全等三角形的知识点总结
全等三角形(知识点讲解)
![全等三角形(知识点讲解)](https://img.taocdn.com/s3/m/83705973842458fb770bf78a6529647d272834b3.png)
全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。
在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。
一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。
简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。
二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。
当两个三角形的三条边分别相等时,它们就是全等的。
2. SAS判定法:即边-角-边判定法。
当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。
3. ASA判定法:即角-边-角判定法。
当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。
4. AAS判定法:即角-角-边判定法。
当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。
需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。
三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。
即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。
2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。
4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。
通过以上性质,我们可以进行全等三角形的各种推理和计算。
四、全等三角形的应用全等三角形在几何学的应用非常广泛。
三角形全等知识点
![三角形全等知识点](https://img.taocdn.com/s3/m/5893317bba1aa8114431d9b8.png)
一、全等三角形的判定方法:(1)三边对应相等的两个三角形全等。
SSS(2)两角和它们的夹边对应相等的两个三角形全等。
ASA(3)两角和其中一角的对边对应相等的两个三角形全等。
AAS(4)两边和它们的夹角对应相等的两个三角形全等。
SAS二、直角三角形全等判定定理:(1)三边对应相等的两个三角形全等。
SSS(2)两角和它们的夹边对应相等的两个三角形全等。
ASA(3)两角和其中一角的对边对应相等的两个三角形全等。
AAS(4)两边和它们的夹角对应相等的两个三角形全等。
SAS(5)斜边和一条直角边对应相等的两个直角三角形全等。
HL三、全等三角形的性质(1)全等三角形对应角相等。
(2)全等三角形对应边相等。
(3)全等三角形的对应高、对应中线、对应角平分线相等。
(4)全等三角形周长相等(5)全等三角形面积相等(6)全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换.四、角平分线的定义、定理及判定1、定义:一条射线把一个角平均分成两个相等的角,这条射线叫做这个角的平分线。
2、定理定理1:角平分线上的点到这个角的两边的距离相等定理2:到一个角的两边距离相等的点在这个角平分线上。
3、角平分线判定:1、利用定义2、利用定理2五、线段的垂直平分线的定义、定理及判定经1、定义:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
2、定理定理1:线段垂直平分线上的点到这条线段两个端点的距离相等。
定理2:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3、线段的垂直平分线判定:1、利用定义。
2、利用定理2。
十二章《全等三角形》知识点归纳总结
![十二章《全等三角形》知识点归纳总结](https://img.taocdn.com/s3/m/9f3fabf2910ef12d2af9e7cf.png)
第十二章《全等三角形》知识要点归纳总结一、知识网络二、基础知识梳理(一)基本概念1、全等三角形的定义全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形周长、面积相等。
3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
SSS(2)两边和它们的夹角对应相等的两个三角形全等。
SAS(3)两角和它们的夹边对应相等的两个三角形全等。
ASA(4)两角和其中一角的对边对应相等的两个三角形全等。
AAS(5)斜边和一条直角边对应相等的两个直角三角形全等。
HL4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。
运用定理证明三角形全等时要注意以下几点。
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS) ②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或 ASA) ②夹等角的另一组边相等(SAS)(三)疑点、易错点1、对全等三角形书写的错误在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。
(完整版)全等三角形知识点总结
![(完整版)全等三角形知识点总结](https://img.taocdn.com/s3/m/e587fb107fd5360cba1adb8d.png)
