线性代数自考试题及答案
自考线性代数试题及答案

自考线性代数试题及答案一、选择题(每题2分,共20分)1. 下列矩阵中,哪一个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]答案:B2. 设向量v = (1, 2, 3),向量w = (4, 5, 6),则向量v与向量w 的点积为:A. 32B. 34C. 36D. 38答案:A3. 对于线性变换T: R^3 → R^2,如果T(x, y, z) = (x + z, y - z),那么T的秩是:A. 1B. 2C. 3D. 4答案:B4. 设A和B是两个n阶方阵,若AB = BA,则称矩阵A和B是可交换的。
若A和B是两个n阶实对称矩阵,且AB = BA,那么:A. A和B一定可交换B. A和B一定不可交换C. A和B可交换或不可交换D. 无法判断A和B是否可交换答案:A5. 对于任意的n阶方阵A,以下哪个选项是正确的?A. |A| = |A^T|B. det(A) = det(A^T)C. trace(A) = trace(A^T)D. A * A^T 一定是对称矩阵答案:C6. 设A是m×n矩阵,B是n×p矩阵,若AB = 0,则:A. 必有B = 0B. 必有A = 0C. 必有rank(A) + rank(B) ≤ max(m, p)D. rank(AB) ≤ rank(A)答案:D7. 对于n维向量空间V,以下哪个命题是线性代数的基本定理?A. 每个向量都可以由V的一组基唯一表示B. V中任意两个不同的向量都是线性无关的C. V中任意非零向量都是可逆的D. V中任意两个向量都线性相关答案:A8. 设λ是n阶方阵A的一个特征值,对应的特征向量为v,则:A. (A - λI)v = 0B. Av = vC. A^2v = λ^2vD. (A + I)v = λv答案:A9. 对于任意矩阵A,以下哪个选项是正确的?A. |A| = |A^2|B. det(A) = det(A^2)C. trace(A) = trace(A^2)D. A^2 一定是可逆的答案:B10. 设A是m×n矩阵,B是n×m矩阵,且AB = Im,则:A. B一定是A的逆矩阵B. A一定是B的逆矩阵C. A和B互为逆矩阵D. A和B不一定是方阵答案:C二、填空题(每题3分,共15分)11. 设矩阵A = [1, 2; 3, 4],则A的特征多项式为f(λ) = _______。
自考线性代数试题及答案

自考线性代数试题及答案一、选择题(每题2分,共20分)1. 在线性代数中,向量空间的基具有什么性质?A. 唯一性B. 线性无关性C. 任意性D. 可数性答案:B2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关行的最大数目D. 矩阵中线性无关列的最大数目答案:D3. 线性变换的核是指什么?A. 变换后的向量集合B. 变换前的向量集合C. 变换后为零向量的向量集合D. 变换前为零向量的向量集合答案:C4. 线性方程组有唯一解的条件是什么?A. 方程的个数等于未知数的个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩答案:D5. 特征值和特征向量在矩阵理论中具有什么意义?A. 矩阵的对角化B. 矩阵的转置C. 矩阵的行列式D. 矩阵的迹答案:A6. 以下哪个矩阵是正交矩阵?A. 对角矩阵B. 单位矩阵C. 任意矩阵D. 零矩阵答案:B7. 矩阵的迹是矩阵对角线上元素的什么?A. 和B. 差C. 积D. 比答案:A8. 线性代数中的线性组合是什么?A. 向量的加法B. 向量的数乘C. 向量的加法和数乘的组合D. 向量的点积答案:C9. 矩阵的行列式可以用于判断矩阵的什么性质?A. 可逆性B. 秩C. 正交性D. 特征值答案:A10. 线性变换的值域是指什么?A. 变换前的向量集合B. 变换后的向量集合C. 变换前的向量空间D. 变换后的向量空间答案:B二、填空题(每空1分,共10分)11. 矩阵的转置是将矩阵的______交换。
答案:行与列12. 方程组 \( Ax = 0 \) 是一个______方程组。
答案:齐次13. 矩阵 \( A \) 和矩阵 \( B \) 相乘,记作 \( AB \),其中\( A \) 的列数必须等于______的行数。
答案:B14. 向量 \( \mathbf{v} \) 的长度(或范数)通常表示为\( \left\| \mathbf{v} \right\| \),它是一个______。
自考线性代数试题库及答案

