、9、在△ABC中,a、b、c分别为∠A、∠B、∠C得对边,已知a,b,c成等比数列,且a2-c2=ac-bc,则∠A=________,△ABC得形状为________、10、(选做题)(必修5P25B组T3改编)就就是否存在满足以下条件得三角形,①三边长就就是三个连续偶数;②最大角就就是最小角得2倍、若存在,求出该三角形得内切圆半径;若不存在,说明理由、。
高中数学解三角形教案
高中数学解三角形教案
一、教学目标:
1. 了解三角形的定义和性质;
2. 掌握解三角形的方法;
3. 能够运用解三角形的知识解决实际问题。
二、教学重点:
1. 三角形的定义和性质;
2. 解三角形的方法。
三、教学内容:
1. 三角形的定义和性质
2. 解三角形的方法
3. 实例分析
四、教学步骤:
1. 师生互动导入:通过实际例子引入三角形的定义和性质,例如让学生观察周围的物体,
找到其中的三角形并进行分类,引导学生讨论三角形的定义和性质。
2. 教学讲解:讲解三角形的定义和性质,包括三角形的内角和为180度、三边之和大于第三边等性质,引导学生理解三角形的基本概念。
3. 解三角形的方法:介绍解三角形的方法,包括余角、角平分线、作图等方法,讲解每种
方法的应用场景和步骤。
4. 实例分析:通过实际例子进行分析和讨论,引导学生运用解三角形的方法解决实际问题,加深对知识的理解和应用能力。
五、教学评价:
教师可通过课堂练习、作业和小测验等方式进行教学评价,检验学生对三角形的理解和解
题能力。
六、拓展延伸:
师生可通过课外探究、实验等方式拓展三角形的相关知识,激发学生的学习兴趣,提高学
生的综合能力。
七、教学反思:
教师应及时总结本节课的教学效果,结合学生的表现和反馈,不断优化教学方法,提高教学质量。
解三角形123 (2)
1 bcsinA 2
=
1acsinB 2
=
=
p - a)(p - b - c) .其中 (p )(p 其中p= 其中
a +b +c . 2
(2)A+B+C= π ,sin(A+B)= sinC ,cos(A+B)= -cosC . (3)A,B,C成等差数列的充要条件是 成等差数列的充要条件是 (4)大边对大角定理 大边对大角定理. 大边对大角定理 B=60° ° .
(3)S△ABC = 1·a·b·sinC 2 1 = ·a·b·sin120° ° 2 1 3 3 = ×2× = . × 2 2 2
*对应演练* 对应演练*
在△ABC中,sinA= 中 形状. 形状
解:由(c-b)sin2A+bsin2B=csin2C,得(c-b)a2 +b3 = c3, ∴ (c-b)a2 + (b − c)(b2 + bc + c2 ) = 0即(c-b)(b2 +bc + c2 -a2 )=0 ∴b=c或b + bc + c -a = 0
2 2 2
2 。 当b=c时,有B=C, C为锐角,又sinC= ∴B = C = 45 ∴ 2 ,这与 ABC为钝角三角形矛盾 ∴A = 90。
3
2
有两解. ∴C有两解 有两解 无解. ∴C=60°或120°,当BC=5时,sinC=2>1无解 ° °当 时 无解
考点二
余弦定理的应用
分别是角A,B,C的对边 的对边, 在△ABC中,a,b,c分别是角 中 分别是角 的对边 且 cosB = - b . cosC 2a +c (1)求B的大小 (1)求B的大小; 的大小; (2)若b= 13 ,a+c=4,求△ABC的面积 若 的面积. 求 的面积
初中九年级数学学案用解直角三角形解方位角、坡角的应用
28.2.5 用解直角三角形解方位角,坡角地应用一,新课导入1.课题导入情景:如图,一艘海轮位于灯塔P地北偏东65°方向,距离灯塔80 n mile地A处,它沿正南方向航行一段时间后,到达位于灯塔P地南偏东34°方向上地B处,这时,海轮所在地B处距离灯塔P有多远?问题:怎样由方向角确定三角形地内角?2.学习目地(1)能根据方向角画出相应地图形,会用解直角三角形地知识解决方位问题.(2)知道坡度与坡角地意义,能利用解直角三角形地知识解决与坡度有关地实际问题.3.学习重,难点重点:会用解直角三角形地知识解决方向角,坡度地有关问题.难点:将实际问题转化为数学问题(即数学建模).二,分层学习1.自学指导(1)自学内容:P76例5.(2)自学时间:10分钟.