甲烷1653.7 吸收谱线

合集下载

1654nm甲烷吸收激光光谱 -回复

1654nm甲烷吸收激光光谱 -回复

1654nm甲烷吸收激光光谱-回复1654nm甲烷吸收激光光谱的文章。

第一步:介绍甲烷的基本知识和重要性甲烷(CH4)是一种碳氢化合物,由一个碳原子和四个氢原子组成。

它是地球上最简单的有机化合物之一,也是人为和自然排放的温室气体之一。

甲烷在大气层中的浓度升高会导致温室效应的加剧,进而对气候变化产生重大影响。

此外,甲烷还是许多生物过程的产物,包括生物质分解和动物消化过程。

因此,准确测量和监测甲烷浓度对于全球气候研究和环境管理至关重要。

第二步:解释吸收激光光谱的原理吸收激光光谱是一种利用化学物质对特定波长的光吸收而进行测量的技术。

当光经过样品时,样品中的分子会吸收特定波长的光。

这些被吸收的波长与分子的结构和化学键有关,因此吸收激光光谱可以用来确定化合物的组成和浓度。

甲烷在1654nm波长处表现出明显的吸收峰,因此可以利用这个特性来准确测量甲烷的浓度。

第三步:解释使用激光光谱测量甲烷浓度的步骤使用激光光谱测量甲烷浓度需要以下步骤:1. 选择适当的激光源:由于甲烷吸收的特殊波长,需要使用适当波长的激光源来产生光。

在1654nm波长附近,有一些激光器可以发射出足够强度的光。

2. 选择适当的光学元件:需要选择适当的光学元件来探测甲烷吸收的峰值。

常用的光学元件包括透镜、光栅和滤光片等。

这些元件可以帮助调整光束的强度和波长,并增强甲烷的吸收信号。

3. 标定仪器:在实际测量之前,需要进行仪器的标定。

这一步骤涉及使用已知浓度的甲烷样品来确定光强度与甲烷浓度之间的关系。

通过建立一个标准曲线,可以根据测量到的光强度来推断甲烷的浓度。

4. 测量样品:将待测样品放入测量室,并使用激光光源照射样品。

样品中存在的甲烷分子将吸收特定波长的光,并减弱通过样品的光信号。

使用光电传感器探测光强度的变化,并利用之前建立的标准曲线计算甲烷浓度。

第四步:讨论1654nm甲烷吸收激光光谱的优势和局限性使用1654nm甲烷吸收激光光谱测量甲烷浓度具有以下优势:1. 高灵敏度:1654nm波长附近的甲烷吸收峰比较明显,因此能够提供高灵敏度的测量。

光谱吸收式甲烷气体浓度检测理论与方法

光谱吸收式甲烷气体浓度检测理论与方法

谐波 ( f)和二次谐波 ( 2f)的系数分别为
If = m I0 I2f = - kα0 LC I0 式中
(9) ( 10 )
k
=
2〔2
+ x2 x2 ( 1
2 (1 + x2
+ x2 ) 1/2
)
1/2

( 11 )
k为 x的函数 , x可以被调节到二次谐波的最大
值 ,当二次谐波取得最大值时 , dk / dx = 0,则 :
x = ( 2 + 2 2) 1 /2≈ 2. 2
( 12 )
这种条件下 , k = 3. 43。可见 , 一次谐波分量主
要由强度调制引起 ,幅度正比于光源的平均功率 ,与
气体浓度没有关系 。二次谐波信号与气体的浓度和
初始光强有关 ,检测二次谐波信号可以获得气体浓 度信息 。
由式 ( 9) 、式 ( 10)得 :
[ 3 ] S. D. Bom se, C. A. Stanton, A. J. Silver. Frequency Modulation and W avelength Modulation Spectroscop ies [ J ]. App lied Op tics, 1992, 31 (6) : 718 - 730.
由式
( 1 )可得
C
=α(1v) L ln
I0 ( v) I ( v)
(2)
式 (2)表明 , 如果 L 与 α( v)已知 , 通过检测 I
( v)和 I0 ( v)就可以测得气体的浓度 ,这就是光谱吸
收方法检测气体浓度的基本原理 。图 1为检测原理
3. 4 加强揭穿煤层期间支护 防止井壁四周煤体失 稳诱发煤与瓦斯突出