自考线性代数试题库及答案一、选择题1. 下列矩阵中,哪一个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]答案:B2. 设向量组α1 = (1, 2, 3), α2 = (4, 5, 6), α3 = (7, 8, 9),这三个向量是否线性相关?A. 是B. 不是答案:A3. 对于矩阵A,|A|表示其行列式,若|A| = 0,则A是:A. 可逆矩阵B. 非可逆矩阵C. 零矩阵D. 单位矩阵答案:B二、填空题4. 设矩阵B是由矩阵A通过初等行变换得到的,若B = [1, 2, 3; 4, 5, 6; 7, 8, 9],则A至少包含____个非零行。
答案:三5. 对于任意的n阶方阵A,Tr(A)表示A的______。
答案:迹三、解答题6. 已知矩阵A = [2, -1; 1, 3],求A的逆矩阵A^(-1)。
答案:首先计算A的行列式,|A| = (2 * 3) - (-1 * 1) = 7。
然后计算A的伴随矩阵,即adj(A) = [(3, 1); (-1, 2)]。
最后,A^(-1) = (1/|A|) * adj(A) = [(3/7), (1/7); (-1/7), (2/7)]。
7. 设向量空间V中的向量v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (1, 1, 0)。
证明v1, v2, v3线性无关。
答案:要证明v1, v2, v3线性无关,我们需要证明对于任意的实数a, b, c,只要a * v1 + b * v2 + c * v3 = 0,那么a = b = c = 0。
设a * v1 + b * v2 + c * v3 = (a + b, b + c, a + c) = (0, 0, 0),由此可得a + b = 0,b + c = 0,a + c = 0。
通过简单的代数运算,可以得出a = b = c = 0,因此v1, v2, v3线性无关。
02198自考线性代数试卷及答案

《线性代数》试题一(课程代码:02198)一、单选题(本大题共10小题,每小题2分,共20分)1.若矩阵A满足Aˆ2-5A=E,则矩阵(A-5E)ˆ-1=【】A、A-5EB、A+5EC、AD、-A2.设矩阵A是2阶方阵,且det(A)=3,则det(5A)=【】A、3B、15C、25D、753.设矩阵A,B,X为同阶方阵,且A,B可逆,若A(X-E)B=B,则矩阵X=【】A、E+Aˆ-1B、E+AC、E+Bˆ-1D、E+B4.设矩阵A1,A2均为可逆方阵,则以下结论正确的是【】5.设αˇ1,αˇ2,…,αˇk是n维列向量,则αˇ1,αˇ2,…αˇk线性无关的充分必要条件是【】A、向量组αˇ1,αˇ2,…,αˇk中任意两个向量线性无关B、存在一组不全为0的数lˇ1,lˇ2,…,lˇk,使得lˇ1αˇ1+lˇ2αˇ2+…+lˇkαˇk≠0C、向量组αˇ1,αˇ2,…,αˇk中存在一个向量不能由其余向量线性表示D、向量组αˇ1,αˇ2,…,αˇk中任意一个向量都不能由其余向量线性表示6.设α=(aˇ1,aˇ2,aˇ3),β=(bˇ1,bˇ2,bˇ3),其中aˇ1,aˇ2,aˇ3不全为0,且bˇ1,bˇ2,bˇ3不全为0,则αˇTβ的秩为【】A、0B、1C、2D、37.设三阶方阵A的特征值分别为1/2,1/4,3,则Aˆ-1的特征值为【】A、2,4,1/3B、1/2,1/4,1/3C、1/2,1/4,3D、2,4,38.二次型f(X1,X2,X3)=(X1+X2+X3)2的矩阵是【】9.以下关于正定矩阵叙述正确的是【】A、正定矩阵的特征值一定大于零B、正定矩阵的行列式一定小于零C、正定矩阵的乘积一定是正定矩阵D、正定矩阵的差一定是正定矩阵10.设A为3阶矩阵,且|A|=3,则|(-A)ˆ-1|=【】A、-3B、-1/3C、1/3D、3二、填空题(本大题共10小题,每小题3分,共30分)1、在五阶行列式中,项的符号为____________。
自考试题线性代数题库及答案

自考试题线性代数题库及答案线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
以下是一套自考试题线性代数题库及答案,供学习者参考。
一、选择题1. 下列矩阵中,哪一个是可逆矩阵?A. \( A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \)B. \( B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)C. \( C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)D. \( D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \)答案: C2. 设 \( A \) 是一个 \( n \times n \) 矩阵,\( I \) 是 \( n\times n \) 的单位矩阵,若 \( A^2 = I \),则 \( A \) 称为:A. 正交矩阵B. 反对称矩阵C. 正交变换矩阵D. 反射变换矩阵答案: D二、填空题1. 设向量 \( \mathbf{v} = (1, 2, 3) \),向量 \( \mathbf{w} =(4, 5, 6) \),这两个向量的点积为 __________。
答案: 322. 若 \( A \) 是一个 \( m \times n \) 矩阵,\( B \) 是一个\( n \times p \) 矩阵,则 \( AB \) 的行列数为 __________。
答案: \( m \times p \)三、解答题1. 证明:若 \( A \) 是一个 \( n \times n \) 矩阵,且 \( A^n =I \),则 \( A \) 必定可逆。
解答:由于 \( A^n = I \),我们可以得出 \( A \) 的 \( n \) 次幂是单位矩阵。
自考线性代数试题及答案