全等三角形 知识梳理一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 S S S 全等形全等三角形应用边角边 S A S 判定角边角 A S A 角角边 A A S 斜边、直角边 H L 作图 角平分线性质与判定定理二、基础知识梳理(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
全等三角形知识点
![全等三角形知识点](https://img.taocdn.com/s3/m/ef1a1bd170fe910ef12d2af90242a8956becaa97.png)
全等三角形知识点摘要:全等三角形是初中数学中的一个重要概念,它指的是两个三角形在形状和大小完全相同的情况下,它们的对应边和对应角完全相等。
本文将详细介绍全等三角形的定义、性质、判定条件以及在几何题中的应用。
关键词:全等三角形、对应边、对应角、判定条件、几何应用1. 全等三角形的定义全等三角形(Congruent Triangles)指的是两个三角形在几何形状和大小上完全相同,即它们的所有对应边和对应角都相等。
在数学符号中,我们通常用“≌”来表示全等。
2. 全等三角形的性质全等三角形具有以下性质:- 对应边相等:两个全等三角形的对应边长度完全相同。
- 对应角相等:两个全等三角形的对应角度数完全相同。
- 对应边上的高相等:两个全等三角形对应边上的高(垂直于边的线段)长度也相等。
- 对应角的平分线相等:两个全等三角形对应角的角平分线长度相等。
- 对应边上的中线相等:两个全等三角形对应边上的中线(连接顶点和对边中点的线段)长度相等。
3. 全等三角形的判定条件要判定两个三角形是否全等,可以通过以下几种条件:- SSS(边边边):如果两个三角形的三边分别相等,那么这两个三角形全等。
- SAS(边角边):如果两个三角形有两边及它们的夹角分别相等,那么这两个三角形全等。
- ASA(角边角):如果两个三角形有两角及它们之间的边分别相等,那么这两个三角形全等。
- AAS(角角边):如果两个三角形有两角及其中一角的对边分别相等,那么这两个三角形全等。
- HL(直角边-直角边):对于直角三角形,如果斜边和一条直角边分别相等,那么这两个三角形全等。
4. 全等三角形在几何题中的应用全等三角形的概念在解决几何问题时非常有用,尤其是在涉及角度和长度计算的问题中。
通过识别和证明三角形全等,我们可以得出隐藏的边长和角度关系,从而解决复杂的几何构造问题。
5. 结论全等三角形是几何学中的一个基础概念,它在解决几何问题中扮演着关键角色。
《全等三角形》讲义(完整版)
![《全等三角形》讲义(完整版)](https://img.taocdn.com/s3/m/2e736e78b94ae45c3b3567ec102de2bd9605de2d.png)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
((简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ASA)) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS AAS)) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL HL)) 角平分线的性质:在角平分线上的点到角的两边的距离相等在角平分线上的点到角的两边的距离相等. .∵OP 平分∠平分∠AOB AOB AOB,,PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,∴PM=PN 角平分线的判定:到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上. .∵PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,PM=PN ∴OP 平分∠平分∠AOB AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BCPMN O例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△、如图,△ABC ABC 是一个钢架,是一个钢架,AB=AC AB=AC AB=AC,,AD 是连结点A 与BC 中点D 的支架.的支架.求证:△求证:△ABD ABD ABD≌△≌△≌△ACD ACD ACD..例3、已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:、如图:D D 在AB 上,上,E E 在AC 上,上,AB AB AB==AC AC,∠,∠,∠B B =∠=∠C C .求证AD AD==AE AE..例5、如图:∠、如图:∠1=1=1=∠∠2,∠,∠3=3=3=∠∠4 求证:求证:AC=AD AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm,求DE 的长.AGF CBDE图1AEB DCFAB CDED C EF BA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①,求证:① △BEC ≌△DAE ;②DF ⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块三、专题版块 专题一:专题一: 全等三角形的判定和性质的应用全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB AB、AC 为边作两个等腰三角形ABD 和ACE ACE,使∠,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF CD,AF∥∥DE,BE=CF,DE,BE=CF,求证:求证:求证:AB=CD. AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