中低煤阶镜煤

中低煤阶镜煤
FTIR)分 析 技 术 对
黄陇 煤 田 位 于 鄂 尔 多 斯 盆 地 西 南 缘,东 至 葫 芦
煤结构的研究显示,随着煤变质程度的提高,芳香氢
河,西到陇县,北至 陕 甘 交 界,南 以 中 侏 罗 统 延 安 组
n(
C)的 线 性 关 系 较 强,可 精 确 表 征 煤 阶。 郭 德 勇
等 [23]对构造煤的红外光谱分析表明,构 造 煤 的 生 烃
高到低依次为 C—O,
COOH,
C
CH3 ,
CH。 对 比 煤 的
O,脂 肪 侧 链 按 含 量 由 高 到 低 依 次 为 CH2 ,
准晶体结构发现,中低阶煤煤化程度低,
γ 带的峰面积整体较大。受煤化作用和压实作用影响,暗
煤的堆砌度和堆砌层数大于镜煤的堆砌度和堆砌层数。分子 结 构 特 征 对 甲 烷 吸 附 量 的 影 响 显 著。
a
ls
chema
t
i
co
fHuang
l
ongc
oa
l
f
i
e
l
d
g.
山、吕梁山、贺兰山“山”字 形 构 造 东 翼 前 弧 的 内 侧,
总体构架为西北倾向的波状单斜构造。煤田内地层
倾角较缓,地质构造简单,主要发育近东西走向的次
级褶皱构造,断 层 构 造 不 发 育。 区 域 内 含 煤 地 层 为
侏罗系延安组,煤厚 0.
组含量较高,稳 定 组 组 分 含 量 则 整 体 偏 低。 煤 样 工
业组分和 显 微 组 分 各 自 的 差 异 主 要 取 决 于 成 煤 环
境,镜煤是在覆水环境中凝胶化形成的产物,暗煤则
是在干燥的氧化环境中丝炭化形成的产物。

第二章 红外与Raman光谱(2)

第二章 红外与Raman光谱(2)

除末端炔烃外,大多数非对称的二取乙炔的 C≡C谱带都很弱
13
4. 芳香烃
伸缩振动: VC-H
3000-2800 cm-1
(共轭体系,多峰) V=C-H VC=C 3100-3010 cm-1 1600-1450 cm-1
变形振动:δ C-H
δ=C-H 苯:670 一取代 二取代:邻 对
1460,1380 900-675
ch2n链节有一点是非常重要ir仅判断烷烃类型直链或支链或支链数的多与少不能给出确定烷烃结构就是与标准谱图进行对照分析定烷烃结构就是与标准谱图进行对照分析时也要十分小心详细碳骨架结构需要nmr6测定计算分析后才能给出
2.7 典型化合物的红外光谱
1. 烷烃
分子式:CnH2n+2 ;结构式:直链分子,支链分子
2) 酚
特征吸收:芳环C=C,C=C-H, C-O, O-H 伸缩振动: 羟基特征吸收 O-H 3400-3100cm-1
芳环氢 C=C-H
芳环碳骨架 C=C
3100cm-1
1500cm-1;1600cm-1
C-O
1260-1180 cm-1
25
苯酚
A
4000
B
3000 2000
D
1500
F
1000
C C
E
F
G
1500 1000 500 C O C E 1245 C O C F 1030 C H 面外弯 G 770,690 29
7. 酮
其主要化学键有C-H 、 C=O 、C-C
特征吸收:3000-2800cm-1,~1715cm-1
脂肪酮: 1715 cm1 强的 C=O 伸缩振动吸收 如果羰基与烯键或芳环共轭会使吸收 频率降低