自考线性代数试题及答案线性代数是数学中的一个重要分支,其应用广泛而深入。
对于参加自考线性代数考试的考生来说,熟悉并掌握相关的试题及答案是非常重要的。
本文将为大家提供一些常见的自考线性代数试题及答案,希望能对广大考生有所帮助。
第一部分:选择题1. 下列哪个不是线性代数的基本概念?A. 向量B. 矩阵C. 整数D. 行列式答案:C2. 在矩阵运算中,AB≠BA时,那么A和B一定是什么关系?A. 逆矩阵关系B. 对称矩阵关系C. 反对称矩阵关系D. 非方阵关系答案:D3. 线性方程组Ax=b,若有解,则必须满足下列哪个条件?A. 矩阵A可逆B. 矩阵A不可逆C. 矩阵A是对称阵D. 矩阵A的秩为0答案:A第二部分:填空题1. 设A为3×3矩阵,|A|=-2,那么A的行列式展开式中,元素a11、a12、a13分别是多少?答案:a11=-2,a12=0,a13=02. 矩阵的秩与其行数、列数之间有何关系?答案:矩阵的秩小于等于其行数和列数的最小值。
3. 矩阵的转置运算满足什么性质?答案:(AB)ᵀ = BᵀAᵀ第三部分:计算题1. 计算矩阵乘法:A = 2 1 3B = 0 -10 1 2 2 1-1 0 1 1 2答案:AB = (2*0 + 1*2 + 3*1) (2*-1 + 1*1 + 3*2)(0*0 + 1*2 + 2*1) (0*-1 + 1*1 + 2*2)(-1*0 + 0*2 + 1*1) (-1*-1 + 0*1 + 1*2)= 7 64 31 3第四部分:解答题1. 证明以下等式成立:(A + B)C = AC + BC证明:设A、B、C都是m×n的矩阵,按矩阵乘法的定义,左边的矩阵乘积为:(A + B)C = [(a11 + b11)*c11 + (a12 + b12)*c21 + ... + (a1n + b1n)*cn1][(a21 + b21)*c12 + (a22 + b22)*c22 + ... + (a2n + b2n)*cn2] ...[(am1 + bm1)*c1n + (am2 + bm2)*c2n + ... + (amn + bmn)*cnn]右边的矩阵乘积为:AC + BC = [a11*c11 + a12*c21 + ... + a1n*cn1] + [b11*c11 + b12*c21 + ... + b1n*cn1][a21*c12 + a22*c22 + ... + a2n*cn2] + [b21*c12 + b22*c22+ ... + b2n*cn2]...[am1*c1n + am2*c2n + ... + amn*cnn] + [bm1*c1n + bm2*c2n + ... + bmn*cnn]可以观察到左右两边的每一项是相等的,因此左边的矩阵乘积等于右边的矩阵乘积,得证。
自考本线性代数试题及答案

自考本线性代数试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [1, 0; 0, 1]C. [2, 3; 4, 5]D. [0, 1; 1, 0]答案:B2. 设A为n阶方阵,若存在常数k使得A^2 = kA,则称A为幂等矩阵。
若A是幂等矩阵且|A|≠0,则k的值是:A. 0B. 1C. -1D. n答案:B3. 对于任意的n阶方阵A,以下哪个选项是正确的?A. |A| = |A^T|B. det(A) = det(A^T)C. tr(A) = tr(A^T)D. A + A^T 总是对称矩阵答案:C4. 设A和B是两个n阶方阵,若AB=BA,则称A和B可交换。
若A和B可交换,且|A|=5,|B|=3,则|AB|的值是:A. 15B. 5C. 3D. 无法确定答案:A5. 对于n维向量空间V,以下哪个命题是线性代数的基本假设?A. 向量加法满足交换律B. 向量加法满足结合律C. 标量乘法对向量加法满足分配律D. 所有选项都是答案:D二、填空题(每题3分,共15分)6. 设向量α=(1, 2, 3)^T,β=(-4, 5, -6)^T,向量α和β的点积α·β等于______。
答案:-37. 若矩阵A的特征值为2,则矩阵2A的特征值为______。
答案:48. 设矩阵B可以表示为B=P^(-1)AP,其中P是可逆矩阵,那么B和A 是______相似的。
答案:相似9. 对于任意矩阵A,tr(A)表示矩阵A的______。
答案:迹(或特征值之和)10. 设A是一个3×3的矩阵,且A^3 = A,则A的一个特征值可以是______。
答案:1三、解答题(共75分)11. (15分)证明任意n阶方阵A,|A^T| = |A|。
证明:设A是一个n阶方阵,其行列式为|A|。
根据行列式的性质,我们知道行列式与行(列)的置换有关。
对于矩阵A的转置矩阵A^T,它的行(列)与A的列(行)相对应。
线性代数自考试题及答案