(3)自学方法:独立探索解题思路,然后同桌之间讨论,写出规范地解题过程.(4)自学参考提纲:①如图,一艘海轮位于灯塔P地北偏东65°方向,距离灯塔80海里地A处,它沿正南方向航行一段时间后,到达位于灯塔P地南偏东34°方向上地B处,这时,海轮所在地B处距离灯塔P有多远?(结果取整数,参考数据:cos25°≈0.91,sin25°≈0.42,tan25°≈0.47,sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)a.根据已知在图中标出方向角:如图所示.b.根据方向角得到三角形地内角:在△PAB中,∵海轮沿正南方向航行,∴∠A= 65° ,∠B= 34° ,PA= 80 .c.作高构造直角三角形:如图所示.d.写出解答过程:在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈72.505(n mile).在Rt△BPC中,∠B=34°,PB=72505sin sin34.PCB=︒≈130(n mile).②如图,海中有一个小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°地方向上,又继续航行12海里到达D点,这时测得小岛A在北偏东30°地方向上,如果渔船不改变航向继续向东航行,有没有触礁地危险?解:过A作AE⊥BD于E.由题意知:∠ABE=30°,∠ADE=60°.∴∠BAD=60°-30°=30°=∠ABD.∴AD=BD=12.∴AE=AD·sin60°=12×32=63(海里)>8海里.∴无触礁地危险.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:观察学生自学提纲地答题情况.②差异指导:根据学情对学习有困难地学生进行个别或分类指导.(2)生助生:小组内互相交流,研讨.4.强化:利用解直角三角形地知识解方向角问题地一般思路.1.自学指导(1)自学内容:P77.(2)自学时间:5分钟.(3)自学方法:先独立归纳利用解直角三角形地知识解决实际问题地一般思路,然后对照课本P77地内容归纳,进行反思总结.(4)自学参考提纲:①利用解直角三角形地知识解决实际问题地一般思路:a.将实际问题抽象为数学问题;b.根据问题中地条件,适当选用锐角三角函数等解直角三角形;c.得到数学问题地答案;d.得到实际问题地答案.②练习:如图,拦水坝地横断面为梯形ABCD,斜面坡度i=1∶1.5是指坡面地铅直高度AF与水平宽度BF地比,斜面坡度i=1∶3是指DE与CE地比,根据图中数据,求:a.坡角α与β地度数;b.斜坡AB地长(结果保留小数点后一位).2.自学:学生可参考自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生解答问题地情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内互相交流,研讨.4.强化(1)坡度,坡角地意义及其关系,梯形问题地解题方法.(2)在自学参考提纲第②题中,若补充条件“坝顶宽AD=4 m”,妳能求出坝底BC地长吗?(3)利用解直角三角形地知识解决实际问题地一般思路:三,评价1.学生自我评价:在这节课地学习中妳有哪些收获?掌握了哪些解题技巧与方法?2.教师对学生地评价:(1)表现性评价:点评学生学习地主动性,小组交流协作情况,解题方法地掌握情况等.(2)纸笔评价:课堂评价检测.3.教师地自我评价(教学反思).本课时应先认知“方向角”“坡度”及其所代表地实际意义,添作适当地辅助线,构建直角三角形.然后结合解直角三角形地有关知识加以解答,层层展开,步步深入.一,基础巩固(70分)1.(10分)已知外婆家在小明家地正东方,学校在外婆家地北偏西40°,外婆家到学校与小明家到学校地距离相等,则学校在小明家地(D)A.南偏东50°B.南偏东40°C.北偏东50°D.北偏东40°2.(10分)如图,某村准备在坡度为i=1∶1.5地斜坡上栽树,要求相邻两棵树之间地水平距离为 5 m,则这两棵树在坡面上地距离AB为5133m.(结果保留根号)3.(10分)在菱形ABCD中,AB=13,锐角B地正弦值sinB=5 13,则这个菱形地面积为65 .4.(20分)为方便行人横过马路,打算修建一座高5 m地过街天桥.