激光检测甲烷原理

激光检测甲烷原理

激光检测甲烷原理
激光检测甲烷的原理主要基于可调谐半导体激光吸收光谱技术(TDLAS)。

TDLAS 是Tunable Diode Laser Absorption Spectroscopy的缩写。

这种技术的核心是利用
可调谐半导体激光器的窄线宽和波长随注入电流改变的特性。

通过调制激光器的波长,使激光器的波长扫描过被测气体分子的吸收峰。

基于朗伯比尔(Lambert-Beer)
定律,气体分子会对被调制的激光进行吸收,从而根据吸收量实现对气体分子浓度的测量。

具体步骤如下:
1.发射激光:发射一个特定波长的激光束。

2.经过气体:激光束穿过待检测的气体(包括甲烷)。

3.吸收光谱:甲烷会吸收特定波长的激光束。

吸收后的激光束的强度会变弱。

4.探测光强:通过探测器,测量出透过气体的激光束的强度。

5.比较峰值:将探测到的光强与未经过气体的光强进行比较,计算出甲烷气体的浓度。

激光甲烷检测技术的优点是抗干扰能力强,不受现场温湿度的干扰,环境适应性强,适合环境恶劣、氧气稀薄甚至是没有氧气的情况下进行甲烷检测。

此外,由于
甲烷分子在1653.7nm附近有最大的吸收峰,且在该吸收谱线的前后0.5nm范围内
不存在其他气体的强吸收线,因此选择该吸收线可以达到非常低的探测下限,适合检测微量甲烷气体泄漏,同时还可以消除空气中其他干扰气体的影响。

温室气体的分子特征——吸收红外辐射

温室气体的分子特征——吸收红外辐射

温室气体的分子特征——吸收红外辐射波长在0.76μm ~1000μm 的电磁辐射称为红外光(infrared ray),该区域称为红外光 谱区或红外区。

红外光又可划分为近红外区(0。

76μm ~2.5μm 或13158cm —1~4000cm —1)、中红外区(2。

5μm ~50μm 或4000cm —1~200cm -1)、远红外区(50μm ~1000μm 或200cm -1~10cm -1)。

其中中红外区是研究分子振动能级跃迁的主要区域。

) 或 波数(νσ:光子的能量E ,单位J ;光的频率ν,单位H z (s —1)。

E=h ν,普朗克常量h=6.63×10—34J·s 。

σλc c ==ν,光速c=3×1010cm ,波长λ的单位cm (1nm=10-7cm )。

λσ1=定义式:,波数被定义为波长的倒数,单位为cm —1,其物理意义是:1cm 长度中所包含波长的数目(波数的法定单位符号是m -1)。

用波数的优点,在于它和光子的能量有正比关系(比例常数是h),光谱学上常常以cm —1作能量的单位.1cm —1≈1.196×10J·mol —1。

一、多原子分子的振动方式1、振动的自由度和简正振动⑴、简正振动:多原子分子的振动可以近似地看作像被许多弹簧联系起来的小球的振动(化学键相当于弹簧,原子相当于小球)。

不管多原子分子的振动怎样复杂,我们总可以把它分解成许多简单的基本振动(即简单的谐振动)。

这种基本振动称为简正振动(又称正则振动)。

⑵、力学自由度和分子的振动形式设分子由n 个原子组成,每个原子在空间都有三个力学自由度,原子在空间的瞬时位置可以用直角坐标系中的三个坐标x 、y 、z 表示(3个参数描述),因此n 个原子组成的分子总共应有3n 个自由度(即独立的坐标变量数目),即3n 种运动状态。

(3n 个独立运动=平动数+振动数+转动数)。

可调谐二极管激光吸收光谱法监测环境空气中甲烷的浓度变化

可调谐二极管激光吸收光谱法监测环境空气中甲烷的浓度变化

文章编号:025827025(2005)0921217204可调谐二极管激光吸收光谱法监测环境空气中甲烷的浓度变化阚瑞峰,刘文清,张玉钧,刘建国,董凤忠,王 敏,高山虎,陈 军,王晓梅(中国科学院环境光学与技术重点实验室,中国科学院安徽光学精密机械研究所,安徽合肥230031)摘要 可调谐二极管激光吸收光谱(TDL AS )技术是利用二极管激光器波长调谐特性,获得被测气体在特征吸收光谱范围内的吸收光谱,从而对污染气体进行定性或定量分析。

通过该方法对环境空气中甲烷(CH 4)的含量进行了长时间的监测。

以室温下工作的近红外可调谐半导体激光器作为光源;使用多次反射池增加吸收光程来提高检测灵敏度;并且使用了二次谐波检测技术进一步降低了检测限,使检测限低于01087mg/m 3,满足了对环境空气中甲烷进行监测的需要。