线性代数自考试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个不是方阵?A. [1, 2; 3, 4]B. [1, 2]C. [1, 2; 3, 4; 5, 6]D. [1, 2; 3, 4; 5, 6; 7, 8]答案:B2. 对于向量空间中的向量组,线性相关的定义是什么?A. 向量组中的任意向量都可以用其他向量表示B. 向量组中存在非零向量可以表示为零向量C. 向量组中的向量线性组合为零向量D. 向量组中所有向量都是零向量答案:A3. 矩阵的特征值是什么?A. 矩阵对角线上的元素B. 使得方程Ax = λx 成立的标量λC. 矩阵的行数D. 矩阵的列数答案:B4. 对于矩阵 A,下列哪个矩阵是 A 的伴随矩阵?A. A^TB. A^(-1)C. adj(A)D. det(A)答案:C5. 如果一个向量是另一个向量的标量倍,这两个向量是什么关系?A. 线性无关B. 线性相关C. 正交D. 单位向量答案:B二、填空题(每题3分,共15分)6. 矩阵的秩是指_________。
答案:矩阵中线性无关的行(或列)的最大数目7. 向量空间的基是指一组_________的向量,它们能生成整个向量空间。
答案:线性无关8. 对于任意矩阵 A,|A| 表示_________。
答案:矩阵 A 的行列式9. 如果矩阵 A 可逆,那么 A 的逆矩阵记作_________。
答案:A^(-1)10. 线性变换 T: R^n → R^m 的标准矩阵是指_________。
答案:线性变换 T 对标准基的坐标表示矩阵三、解答题(共75分)11. (15分)设 A 是一个3×3 的实对称矩阵,证明其特征值都是实数。
答案:略12. (20分)给定两个向量 v1 = [1, 2, 3]^T 和 v2 = [4, 5, 6]^T,求它们的叉积v3 = v1 × v2,并证明 v3 与 v1, v2 都正交。
线性代数自考试题及答案

线性代数自考试题及答案一、单项选择题(每题2分,共20分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 行等价于零矩阵D. 列等价于零矩阵答案:B2. 若矩阵A的秩为r,则矩阵A的齐次线性方程组的解空间的维数为()A. rB. r-1C. n-rD. n+r答案:C3. 向量组α1,α2,…,αs线性无关,则()A. 向量组α1+α2,α2+α3,…,αs-1+αs线性无关B. 向量组kα1,kα2,…,kαs线性无关,其中k为非零常数C. 向量组α1+α2,α2+α3,…,αs-1+αs,αs线性无关D. 向量组kα1,kα2,…,kαs线性相关,其中k为非零常数答案:B4. 设A为n阶方阵,且|A|≠0,则下列命题中正确的是()A. A与A*的秩相等B. A*与A^(-1)的秩相等C. A与A^(-1)的秩相等D. A与A*的秩不相等答案:C5. 矩阵A=()A. 行最简形矩阵B. 行阶梯形矩阵C. 行等价于单位矩阵的矩阵D. 行等价于零矩阵的矩阵答案:C6. 设A为3×3矩阵,且|A|=2,则|2A|=()A. 4B. 8C. 16D. 32答案:C7. 设A为n阶方阵,且A^2=0,则()A. A=0B. |A|=0C. A可逆D. A不可逆答案:D8. 设A为n阶方阵,且A^2=E,则()A. A=0B. |A|=0C. A可逆D. A不可逆答案:C9. 设A为n阶方阵,且A^T=A,则()A. A为对称矩阵B. A为反对称矩阵C. A为正交矩阵D. A为斜对称矩阵答案:A10. 设A为n阶方阵,且|A|=1,则|A^(-1)|=()A. 0B. 1C. -1D. 2答案:B二、填空题(每题2分,共20分)11. 若A为n阶方阵,且|A|=-3,则|-2A|=______。
答案:1212. 设A为n阶方阵,且A^2=0,则矩阵A的秩r(A)满足______。
自考线性代数章节测试题及答案