八年级数学《全等三角形》知识点
![八年级数学《全等三角形》知识点](https://img.taocdn.com/s3/m/f6bc363102d8ce2f0066f5335a8102d276a26139.png)
八年级数学《全等三角形》知识点八年级数学《全等三角形》知识点一、全等三角形的定义全等三角形是指能够完全重合的两个三角形。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角,两条对应边所夹的角是对应角;有公共边的,公共边一定是对应边;有公共角的,角一定是对应角;有对顶角的,对顶角一定是对应角。
全等”的图形必须满足形状相同且大小相等。
即能够完全重合的两个图形叫全等形。
全等三角形的性质包括对应边相等、对应角相等、对应边上的高对应相等、对应角平分线相等、对应中线相等、面积相等和周长相等。
二、三角形全等的判定定理判定三角形全等有五种定理:SSS或“边边边”、SAS或“边角边”、ASA或“角边角”、AAS或“角角边”和HL或“斜边,直角边”。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
判定两个三角形全等必须有一组边对应相等。
其中,A是英文“角”的缩写(angle),S是英文“边”的缩写(side)。
三、全等三角形的性质全等三角形的性质包括对应角相等、对应边相等、对应边上的高对应相等、对应角平分线相等、对应中线相等、面积相等和周长相等。
另外,角平分线上的点到这个角的两边的距离相等,线段垂直平分线上的点到这条线段两个端点的距离相等。
四、证题的思路证题的思路可以通过找夹角(SAS)来解决。
已知两边可以找直角(HL)定理,找第三边可以用SSS 定理。
如果已知一边为角的对边,则可以用AAS定理。
如果已知一个角和一边,则可以用SAS定理。
如果已知一边和一个角,则可以用ASA定理。
如果已知两个角,则可以用AAS 定理或者任意一边的SSS定理。
灵活运用定理需要注意全等三角形的条件和判定方法。
找出两个全等三角形中的对应边和对应角是关键。
在写两个三角形全等时,要注意对应的顶点、角和边的顺序。
《全等三角形》讲义(完整版)
![《全等三角形》讲义(完整版)](https://img.taocdn.com/s3/m/956e5e4a657d27284b73f242336c1eb91b373316.png)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
(简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS ) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL ) 角平分线的性质:在角平分线上的点到角的两边的距离相等.∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN角平分线的判定:到角的两边距离相等的点在角的平分线上.∵PM ⊥OA 于M ,PN ⊥OB 于N ,PM=PN ∴OP 平分∠AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BC PMNO例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .例3、已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C .求证AD =AE .例5、如图:∠1=∠2,∠3=∠4 求证:AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.AGF C BDE图1AEB DCFAB CDE D C EFBA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:① △BEC ≌△DAE ;②DF⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块专题一: 全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB 、AC 为边作两个等腰三角形ABD 和ACE ,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF ∥DE,BE=CF,求证:AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
全等三角形知识点
![全等三角形知识点](https://img.taocdn.com/s3/m/8eb5e019a216147917112892.png)
1.全等形:能够完全重合的两个图形。
平移、翻折、旋转前后的图形全等。
2.全等三角形:能够完全重合的两个三角形。
3.全等三角形的性质:⑴全等三角形的对应边相等;⑵全等三角形的对应角相等;⑶全等三角形周长、面积相等;⑷全等三角形的对应边上的中线、高线、对应角平分线相等。
4.三角形具有稳定性;5.三角形的三边关系:两边之和大于第三边;两边之差小于第三边。
6.三角形的内角和等于180O;四边形的内角和等于360O;三角形的一个外角等于与它不相邻的两个内角之和。
7.等腰三角形的两腰相等,两个底角相等;反之:有两边相等的三角形是等腰三角形;有两个角相等的三角形是等腰三角形。
8.两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
反之也成立。
9.同角或等角的余角相等;同角或等角的补角相等。
10.同底等高或等底同高的两个三角形面积相等。
11.全等三角形的判定定理:定理1:(边边边或SSS)三边对应相等的两个三角形全等。