关键词 光谱学;痕量气体监测仪;可调谐二极管激光吸收光谱;谐波探测中图分类号 O 433.5+1 文献标识码 ATunable Diode Laser Absorption Spectrometer Monitors the AmbientMethane with High SensitivityKAN Rui 2feng ,L IU Wen 2qing ,ZHAN G Yu 2jun ,L IU Jian 2guoDON G Feng 2zhong ,WAN G Min ,GAO Shan 2hu ,C H EN J un ,WAN G Xiao 2mei(Key L aboratory of Envi ronmental O ptics &Technology ,A nhui I nstitute ofO ptics and Fine Mechanics ,T he Chinese A cadem y of Sciences ,Hef ei ,A nhui 230031,China )Abstract Tunable diode laser absorption spectroscopy (TDL AS )technique is a new method to detect trace 2gas qualitatively or quantificationally based on the scan characteristic of the diode laser to obtain the absorption spectra in the characteristic absorption region.It needs to combine with a long absorption path in the ambient trace 2gas measurements.It has a significant advantage not only in sensitivity but also in rapidity of response.The experimental results of monitoring of methane of the ambient air in a long time with a ground 2based portable TDL AS system are described ;it works with a room 2temperature near infrared tunable diode laser to measure methane in the ambient air ,the path length is lengthened by the multiple 2reflection cell to lower the detection limit ;and the second harmonic detection is used to lower the detection limit farther ;the detection limit is below 01087mg/m 3,that is enough to the monitoring of ambient methane.K ey w ords spectroscopy ;trace 2gas monitor ;tunable diode laser absorption spectroscopy ;harmonic detection 收稿日期:2004211217;收到修改稿日期:2005204229 基金项目:国家自然科学基金(10274080)和国家863计划(2003AA641010)资助项目。