自考线性代数章节测试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, 1; 1, 1]D. [0, 1; 1, 0]答案:B2. 向量组 {v1, v2, v3} 线性无关的充分必要条件是:A. v1 ≠ 0B. v2 ≠ 0C. v1, v2 不共线D. v1, v2, v3 构成某向量空间的一个基答案:D3. 对于n维向量空间V,下列说法正确的是:A. V中任意两个向量都线性无关B. V中存在一组基,包含n个向量C. V中所有向量都可以用一组基表示D. 以上所有说法都正确答案:D4. 如果A和B是两个m×n矩阵,那么AB的行列式等于:A. |A| * |B|B. |B| * |A|C. |A| + |B|D. 不能直接计算答案:D5. 对于矩阵A,下列哪个矩阵是A的特征矩阵?A. A的转置矩阵B. A的伴随矩阵C. A的逆矩阵D. 存在非零向量v,使得Av=λv的λ构成的对角矩阵答案:D二、填空题(每题3分,共15分)6. 矩阵的秩是指________。
答案:矩阵中最大线性无关组所含向量个数7. 对于任意矩阵A,其迹数(Trace)定义为其主对角线上元素的________。
答案:和8. 线性变换T: R^n → R^m的表示矩阵是________。
答案:T作用在标准基向量上得到的向量构成的矩阵9. 二次型f(x) = x^TAx的规范型是________。
答案:f(y) = y1^2 + y2^2 + ... + yk^210. 线性方程组Ax = b有解的充分必要条件是________。
答案:R(A) = R([A; b])三、解答题(共75分)11. (15分)设A是一个3×3的实对称矩阵,证明A可以表示为A = QDQ^T,其中Q是正交矩阵,D是实对角矩阵。
答案:略(需要详细解答的请告知)12. (20分)给定两个向量v = [1, 2, 3]^T和u = [4, 5, 6]^T,求向量v在向量u上的投影。
线性代数自考试题及答案

线性代数自考试题及答案一、单项选择题(每题2分,共10分)1. 向量组α1,α2,α3线性无关的充分必要条件是()。
A. 齐次方程组Ax=0只有零解B. 齐次方程组Ax=0有非零解C. 齐次方程组Ax=0只有零解,且α1,α2,α3线性相关D. 齐次方程组Ax=0只有零解,且α1,α2,α3线性无关答案:A2. 矩阵A与矩阵B相等的充分必要条件是()。
A. A与B的行数相同B. A与B的列数相同C. A与B的行数相同,且A与B的列数相同D. A与B的行数相同,且A与B的列数相同,且对应元素相等答案:D3. 设A为n阶矩阵,若A的行列式|A|=0,则A是()。
A. 可逆矩阵B. 非可逆矩阵C. 正交矩阵D. 反对称矩阵答案:B4. 设A为3阶矩阵,且A的特征多项式为f(λ)=λ(λ-1)(λ+2),则A的迹为()。
A. 0B. 1C. 2D. -3答案:C5. 设A为3阶矩阵,且A的秩为2,则A的零度为()。
A. 0B. 1C. 2D. 3答案:B二、填空题(每题3分,共15分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|=______。
答案:42. 设矩阵A=\(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\),则矩阵A的逆矩阵A^{-1}=______。
答案:\(\begin{bmatrix}-2 & 1 \\ 1.5 & -0.5\end{bmatrix}\)3. 若向量α=(1,2,3),β=(4,5,6),则向量α与向量β的夹角的余弦值为______。
答案:\(\frac{1}{3}\)4. 设矩阵A的特征值λ1=2,λ2=3,对应的特征向量分别为α1和α2,则矩阵A+E的特征值λ3=______,对应的特征向量为______。
答案:3,α1;4,α25. 设矩阵A=\(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\),则矩阵A的秩为______。
自考线性代数(经管类)试题及答案