定理2:(边角边或SAS)两边和它们的夹角对应相等的两个三角形全等。
定理3:(角边角或ASA)两角和它们的夹边境地区对应相等的两个三角形全等。
定理4:(角角边或AAS)两角和其中一个角的对边对应相等的两个三角形全等。
定理5:(斜边、直角边或HL)斜边和一条直角边对应相等的两个直角三角形全等。
12.角平分线定理:角平分线上的点到角的两边的距离相等。
角平分线的逆定理:角的内部到角的距离相等的点在角的平分线上。
13.三角形的内心:三角形的三条角平分线相交于一点,这点是三角形内切圆的圆心,也叫三角形的内心。
内心到三角形三边的距离相等。
1.全等形:能够完全重合的两个图形。
平移、翻折、旋转前后的图形全等。
2.全等三角形:能够完全重合的两个三角形。
3.全等三角形的性质:⑴全等三角形的对应边相等;⑵全等三角形的对应角相等;⑶全等三角形周长、面积相等;⑷全等三角形的对应边上的中线、高线、对应角平分线相等。
全等三角形知识点
![全等三角形知识点](https://img.taocdn.com/s3/m/8532e06dbc64783e0912a21614791711cc797984.png)
全等三角形知识点1.全等三角形的定义:两个三角形ABC和DEF,如果边AB和边DE对应相等,边AC和边DF对应相等,且∠BAC和∠EDF对应相等,那么称三角形ABC与三角形DEF全等。
2.全等三角形的性质:(1)全等三角形的任意两边对应的角也相等,即∠ABC=∠DEF,∠ACB=∠DFE。
(2)全等三角形的任意两角对应的边也相等,即AB=DE,AC=DF。
(3)全等三角形的任意一边对应的两角也相等,即∠B=∠E,∠C=∠F。
(4)全等三角形的相等角的对边也相等,即BC=EF。
(5)全等三角形的相等边的对角也相等,即∠A=∠D。
3.全等三角形的判定方法:(1)SSS判定法:若两个三角形的三边分别对应相等,则两个三角形全等。
(2)SAS判定法:若两个三角形的两边和夹角对应相等,则两个三角形全等。
(3)ASA判定法:若两个三角形的两角和夹边对应相等,则两个三角形全等。
(4)AAS判定法:若两个三角形的两角和非夹边对应相等,则两个三角形全等。
4.全等三角形的推论:(1)全等三角形的对应边的中点连线平行且等于对应边的中点连线。
(2)全等三角形的对应角的角平分线相交于一点且平分角相等。
(3)全等三角形的高线和中线分别平行(且等于),中点线和中线相等。
(4)全等三角形的内角和相等。
(5)全等三角形的周长相等。
(6)全等三角形的面积相等。
5.全等三角形的应用:(1)在计算中,通过判断两个三角形是否全等,可以求出其他未知量。
(2)在建筑和工程设计中,通过全等三角形的性质可以测量和确定物体的高度和距离。
(3)在制图和绘画中,可以利用全等三角形的性质来进行放缩和比例调整。
(4)在几何证明中,全等三角形是基础的推理和证明工具,常用于证明其他几何命题。
全等三角形是几何学中重要的基本概念,掌握全等三角形的性质和判定方法对于理解研究几何学具有重要意义。
在学习和应用中,需要注意掌握全等三角形的各种推论,灵活运用全等三角形的性质解决问题。
初二数学全等三角形知识点总结
![初二数学全等三角形知识点总结](https://img.taocdn.com/s3/m/a3f93bb8c9d376eeaeaad1f34693daef5ff71343.png)
初二数学全等三角形知识点总结1. 什么是全等三角形全等三角形指的是具有相同形状和大小的三角形。
当两个三角形的所有对应边长和对应角度相等时,它们是全等三角形。
2. 判断全等三角形的条件两个三角形全等的判断条件有三个:•SSS(边边边)法则:当两个三角形的三条边分别对应相等时,它们是全等的。
•SAS(边角边)法则:当两个三角形的一个边和两个角分别对应相等时,它们是全等的。
•ASA(角边角)法则:当两个三角形的两个角和一个边分别对应相等时,它们是全等的。
3. 全等三角形的性质全等三角形具有以下性质:•对应边相等性质:全等三角形的对应边相等。
•对应角相等性质:全等三角形的对应角相等。
•全等三角形的三个内角和完全相等。
4. 全等三角形的应用全等三角形的知识在解决实际问题中有着广泛的应用。
•测量不可直接测量的长度:通过构造辅助的全等三角形,可以测量一些不可直接测量的长度。
•几何证明:全等三角形的性质可以用于几何证明过程中,简化证明的步骤。
•建模和仿真:在建模和仿真过程中,全等三角形的概念可以用于确定相似物体的尺寸和位置。
5. 解题技巧和注意事项在解题过程中,需要注意以下技巧和事项:•注意给定条件:仔细阅读题目,了解给定条件,判断是否可以使用全等三角形的知识进行解题。
•画图辅助理解:通过画图,可以更清晰地理解问题,辅助解题。
•注意证明过程:在使用全等三角形进行几何证明时,需要注意证明过程的严谨性和逻辑性。
•多做练习:通过多做一些练习题,加深对全等三角形知识的理解和应用能力。
6. 总结全等三角形是初中数学中重要的概念,它可以帮助我们解决实际问题,简化几何证明过程,并应用于建模和仿真。
在学习和应用全等三角形的过程中,我们需要掌握判断全等三角形的条件,了解全等三角形的性质,注意解题技巧和注意事项。
通过不断练习和应用,我们可以更好地理解和掌握全等三角形的知识。
第十二章全等三角形知识点总结
![第十二章全等三角形知识点总结](https://img.taocdn.com/s3/m/e6e542d758f5f61fb7366625.png)
∵ △ABC≌△DEF
∴ ①AB=DE
④ ∠A= ∠D
② BC=EF ③ CA=FD
⑤ ∠B=∠E
⑥ ∠C= ∠F
注意: 寻找对应元素的规律 (1)有公共边的,公共边是对应边;
(2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边是对应边,最小边是对应边;
(5)最大角是对应角,最小角是对应角;
F
∴ △ABC ≌△ DEF(SAS)
“ASA”判定方法:
几何语言: 在△ABC和△ DEF中 ∠ B =∠ E BC=EF ∠ C =∠ F ∴ △ABC ≌△ DEF(ASA)
E B
A C
D F
“AAS”判定方法:
几何语言: 在△ABC和△ DEF中 ∠ A =∠ D ∠ B =∠ E BC=EF ∴ △ABC ≌△ DEF(AAS)
4
三 角 形 两边和它们的夹角分别相等的两个三角形全等 全 简写为“边角边”或“SAS ” 等 的 两角和它们的夹边分别相等的两个三角形全等 判 简写为“角边角”或“ASA” 定 方 两角分别相等且其中一组等角的对边相等的两个三角形 法 全等。简写为“角边角”或“AAS”
斜边和一条直角边分别相等的两个直角三角形全等 简写为“斜边、直角边”或“HL”
三边对应相等的两个三角形全等 简写为:“边边边”或“SSS”
“SSS”判定方法:
几何语言: 在△ABC和△ DEF中 AB=DE BC=EF CA=FD ∴ △ABC ≌△ DEF(SSS)
E B
A C
D F
“SAS”判定方法:
A
几何语言:
B
D E
C
在△ABC和△ DEF中
全等三角形知识点总结
![全等三角形知识点总结](https://img.taocdn.com/s3/m/b051fe34571252d380eb6294dd88d0d232d43c47.png)
全等三角形知识点总结一、全等三角形的概念1. 定义- 能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
- 例如,△ABC与△DEF全等,记作△ABC≌△DEF,其中A与D、B与E、C与F 是对应顶点,AB与DE、BC与EF、AC与DF是对应边,∠A与∠D、∠B与∠E、∠C 与∠F是对应角。
2. 全等三角形的性质- 对应边相等:若△ABC≌△DEF,则AB = DE,BC = EF,AC = DF。
- 对应角相等:∠A=∠D,∠B = ∠E,∠C=∠F。
- 全等三角形的周长相等,面积相等。
因为全等三角形的对应边相等,所以它们的周长(三边之和)相等;又因为对应边和对应角都相等,根据三角形面积公式(如S=(1)/(2)ahsin B等多种公式都可推出),其面积也相等。
二、全等三角形的判定1. SSS(边边边)判定定理- 内容:三边对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。
- 作用:可以用来证明两个三角形全等,当已知两个三角形的三边长度分别相等时,就可以直接判定它们全等。
2. SAS(边角边)判定定理- 内容:两边和它们的夹角对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果AB = DE,∠A = ∠D,AC = DF,那么△ABC≌△DEF。
这里要注意必须是两边及其夹角,不能是两边及其中一边的对角。
- 作用:在已知三角形两边长度和它们夹角大小的情况下,用于判定三角形全等。
3. ASA(角边角)判定定理- 内容:两角和它们的夹边对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果∠A = ∠D,AB = DE,∠B = ∠E,那么△ABC≌△DEF。
- 作用:当知道两个三角形两角及其夹边相等时,可判定全等。
4. AAS(角角边)判定定理- 内容:两角和其中一角的对边对应相等的两个三角形全等。
全等三角形 知识点总结
![全等三角形 知识点总结](https://img.taocdn.com/s3/m/54c8be49df80d4d8d15abe23482fb4daa58d1db2.png)
全等三角形知识点总结在初中数学学习中,我们学习到了三角形的全等。
全等三角形是初中数学中一个非常重要的知识点,也是基础中的基础。
全等三角形的概念、性质和判定方法都是我们需要掌握的重点内容。
本文将对全等三角形的相关知识点进行总结,帮助大家更好地掌握和理解这一部分内容。
一、全等三角形的定义什么是全等三角形呢?全等三角形是指在三角形的三个对应角相等、三个对应边相等的情况下,我们就可以称这两个三角形是全等的。
用符号来表示的话,就是∆ABC≌∆DEF,其中A、B、C分别是∆ABC的三个顶点,D、E、F分别是∆DEF的三个顶点。
全等三角形的性质1、全等三角形的性质1:对应角相等如果两个三角形是全等的,那么它们的三个对应角分别相等。
也就是说,在全等三角形中,三个对应角是相等的。
2、全等三角形的性质2:对应边相等如果两个三角形是全等的,那么它们的三个对应边分别相等。
也就是说,在全等三角形中,三个对应边是相等的。
3、全等三角形的性质3:对应线段相等如果两个三角形是全等的,那么它们的对应线段(如中线、角平分线等)也相等。
二、全等三角形的判定方法全等三角形有几种判定方法,下面我们分别来看看。
1、全等三角形的判定方法一:SAS判定法SAS判定法是指边-角-边全等判定法。
也就是说,如果两个三角形的一个角和两个边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应边相等,且夹在中间的对应角也相等,那么这两个三角形是全等的。
2、全等三角形的判定方法二:ASA判定法ASA判定法是指角-边-角全等判定法。
也就是说,如果两个三角形的两个角和一个夹在中间的边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应角相等,且夹在中间的对应边也相等,那么这两个三角形是全等的。
3、全等三角形的判定方法三:SSS判定法SSS判定法是指边-边-边全等判定法。
也就是说,如果两个三角形的三条边分别相等,则这两个三角形是全等的。
全等三角形的知识点梳理
![全等三角形的知识点梳理](https://img.taocdn.com/s3/m/2b7ca7fb0408763231126edb6f1aff00bfd57051.png)
全等三角形的知识点梳理全等三角形一、结构梳理概念:全等:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同。