高压甲烷近红外吸收光谱展宽特性及参数精确测量

高压甲烷近红外吸收光谱展宽特性及参数精确测量

第39卷第6期2020年12月Vol.39,No.6December2020红外与毫米波学报J.Infrared Millim.Waves文章编号:1001-9014(2020)06-0742-07DOI:10.11972/j.issn.1001-9014.2020.06.012Precise measurements the broadening characteristics and parameters of methane near-infrared absorption spectrum at high pressureHE Ying1,ZHANG Yu-Jun1,”,YOU Kun1,FAN Bo-Qiang1,2,LI Meng-Qi1,2,YU Dong-Qi1,2,XIE Hao1,2,LEI Bo-En1,2,JIA Wei3,JING Jun-Sen3,LIU Wen-Qing1,2(1.Key Laboratory of Environmental Optics&Technology,Anhui Institute of Optics and Fine Mechanics,ChineseAcademy of Sciences Hefei230031China;2.University of Science and Technology of China Hefei230026China;3.College of Mechanical and Electrical Engineering Anhui Jianzhu University Hefei230601China)Abstract:The high-pressure absorption spectrum at6046.96cm-1of methane was obtained with the measurementexperimental platform.The empirical mode decomposition algorithm was used to filter out the detection noisecaused by window deformation at high-pressure.Consequently,the overall root-mean-square error(RMSE)ofabsorbance signal was reduced by3.87times,and the residual error of absorbance signal fitting was lower than±1%by using Lorentz line-type fitting algorithm.These studies showed that the absorption line width increasedwith the pressure increasing,and the mutual broadening coefficient of nitrogen-methane molecules at high-pres­sure was calculated as0.0631cm-1atm-l.Moreover,the absorption line appeared a"red shift"phenomenon as thepressure increasing,and the pressure shift coefficient of nitrogen-induced was calculated as-0.00848cm-l atm-l.Therefore,a method of concentration inversion at high pressure was proposed by the linear relationship betweenthe detection wavelength,pressure,and pressure shift coefficient.In conclusion,the research on spectrum broad­ening characteristics in high-pressure environment lays foundation for spectrum detecting in industrial environ­ment.Key words:laser absorption spectroscopy,spectrum broadening characteristics,empirical mode decompositionalgorithm high pressure methane pressure shiftPACS:42.62.Fi,,42.62.Cf,74.62.Fj高压甲烷近红外吸收光谱展宽特性及参数精确测量何莹],张玉钧2,尤坤],范博强r李梦琪r余冬琪r谢皓r雷博恩]'2,贾巍3,经俊森3,刘文清]'2(1.中国科学院环境光学与技术重点实验室,安徽光学精密机械研究所,安徽合肥230031;2.中国科学技术大学,安徽合肥230026;3.机械与电气工程学院,安徽建筑大学,安徽合肥230601)摘要:通过搭建的测量实验平台,获取了甲烷6046.96cm-1处高压气体吸收光谱.通过经验模态分解算法减弱了高压引起窗片形变而产生的探测噪声,吸光度信号的均方根误差(RMSE)降低了3.87倍,通过洛伦兹线型拟合算法获得的吸光度拟合残差优于±1%.研究表明,谱线线宽随着压力增大而增大,计算的高压环境的氮气-甲烷分子的互展宽系数为0.0631cm-1atm-1.此外,随着压力的增大,吸收线出现“红移”现象,计算得到氮气诱导压力频移系数为-0.00848cm-l atm-l.由此提出一种利用检测波长、压力和压力频移系数的线性关系反演高压环境下气体浓度的算法.总之,高压环境下光谱展宽特性研究为工业环境下的光谱检测打下基础.Received date:2020-02-19,revised date:2020-09-01收稿日期:2020-02-19,修回日期:2020-09-01Foundation items:Supported by National Natural Science Foundation of China(4180512),Key Research and Development Projects of Anhui Province (201904a07020093),Natural Science Foundation of Anhui Province(1808085MD107,1808085QD113),Key Project of University Natural Science Re­search Project of Anhui Province(KJ2019A0793)and Research Project of Anhui Jianzhu University(JZ192037).Biography:HE Ying(1983-),female,Hefei,China,associate researcher,master.The area of interest is hence gases monitoring in atmosphere with laser absorption spectroscopy.E-mail:heying@*Corresponding author:E-mail:yjzhang@HE Ying et al:Precise measurements the broadening characteristics and parameters of methane near-infra­red absorption spectrum at high pressure6期743关键词:激光吸收光谱;光谱展宽特性;经验模态分解算法;甲烷;压力频移中图分类号:O433.1文献标识码:AIntroductionHigh-pressure gas detection is required urgently in the fields of natural gas pipeline transportation monitor­ing deep submergence detection aircraft engine diagno­sis and other industries and national defense fields.Tra­ditional semiconductor and electrochemical sensorswhich use contact measurement methods are prone to false alarm in high-pressure environment as the poor adaptability and difficult to meet on-line detection needs at high-pressure.In recent years a new spectroscopy de­tection technology represented by Tunable Diode Laser Absorption Spectroscopy(TDLAS)technology has be­come a research focus in gases diagnosis under extremeconditions such as high temperature and high-pressure environment because of its high sensitivity high selectiv­ity non-contact detection and strong adaptability to harsh environment[1-3].In high-pressure environment due to the molecular collision aggravation the absorption spectral line broad­ened obviously which led to the change of characteristicabsorption spectrum.So the spectral characteristic pa­rameters must be accurately obtained for inverting gasconcentration.At present the study of spectral charac­teristic parameters at normal pressure is comprehensive. For example,Rieker et al.