高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.3阶行列式011101110||ij a 中元素21a 的代数余子式21A (C)A .2B .1C .1D .21011121A .2.设矩阵22211211a a a a A ,121112221121a a a a a a B,01101P ,11012P ,则必有(A)A .B AP P 21B .B AP P 12C .B P AP 21D .B P AP 121101011021AP P 22211211222112110111a a a a a a a a B a a a a a a 121112221121.3.设n 阶可逆矩阵A 、B 、C 满足E ABC ,则1B ( D)A .11C A B .11ACC .ACD .CA由E ABC,得E ABC 111,CA B 1.4.设3阶矩阵0100010A,则2A 的秩为(B )A .0B .1C .2D .32A00010000100010000100010,2A 的秩为1.5.设4321,,,是一个4维向量组,若已知4可以表为321,,的线性组合,且表示法惟一,则向量组4321,,,的秩为( C )A .1B .2C .3D .4321,,是4321,,,的极大无关组,4321,,,的秩为3.6.设向量组4321,,,线性相关,则向量组中(A )A .必有一个向量可以表为其余向量的线性组合B .必有两个向量可以表为其余向量的线性组合C .必有三个向量可以表为其余向量的线性组合D .每一个向量都可以表为其余向量的线性组合7.设321,,是齐次线性方程组0Ax 的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是( B)A .2121,,B .133221,,C .2121,,D .133221,,只有133221,,线性无关,可以作为基础解系.8.若2阶矩阵A 相似于矩阵3202B ,E 为2阶单位矩阵,则与矩阵A E 相似的矩阵是( C)A .4101B .4101C .4201D .4201B 与A 相似,则4201BE 与A E相似.9.设实对称矩阵120240002A ,则3元二次型Ax x x x x f T ),,(321的规范形为(D )A .232221z z z B .232221z z z C .2221z z D .2221z z 232212332222123322221321)2(2)44(2442),,(x x x x x x x x x x x x x x x x f ,规范形为2221z z .10.若3阶实对称矩阵)(ij a A是正定矩阵,则A 的正惯性指数为(D )A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分)11.已知3阶行列式696364232333231232221131211a a a a a a a a a ,则333231232221131211a a a a a a a a a _______________.632323232323296364232333231232221131211333231232221131211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ,61333231232221131211a a a a a a a a a .12.设3阶行列式3D 的第2列元素分别为3,2,1,对应的代数余子式分别为1,2,3,则3D _______________.4132)2()3(12323222221213A a A a A a D .13.设0121A,则E AA22_______________.112211201120)(222E AEA A.14.设A 为2阶矩阵,将A 的第2列的(2)倍加到第1列得到矩阵B .若4321B,则A_______________.将B 的第2列的2倍加到第1列可得41125A.15.设3阶矩阵333220100A,则1A _______________.001012103100020033001010100100220333100010001333220100),(E A 0102/113/12/1010001000101012230102000601012206100020066,1A102/113/12/10.16.设向量组)1,1,(1a ,)1,2,1(2,)2,1,1(3线性相关,则数a___________.0363213103210311121112111aa a aa a a ,2a.17.已知Tx )1,0,1(1,Tx )5,4,3(2是3元非齐次线性方程组b Ax 的两个解向量,则对应齐次线性方程组0Ax有一个非零解向量_______________.Tx x )6,4,2(12(或它的非零倍数).18.设2阶实对称矩阵A 的特征值为2,1,它们对应的特征向量分别为T)1,1(1,Tk ),1(2,则数k ______________.设db b a A,由111A,即1111d b b a ,11d b b a ,可得b a1,b d1;由222A,即kk bbb b 12111,kkb bbkb22)1(1,可得1k .19.已知3阶矩阵A 的特征值为3,2,0,且矩阵B 与A 相似,则||E B _______________.E B 的特征值为4,1,1,44)1(1||E B.20.二次型232221321)()(),,(x x x x x x x f 的矩阵A_______________.2332222121233222222121321222)2()2(),,(x x x xx x xx x x xx x x xx x x f ,11121011A.三、计算题(本大题共6小题,每小题9分,共54分)21.已知3阶行列式||ij a 4150231x x 中元素12a 的代数余子式812A ,求元素21a 的代数余子式21A 的值.解:由8445012x x A ,得2x,所以5)38(413221A .22.已知矩阵0111A,211B,矩阵X 满足X B AX ,求X .解:由X BAX,得B XA E)(,于是13/113/131313121121113120111112)(11BA EX .23.求向量组T)3,1,1,1(1,T)1,5,3,1(2,T)4,1,2,3(3,T)2,10,6,2(4的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表出.解:24131015162312311854012460412023110700070041202311000007004120231100001004120231100100402020110000100201020110010*********,321,,是一个极大线性无关组,432120.24.设3元齐次线性方程组00321321321ax x x x ax x x x ax ,(1)确定当a 为何值时,方程组有非零解;(2)当方程组有非零解时,求出它的基础解系和全部解.解:(1)1010111)2(1111111)2(1212112111111||aaaaa aaaa a a aa aA 2)1)(2(a a,2a 或1a 时,方程组有非零解;(2)2a时,0330211A1102110110101,333231x x x x x x ,基础解系为111,全部解为111k ,k 为任意实数;1a 时,000000111A ,3322321x x x x x x x ,基础解系为11,101,全部解为1011121k k ,21,k k 为任意实数.25.设矩阵504313102B ,(1)判定B 是否可与对角矩阵相似,说明理由;(2)若B 可与对角矩阵相似,求对角矩阵和可逆矩阵P ,使BPP1.解:(1))67)(1(5412)1(54313102||2B E)6()1(2,特征值121,63.对于121,解齐次线性方程组0)(x B E:0000010144303101B E ,332231x x x x x x ,基础解系为0101p ,1012p ;对于63,解齐次线性方程组0)(x B E :04/3104/10114353104BE,3332314341x x x x x x ,基础解系为14/34/13p .3阶矩阵B 有3个线性无关的特征向量,所以B 相似于对角阵;(2)令6010001,1104/3014/110P ,则P 是可逆矩阵,使得BP P 1.26.设3元二次型3221232221321222),,(x x x x x x x x x x f ,求正交变换Py x,将二次型化为标准形.解:二次型的矩阵为110121011A .111121011111201110121011||A E)3)(1(1101)3(11131001,特征值01,12,33.对于01,解齐次线性方程组0)(x A E :00011010111121011A E ,333231x x x x x x ,1111,单位化为3/13/13/11p ;对于12,解齐次线性方程组0)(x A E :0001010101111010A E ,332310x x x x x ,1012,单位化为2/102/12p ;对于33,解齐次线性方程组0)(xA E:0210101210111012AE,3332312x x x x x x ,1213,单位化为6/16/26/13p .令6/12/13/16/203/16/12/13/1P,则P 是正交矩阵,使得APP T3010000,经正交变换Py x 后,原二次型化为标准形23222130y yyf.四、证明题(本题6分)27.已知A 是n 阶矩阵,且满足方程022A A,证明A 的特征值只能是0或2.证:设是A 的特征值,则满足方程022,只能是0或2.。
线性代数自考试题及答案