全等三角形特征:形:能够完全重合的两个三角形叫全等三角形。
特例全等三角形。
全等三角形条件。
画三角形。
二、知识梳理一)概念梳理1.全等图形:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同。
2.全等三角形:能够完全重合的两个三角形叫全等三角形。
符号“≌”表示图形大小和形状都相等。
二)性质与判定梳理1.全等图形性质:全等多边形的对应边、对应角分别相等。
全等三角形的对应边、对应角分别相等。
2.全等三角形的判定:判断两个三角形全等的方法有:1)三边对应相等的两个三角形全等,XXX为:SSS;2)两角和它们的夹边对应相等的两个三角形全等,XXX 为:ASA;3)两角和其中一角的对边对应相等的两个三角形全等,XXX为:AAS;4)两边和它们的夹角对应相等的两个三角形全等,XXX 为:SAS。
若是直角三角形,则还有斜边、直角边公理(HL)。
判断三角形全等的基本思路:要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),从而得到判定两个三角形全等的思路。
例如:已知两边,找另一边:SSS。
已知边为角的对边,找任一角:AAS。
已知两角,找任一边:ASA。
已知一边一角,找这条边上的对角:AAS。
边就是角的一条边,找该角的另一边:SAS。
找两角的夹边:ASA。
何格式错误,删除明显有问题的段落,改写如下。
学会辨认全等三角形的对应元素是很重要的。
方法是先找出全等三角形的对应顶点,再确定对应角和对应边。
例如,如果已知△ABC≌EFD,则A与E、B与F、C与D对应,因此三角形的边AB与EF、BC与FD、AC与ED对应。
对应边所夹的角就是对应角。
此外,还有如下规律:(1)全等三角形的公共边是对应边,公共角是对应角,对顶角是对应角;(2)全等三角形的两个对应角所夹的边是对应边,两条对应边所夹的角是对应角。
三角形全等知识点总结
![三角形全等知识点总结](https://img.taocdn.com/s3/m/4fa75da7fbb069dc5022aaea998fcc22bdd14377.png)
全等三角形知识总结【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.【知识网络】【要点梳理】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路 SAS HL SSS AAS SAS ASA AAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线的性质1. 角的平分线的性质定理2. 角的平分线上的点到这个角的两边的距离相等.3.角的平分线的判定定理4.角的内部到角的两边距离相等的点在角的平分线上.5.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.6.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法:可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.。
全等三角形知识点归纳
![全等三角形知识点归纳](https://img.taocdn.com/s3/m/d5ad03d1d1d233d4b14e852458fb770bf78a3bc2.png)
全等三角形知识点归纳一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
二、全等三角形的性质1、全等三角形的对应边相等也就是说,如果两个三角形全等,那么它们对应的边长度是相等的。
比如,三角形 ABC 全等于三角形 DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等同样,如果两个三角形全等,它们对应的角的度数也是相等的。
比如,∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等因为全等三角形的对应边相等,所以它们的周长也必然相等。
4、全等三角形的面积相等由于全等三角形完全重合,所以它们所覆盖的面积是一样的。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如:在三角形 ABC 和三角形 DEF 中,AB = DE,BC = EF,AC = DF,那么三角形 ABC 全等于三角形 DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如:在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么三角形 ABC 全等于三角形 DEF。
3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
举例:在三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC 全等于三角形 DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
例如:在三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,那么三角形 ABC 全等于三角形 DEF。
5、 HL(斜边、直角边)对于两个直角三角形,如果它们的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
比如:在直角三角形 ABC 和直角三角形 DEF 中,∠C =∠F =90°,AB = DE,AC = DF,那么三角形 ABC 全等于三角形 DEF。
全等三角形知识点及方法归纳