⑷analyzed the direct absorp­tion and second harmonic signal of CO2spectrum at2[xmin high temperature and high pressure environment.Fa­rooq et al.5used a tunable diode laser at2.7[xm to study the mixing and finite continuous collision effect ofCO2absorption spectrum at high pressure.There were few studies in China,such as Ting-dong Cai⑹adopted the spectrum modulation technology of fixed wavelength combined with the peak value of the second harmonic sig­nal normalized with first harmonic of the CO2spectrum to realize the concentration measurement in high tempera­ture and high pressure environment.Meng Sun⑺carried out the methane measurement experiment with a 1.65 Xm laser and designed a correction method of absorption lines-type in non-modulation condition.But the study on spectrum analysis algorithm and broadening characteris­tics at high-pressure still has a large deficiency.As an important fuel and chemical raw materialmethane has been widely used in civil and industrialfields.In this paper the research experiment of spec­trum broadening characteristics of methane at6046.96cm-1in high pressure environment was carried out with TDLAS technology.Then the high-resolution absorption spectra at different high pressures were obtained to ana­lyze the broadening characteristics and parameters.Fi­nally a concentration inversion algorithm at high-pres­sure was designed.The research will deepen the under­standing of high-resolution absorption spectrum charac­teristics in high-pressure environment.1Measurement principleBased on Lambert-Beer's law,a monochromatic la­ser with the emitting frequency of v and the initial intensi­ty of I()passes through an absorption medium of L in length and the laser intensity at the receiving end is I(v),so the absorbance A(v)used to represent the ab­sorption intensity can be expressed as Eq.1:A(v)-ln J[-S(T)0(v)PxL,(1)【t(v)where S(T)is the line strength,P is the pressure,x is the gas concentration,and0(v)is normalized linear func­tion.As the spectral frequency of molecular absorption or molecular emission is not strictly monochromatic the molecular absorption spectrum has linewidth and line­type.In high-pressure environment,the main factor of line-type change is collision broadening which divided in­to Lorentz broadening and Holtsmark broadening.Colli­sions between molecules in excited states and other parti­cles cause Lorentz broadening the when the concentration of measured gas is low.Inelastic collisions between at­oms in excited states and atoms of the same kind cause Holtsmark broadening when the concentration of mea­sured gas is high.Linewidth A v c is proportional to pressure P at a cer­tain temperature which expressed as Eq.2:△v c=P X X B2Y A-B,(2)Bwhere X b is the mole fraction of collision gas,Y a-b is the binary collision broadening coefficient between compo­nents B and A which is a function of temperature.Each collision pairs and specific radiation transition is corre­sponding to a broadening coefficient.Hitran database gives the collision broadening coefficient in the normal at­mospheric environment including the self-broadening co­efficient Y se f and the air broadening coefficient Y air(at 296K as the reference temperature,1atm as the refer­ence pressure).The relationship between collision broadening coefficient Y A-B(T)and temperature T can be expressed as Eq. 3:2y a-b(T)=2y a-b(T0)(y)n,(3) where T()is the reference temperature,Y a-b(T())is the broadening coefficient at T(),and n is the temperature de­pendent coefficient(usually<1,typical value is0.5).The center frequency of the corresponding absorp­tion line at different pressures is obtained by linear fitting of the absorbance curves and the corresponding relation can be expressed as Eq.4:v=v0+P[<5”2(1-x)+<?s”屮],(4) where v()is the original center frequency,8se l±is the self­induced pressure shift coefficient,and8、,is the nitrogen-induced pressure shift coefficient.744红外与毫米波学报39卷2 Experimental equipmentThe high -pressure experimental platform for spec ­trum detection with TDLAS was built as shown in Fig. 1. The laser was a commercial DFB laser (NLK1U5 EAAA , NEL Corporation) with the typical center wave ­length of 1 653. 72 nm the laser bandwidth of 2 MHz and the side -mode suppression ratio (SMSR) of 41. 68 dB. The laser controller LDC -3724C drove and ensured the laser under stable operation and the signal generator generated a saw -tooth signal as a wavelength scanning signal. The laser emitted and passed through a beam splitter divided the laser into two paths wherein 98% of the laser was collimated through a stainless steel absorp ­tion cell for gas high -pressure spectrum measurement. The other 2% of the laser was collimated through an etal ­on for wavelength calibration and conversion from time domain to frequency domain , which was detected by a detector (GAP1000L , GPD Corporation) with the mini ­mum noise equivalent power of 10 nW. The detection sig ­nal was transferred to a signal detection and processor for absorbance extraction and spectrum broadening charac ­teristics analysis. The absorption cell was 100 cm in length with the pressure resistance range within 10 atm. Wedge -shaped quartz window plates are installed with a 3° inclination angle of the end face of the absorption cell to reduce the interference impact on spectrum measure ­ment. A pressure gauge (EN837-1 , Swagelok Corpora ­tion) is installed on the side wall to monitor the pressure value in whole measurement process.3 Experiment and analysisIn this experiment the absorption line of methane molecule at 1653. 