线性代数自考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为()。
A. -1/2B. 1/2C. 2D. -22. 若向量α=(1, 2, 3),则向量α的模长为()。
A. √14B. √13C. 6D. √153. 设A为3×3矩阵,且|A|=0,则下列说法正确的是()。
A. A可逆B. A不可逆C. A的秩为3D. A的秩为24. 若A是n阶方阵,且A^2=I(单位矩阵),则A的特征值只能是()。
A. 0B. ±1C. 2D. -25. 设A为3阶方阵,且A的行列式为-1,则A的迹为()。
A. -1B. 1C. 0D. 3二、填空题(每题4分,共20分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置矩阵为\[\begin{bmatrix}1 & 3 \\ 2 &4\end{bmatrix}\]。
2. 若向量组α1=(1, 0, 0),α2=(0, 1, 0),α3=(0, 0, 1),则向量组α1,α2,α3是线性__的。
3. 设A为3阶方阵,且A的特征多项式为f(λ)=λ(λ-1)(λ+2),则矩阵A的特征值为__。
4. 设A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],B=\[\begin{bmatrix}-1 & 0 \\ 0 & 1\end{bmatrix}\],则矩阵A与B的乘积AB为\[\begin{bmatrix}-1 & 2 \\ 3 & 4\end{bmatrix}\]。
5. 若矩阵A的特征值为2,3,则矩阵A的迹为__。
三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{bmatrix}2 & 1 \\ 1 & 2\end{bmatrix}\],求矩阵A的逆矩阵。
线性代数自考试题及答案

线性代数自考试题及答案一、选择题(每题2分,共20分)1. 向量空间中的基是一组向量,以下哪个不是基的性质?A. 线性无关B. 线性相关C. 张成整个空间D. 可以是空间中的任意向量2. 矩阵A和矩阵B相乘,结果矩阵的行列式等于:A. A的行列式乘以B的行列式B. B的行列式乘以A的行列式C. 两个矩阵的行列式之和D. 无法确定3. 对于线性变换,以下哪个说法是错误的?A. 线性变换保持向量的加法运算B. 线性变换保持标量的乘法C. 线性变换保持向量的长度D. 线性变换保持向量的点积4. 一个矩阵的特征值是指:A. 矩阵的对角线元素B. 矩阵的行列式C. 使得矩阵的某个特征向量不为零的标量D. 矩阵的迹5. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 奇异矩阵D. 任意矩阵6. 矩阵的秩是指:A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中最大的线性无关行或列的数量D. 矩阵的行数或列数7. 线性方程组的解集可以是:A. 一个点B. 一条直线C. 一个平面D. 无限多个解8. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵的对角线元素之和D. 矩阵的转置矩阵9. 向量空间的维数是指:A. 空间中向量的个数B. 空间中基的向量个数C. 空间中任意向量的个数D. 空间中线性无关向量的最大个数10. 线性变换的核是指:A. 变换后为零向量的集合B. 变换后为单位向量的集合C. 变换后为任意向量的集合D. 变换后为非零向量的集合二、简答题(每题10分,共30分)1. 解释什么是线性相关和线性无关,并给出一个例子。
2. 描述如何计算矩阵的特征值和特征向量。
3. 解释什么是正交矩阵,并给出正交矩阵的一个性质。
三、计算题(每题25分,共50分)1. 给定矩阵A = \[\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}\],求矩阵A的逆矩阵。
全国自学考试线性代数历年考试真题及答案