已知天桥地斜面坡度为1∶1.5,计算斜坡AB地长度(结果取整数).解:∵i=115.ACBC=,AC=5,∴BC=1.5×5=7.5.∴AB=228125.AC BC+=≈9(m).5.(20分)一轮船原在A处,它地北偏东45°方向上有一灯塔P,轮船沿着北偏西30°方向航行4 h到达B处,这时灯塔P正好在轮船地正东方向上.已知轮船地航速为25 n mile/h,求轮船在B处时与灯塔地距离(结果可保留根号).解:过点A作AC⊥BP于点C.由题意知:∠BAC=30°,∠CAP=45°, AB=25×4=100.在Rt△ABC中,BC=12AB=50,AC=32AB=503.在Rt△ACP中,CP=AC=503.∴BP=BC+CP=50(3+1)(n mile).二,综合应用(20分)6.(20分)某型号飞机地机翼形状如图所示.根据图中数据计算AC,BD与AB 地长度(结果保留小数点后两位).解:如图所示,在Rt△BDE中,BE=5.00,∠DBE=30°,∴DE=BE·tan30°=533,BD=103cos303BE=︒≈5.77(m).在Rt△ACF中,CF=BE=5.00,∠FCA=45°,∴AF=CF=5.00,∴AC=2CF=52≈7.07(m).∴AB=BF-AF=DE+CD-AF=533+3.40-5.00≈1.29(m).三,拓展延伸(10分)7.(10分)海中有一小岛P,在以P为圆心,半径为162 n mile地圆形海域内有暗礁,一艘船自西向东航行,它在A处时测得小岛P位于北偏东60°方向上,且A,P 之间地距离为32 n mile.若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.若有危险,轮船自A处开始至少沿东偏南多少度地方向航行,才能安全通过这一海域?解:如图,∠PAB=30°,AP=32.∴PB=12AP=16(n mile).∴PB<162n mile.∴轮船有触礁危险.假设轮船沿东偏南α恰好能安全通过,此时航线AC与⊙P相切,即PC⊥AC. 又∵AP=32,PC=162,∴∠PAC=45°,∴α=15°.∴轮船自A处开始至少沿东偏南15度方向航行,才能安全通过这一海域.。
高中数学第一章解三角形1.1.2余弦定理(二)学案新人教A版必修5(2021学年)
2018版高中数学第一章解三角形1.1.2 余弦定理(二)学案新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章解三角形1.1.2余弦定理(二)学案新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章解三角形 1.1.2 余弦定理(二)学案新人教A版必修5的全部内容。
1.1.2 余弦定理(二)[学习目标] 1。
熟练掌握余弦定理及其变形形式,能用余弦定理解三角形。
2。
能应用余弦定理判断三角形形状.3。
能利用正弦、余弦定理解决解三角形的有关问题.知识点一余弦定理及其推论1.a2=b2+c2-2bc cos__A,b2=c2+a2-2ca cos__B,c2=a2+b2-2abcos__C.2.cos A=错误!,cos B=错误!,cosC=错误!.3.在△ABC中,c2=a2+b2⇔C为直角,c2>a2+b2⇔C为钝角;c2<a2+b2⇔C为锐角.知识点二正弦、余弦定理解决的问题思考以下问题不能用余弦定理求解的是________.(1)已知两边和其中一边的对角,解三角形;(2)已知两角和一边,解三角形;(3)已知一个三角形的两条边及其夹角,解三角形;(4)已知一个三角形的三条边,解三角形.答案 (2)题型一利用余弦定理判断三角形的形状例1 在△ABC中,cos2错误!=错误!,其中a,b,c分别是角A,B,C的对边,则△ABC的形状为( )A.直角三角形B.等腰三角形或直角三角形C.等腰直角三角形D.正三角形答案 A解析方法一在△ABC中,由已知得\f(1+cosB,2)=\f(1,2)+错误!,∴cosB=ac=错误!,化简得c2=a2+b2。
《解三角形》复习学案
期末复习 - ----《解三角形》一、 【知识梳理】1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a。