7 nm in the overtone band 2v 3 was se ­lected and the specific parameters of methane absorp ­tion line were shown in Table 1. The typical laser line ­width is 2 MHz and there are no strong absorption lines of interfering gases (such as water vapor , carbon diox ­ide etc. ) in the 0. 5 nm range on both sides of the ab ­sorption line.3.1 Experimental stepsIn the experiment the temperature and current op ­erating parameters of the laser controller were firstly tuned to the position of the goal absorption line and a saw -tooth signal of 100 Hz was used with the wavelength scanning range of about 0. 25 nm. It is necessary to main ­tain air tightness in the experiment. First 99. 99% nitro ­gen was introduced into the high -pressure absorption cell to remove any residual gas adsorbed and then the aboveSignal generatorLaser Controller]DFB Laser1detector ------------etalon @-----泌严* collima tor absorption cell needle valve two-way valve triple valve 100cmtwo-way valve decompressionvalvesignal detection and process otdetectortriple valve check valve^p\EN837-l pressure gauge two-way valve :H(b)Fig. 1 (a ) Spectrum measurement experimental platform, (b )gas path connection of experimental device图1 (a )光谱测量实验平台,(b )实验装置气路连接step was repeated three times with the lasting time of 2~3 minutes. Subsequently the methane standard gas (1. 0% volume concentration mixed nitrogen ) was trans ­mitted into the high -pressure absorption cell and the valve was closed after 2 minutes. The spectrum measure ­ment was carried out after the gas fully stabilizing about 30 seconds and the pressure data was synchronously ob ­served by EN837-1 gauge. Thus a group of methane measurement spectrum was obtained respectively at dif ­ferent pressures (1. 5~5 atm) for analyzing. The uncer ­tainty of the standard gas used here was about 2. 0% which produced by Nanjing Special Gas Corporation. The collected detection spectral signals can be converted from time domain to frequency domain by etalon signal (FSR = 3 GHz) collected synchronously.3. 2 Spectral measurement and analysis(1) Spectrum analysis algorithmWhen TDLAS technology was used to gas detection the noise caused by electronic components window de ­formation in high -pressure environment and other factors will affect the measurement accuracy. Therefore accord ­ing to the non -linear and non -stationary characteristics of spectral signals the empirical mode decomposition algo ­rithm was selected to filter the detected spectral signalsTable 1 Specific parameters of methane absorption line at 6046.9647 cm -1 (Hitran2008 database )表1 甲烷6 046.964 7 cm -1吸收线参数(Hitran2008数据库)Specific parametersValue spectral line intensity S (cm mol -1)1. 34E-21air-broadened half width at half maximum y a ir @296 K/ (cm -1 atm -1) 0. 062 1self-broadened half width at half maximum y s elf @296 K/ (cm -1 atm -1)0. 082temperature dependence coefficient of the air-broadened n 0. 85pressure shift of the air-broadened 8air @296 K/ (cm -1 atm -1)HE Ying et al:Precise measurements the broadening characteristics and parameters of methane near-infra­red absorption spectrum at high pressure6期745according to the advantages and disadvantages of variousde-noising algorithms.Then,the Lorentz line-type fit­ting algorithm was used to obtain the absorbance signal and extract the characteristic absorption spectrum.The spectral analysis algorithm was as follows:9-10::(1)Firstly,all the extreme points in the specific sig­nal X(t)were founded out then the upper envelope and the lower envelope were formed by cubic spline curve method with all of the extreme points.Supposing the average value of the upper and lower envelopes were m1,and the difference H1can be expressed as Eq.5:H1-X(t)-m1.(5) At the same time,H1was regarded as a new X(t), and the above steps were repeated until H1satisfying the two conditions of the eigenmode function IMF.Then H1 was defined as the first-order IMF,denoted as IMF1.In general the highest frequency component of the original signal was located in IMF1.(ii)Secondly,the IMF1was separated from X(t)to obtain the difference signal r1which was expressed as Eq.6:r1-X(t)-IMF1,(6) where r1was regarded as a new signal and the above steps were also repeated until the residual signal of the n order became a monotone function when the IMF variables which satisfied the eigenmode function cannot be generat­ed.The residual signal of the n order was regarded as Eq.7:r n-r n-1-IMF n.