全国自学考试线性代数历年考试真题及答案2003年4月全国自学考试线性代数答案第一部分选择题(共20分)一、单项选择题(本大题共10小题。
每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.对任意n阶方阵A、B总有( )A.AB=BA B.|AB|=|BA|2.在下列矩阵中,可逆的是 ( )3.设A是3阶方阵( )A.-2D.24.设A是m×n矩阵,则齐次线方程线Ax=0仅有零解的充分必要条件是 ( ) A.A的行向量组线性无关 B.A的行向量组线性相关C.A的列向量组线性无关 D.A的列向量组线性相关5.设有m维向量组,则 ( )A.当m<n时,(I)一定线性相关 B.当m>n时,(I)一定线性相关C.当m<n时,(I)一定线性无关 D.当m>n时,(I)一定线性无关6.已知是非齐次线性方程组Ax=b的两个不同的解,是其导出组Ax=0的一个基础解系,为任意常数,则方程组Ax=b的通解可表成 ( )7.设n阶可逆矩阵A有一个特征值为2,对应的特征向量为x,则下列等式中不正确的是( )A.Ax=2x8.设矩阵的秩为2,则λ= ( )A.2 8.1C.0 D.-l9.二次型的矩阵是( )10.二次型是 ( )A.正定的 B.半正定的C.负定的 D.不定的第二部分非选择题(共80分)二、填空题(本大题共10小题。
每小题2分,共20分)请在每小题的空格中填上正确答案。
错选、不填均无分。
1 1.行列式的值为___.12.设向量a=(2,1,2),则与它同方向的单位向量为__.13.设α=(2,1,-2),β=(1,2,3),则2α=3β=____.14.向量组a=(1,2,3,4,5)的秩为____.15.设m×n矩阵A的,m个行向量线性无关,则矩阵的秩为____.16.若线性方程组无解,则=______.17.设2阶方阵均为2维列向量,且|A|=|B|=1,则|A+B|=_______.18.设矩阵,则A的全部特征值为___.19.设P为n阶正交矩阵,α、β为n维列向量,已知内知(α,β)=-l,则(Pa,Pβ)________20.设二次型的正惯性指数为P,负惯性指数为q,则p-q=______.三、计算题(本大题共8小题,每小题6分,共48分)21.设向量22.设,矩阵X满足方程求矩阵X.23.当t取何值时,向量组线性相关?24.求下列矩阵的秩:25.设矩阵矩阵A由矩阵方程确定,试求的通解(要求用它的一个特解和导出组的基础解系表示).27.设3阶方阵A的三个特征值为的特征向量依次为求方阵A.28.设为正定二次型,试确定实数a的最大取值范围.四、证明题(本大题共2小题,每小题6分,共12分)30.设向量β可由向量组线性表示.试证明:线性表示法唯一的充分必要条件是线性无关.参考答案一、单项选择题二、填空题11.O13.(1,-4,-l3)14.115.ml6.017.418.1,1,-l19.-l20.O三、计算题知当且仅当t=3时该向量组线性相关.所求通解x=都是非零列向量,故题设条件说明A有特征值对应的特征向量分别为因为A为3阶方阵.故1,0.-l就是A的全部特征值,因A的特征值互不相同,于是由推论4.1知A可对角化,令矩阵由上式得28.解,的矩阵为,A的顺序主子式为四、证明题所以30.证由条件,存在常数若表示法唯一,设有一组数2005年10月自考线性代数试题答案全国2004年10月高等教育自学考试线性代数试题课程代码:02198试卷说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设3阶方阵A的行列式为2,则= 【 B 】
A.-1 B.
C. D.1
2.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,假设|A|≠|B|,则必有【 C 】 A.|A|=0 B.|A+B|≠0
C.|A|≠0 D.|A+B|≠0
3.设,则方程的根的个数为【 B 】
A.0 B. 1
C.2 D.3
4. 设A为n阶方阵,则以下结论中不正确的选项是:【 C 】
A.是对称矩阵 B. 是对称矩阵
C.是对称矩阵 D.是对称矩阵
5.设,其中,则矩阵A的秩为【 B 】
A.0 B. 1
C.2 D.3
6. 设阶方阵A的秩为4,则A的伴随矩阵的秩为【 A 】
A.0 B. 2
C.3 D.4
7.设向量a=(1,-2,3)与=(2,k,6)正交,则数k为【 D 】
A.-10 B. -4
C.4 D.10
8.设3的阶方阵A的特征多项式为,则|A|= 【 A 】
A.-18 B. -6
C.6 D.18
9.已知线性方程组无解,则数a= 【 D 】
A. B.0
C. D.1
10.设二次型正定,则数a的取值应满足【 C 】
A.a>9 B.3 a9
C.-3<a< 3 D.a-3
二、填空题(本大题共10小题,每题2分,共20分)
请在每题的空格中填上正确答案。
错填、不填均无分。
11.设行列式,其第三行各元素的代数余子式之和为 0 。
12.设则AB= 。
13.设线性无关的向量组可由向量组线性表示,则r与s的关系为
14.设A是4x3的矩阵且r〔A〕=2,,则r〔AB〕= 2
15.已知向量组 =(1,2,-1), =(2,0,t), =(0,-4,5)的秩为2,则数t=
3
16.设4元线性方程组Ax=b的三个解,已知,,r(A)=3.则方程组的通解是.17.设方程组有非零解,且 <0,则= -2 .
18.设矩阵有一个特征值=2,对应的特征向量为,则数a= 2
19.设3阶方阵4的秩为2,且,则A的全部特征值为 0,-5,-5 .
20.设实二次型,己知A的特征值为-1,1,2,则该二次型的标准形为。