![全等三角形知识点及方法归纳](https://img.taocdn.com/s3/m/038596d25022aaea998f0f41.png)
一、知识要点:1.全等形的概念:能够完全重合的两个图形叫做全等形.2.全等形的性质:(1)形状相同.(2)大小相等.3.全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.4.全等三角形的表示:(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.(2)如图,和全等,记作.通常对应顶点字母写在对应位置上.5.全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等.(2)全等三角形的周长、面积相等.6.全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换.7.全等三角形基本图形翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素8.两个三角形全等的条件(1)全等三角形的判定1——边边边公理三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.“边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架).(2)全等三角形的判定2——边角边公理两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.(3)全等三角形的判定3——角边角公理两角和它们的夹边对应相等的两个三角形全等.简写为“角边角”或“ASA”.(4)全等三角形的判定4——角角边推论两角和其中一角的对边对应相等的两个三角形全等.简称“角角边”“AAS”.(5)直角三角形全等的判定——斜边直角边公理斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边直角边”或“HL”.判定直角三角形全等的方法:①一般三角形全等的判定方法都适用;②斜边-直角边公理9、判定三角形全等方法的选择:10、一般情况下,证明关于三角形全等的题有以下步骤:(1)读题:明确题中的已知和求证;(2)要观察待证的线段或角,在哪两个可能全等的三角形中(3)、分析要证两个三角形全等,已有什么条件,还缺什么条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的知识点总结
全等三角形知识点是初中三角形知识的一个分支,下面全等三角形的知识点总结是小编想跟大家分享的,欢迎大家浏览。
全等三角形的知识点总结
定义
能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中相似比为1:1的特殊情况)
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
表示:全等用“≌”表示,读作“全等于”。
判定公理
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到
4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角
三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA角角角和SSA(特例:直角三角形为HL,属于SSA)边边角,这两种情况都不能唯一确定三角形的形状。
A是英文角的缩写(angle),S是英文边的缩写(side)。
H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。
6.三条中线(或高、角分线)分别对应相等的两个三角形全等。
性质
三角形全等的条件:
1、全等三角形的对应角相等。
2、全等三角形的对应边相等
3、全等三角形的对应顶点相等。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角平分线相等。
6、全等三角形的对应中线相等。
7、全等三角形面积相等。
8、全等三角形周长相等。
9、全等三角形可以完全重合。
三角形全等的方法:
1、三边对应相等的两个三角形全等。
(SSS)
2、两边和它们的夹角对应相等的两个三角形全等。
(SAS)
3、两角和它们的夹边对应相等的两个三角形全等。
(ASA)
4、有两角及其一角的对边对应相等的两个三角形全等(AAS)
5、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)
推论
要验证全等三角形,不需验证所有边及所有角也对应地相同。
以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:
S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。
R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。
但并非运用任何三个相等的部分便能判定三角形是否全等。
以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:
A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
A.S.S. (Angle-Side-Side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。
但若是直角三角形的话,应以R.H.S.来判定。
运用
1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测相等的距离。
以及相等
的角,可以用于工业和军事。
5、三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。