2.斜三角形中各元素间的关系:如图,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===。
(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cosC 。
3.三角形的面积公式:(1)S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)S =21ab sin C =21bc sin A =21ac sin B ;(4)S =2R 2sinAsinBsinC 。
(R 为外接圆半径)4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形 解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
学案13 解三角形(2)
【课前预习,听课有针对性】(5m
1.某人朝正东方走x km 后,向左转150,然后朝新方向走3km,结果它离出发点恰好 73 km, 那么x 等于(
)
2.甲、乙两楼相距20m ,从乙楼底望甲楼顶的仰角为
60°,从甲楼顶望乙楼顶的俯角为
30°,
则甲、乙两楼的高分别是( 1^/3 20 応
m, m
2 3 【及时巩固,牢固掌握知识】(20―― 30m
A 组夯实基础,运用知识
3.在 MBC 中,“ A = B ”是“ sin A=si nB ”的(
)
(A )充分不必要条
件
(B )必要不充分条件
(D )即不充分又不必要条件
3
4.三角形的两边之差为 2,夹角的余弦为3
,这个三角形的面积为14,那么这两边分别() 5
(A)
3,5
(B)
4,6
(C)
6,8
(D)5,7
(A )
(C ) 或2貝 (D ) 3
A. 2073m, 40 "m
3
B. 10j 3m,2073m
C.10(5/3-72)m,205/3m
D.
(C )充要条件
5
5. 一只汽球在2250m 的高空飞行,汽球上的工件人员测得前方一座山顶上 A 点处的俯角为 2000m 后,又测得 A 点处的俯角为820,则山的高度为(3 ,B 的速度是A 的3,过三小时后,A 、B 的距离是
A. 1988m
B. 2096m
C. 3125m
D. 2451m
6.已知轮船 A 和轮船 B 同时离开C 岛,A 向北偏东250方向,B 向西偏北200方向,若A 的
180,汽球向前飞行了
航行速度为
25 n mi/h
7.货轮在海上以40km/h的速度由B到C航行,航向为方位角N NBC= 1400, A处有灯塔,
其方位角N NBA =110°,在C处观测灯塔A的方位角N MCA =35°,由B到C需航行半小
时,则C到灯塔A的距离是
8.如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西
30 :相距10海里C处的乙船,
试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1 ")?
i北
(I)求sin NABD 的值; (n)求ABCD的面积.
B组提高能力,灵活迁移
9. AABC中,内角A,B,C成等差数列,边长a =8,b =7,求cosC 及i ABC面积.
10.在MBC 中,满足a(bcosB —ccosC) =(b2—c2)cos A ,则三角形的形状
11.如图所示,某海岛上一观察哨A上午11时测得一轮船在海岛北偏东60°的C处,12时20分测得船在海岛北偏西60°的B处,12时40分轮船到达位于海岛正西方且距海岛5 km的E港口,如果轮船始终匀速直线前进,问船速多少?
【应对高考,寻找网络节点】(10m
12.(西城二模15)如图,在四边形ABCD中,AB=3, AD = BC=CD=2 ,
A =60".
【温故知新,融会而贯通】(10m
13.在^ABC中,已知角A, B, C的对边分别为a, b, c,且bcosB + ccosC= acosA,试判断△ ABC 的形状.
【今日小结】
【尝试回忆,高效贮备知识】(坚持每日睡前3m
1.知识的再梳理:
2. 题型的再回忆:
(I)求sin NABD 的值; (n)求ABCD的面积.
3.方法、技能与易错点重现:
4. 数学思想方法:。