(7) Mathematically,X(t)can be expressed as the sum of IMF components and a residual function i.e.:X(t)=X;=1IMF j(t)+r,t),(8) where r n(t)was the residual function representing the av­erage trend which contained different frequencies compo­nents arranged from high to low.(iii)Thirdly,the IMF of each order was separated by a preset threshold value to generate the de-noised IMF components which were accumulated together with the re­sidual function and to realize the de-noised signal recon­struction.(iv)The de-noised signal was subjected to back­ground baseline fitting to extract the absorbance signal. In general the signal de-noising effect is evaluated by the signal-to-noise ratio(SNR)or root--mean-square er­ror(RMSE)[11].The overall RMSE of the original absor­bance signal and the de-noised absorbance signal were calculated respectively and it was reduced by 3.87 times after de-noising,as shown in Fig.2(a).(v)The Lorentz line-type function was used to fit ab­sorbance spectral signal after time domain to frequency domain converting and the fitting residual error was cal­culated within±1%,as shown in Fig.2(b).(2)Measurement of N2-CH4mutual broadening coef­ficientA group of spectral signals at different pressures were measured.The absorption linewidth showed obvi­ous broadening characteristics that it increased with pres­sure increasing but the peak values of the signals de­creased so the line shape tended to be flat.The integrat-・n・Ea5UEqJosqE16140.10.128641X1Xo.o.o.o.o.2ooo0.0.6046.776047.13wavelength/cm102.0.5.0.5.01A%EP逼6046.41864286421XO.O.O.O.O.O.O.0O.0・n・E03OUEqJosqE6046.416046.776047.13wavelength/cm1(b)Fig.2(a)Absorbance signal before and after filtering,(b)line­type fitting and residual result图2(a)滤波前后的吸光度信号,(b)线型拟合和残差结果ed absorbance spectral signals were shown in Fig.3in which the linewidth increased from0.19cm-1at1.5atm to0.62cm-1at5atm.The line-type change of gas absorption lines was mainly due to the gas molecule collision intensifying in high pressure environment which enhanced the collision broadening effect.The actual broadening coefficient of absorption line was obtained by calculating the slope of linear fitting of the line-width result at different pres­sures,as shown in Fig. 4.The slope k(T)can be ex­pressed as Eq.9:k(T)=2Y self(T)x ch4+2Y n2-ch4(T)(1-x ch4).(9)In this experiment the methane concentration was 1.0%,so the content of N2molecules in unit volume was much larger than that of methane molecules.Therefore self-broadening caused by collision between the same mol­ecules can be ignored only the nitrogen broadening of the collision between methane molecules in excited state and N2molecules needed to be considered.The nitrogen broadening coefficient was calculated to be0.0624 cm-1atm-1at high pressure,which was slightly higher than the air broadening coefficient in Hitran database.(3)Measurement of pressure shift coefficient of ni­trogen-inducedA group of center frequency of absorption line at dif­ferent pressures was obtained by linear fitting of absor­bance signals as shown in Fig. 5.It was seen that the absorption line moved to the long wave direction with pressure increasing,i.e.,that is the"red shift"phenom-746红外与毫米波学报39 卷2 08 6 4 2 011O O Q O Q 0 0 0O.0 0 0 ・ n•史 g o u E q J o s q c-----5 atm6046.41 6046.59 6046.77 6046.95 6047.13 6047.31wavelength/cm 12 0 8 6 4 2 01 1 o o o o o O.O.O.O.0 0 0・n・£ooueq.IosqE-4.5 atm2 0 8 6 4 2 01 1 o o o o o O.O.O.O.0 0 0・ n ・e Qoueq.!osqe --4 atm・n ・£Q o u e q.I o s q E6046.41 6046.59 6046.77 6046.95 6047.13 6047.31wavelength/cm 13.5 atm6046.41 6046.59 6046.77 6046.95 6047.13 6047.3112100 0O.O.0 0 0・n ・E Qoueq.Iosqe08040200wavelength/cm 16046.41 6046.59 6046.77 6046.95 6047.13 6047.316046.41 6046.59 6046.77 6046.95 6047.13 6047.31wavelength/cm 12 0 8 6 4 21 1 o o Q o 0 0 0 0O.O.・n ・£Q O U &q.I o s q e・ n•史gou&q.Iosq&wavelength/cm 1Fig. 3 Absorbance spectral signals after Lorentz line-type fitting 图3洛伦兹线型拟合后的吸光度光谱信号2 o OO6 4 2 C1 1 o o o o cO.O.00 0 0 C・ n・£Qoueq.!osqE6046.41 6046.59 6046.77 6046.95 6047.13 6047.31wavelength/cm 1一E v q m MW U E S m o oFig. 4 Nitrogen broadening coefficient at 6 046. 96 cm -1 图4 6 046. 96 cm-1处的氮气展宽系数enon. On the contrary the center wavelength corre ­sponding to the absorption peak shifted to the short -wave direction as the pressure decreasing , which is called "blue shift" phenomenon. There was a good linear rela ­tionship between the center frequency and the pressure. The intercept as the center frequency in experiment was 6 046. 963 8 cm -1 , which can be expressed as Eq. 10. The slope as the pressure shift coefficient of nitrogen -in ­duced was calculated as -0. 00848 cm -1atm -1 at high pres ­sure ,which does not exist in the Hitran database.v = 6 046.963 8 - 0.008 48 ・P (1 - x ) . (10)According to the above analysis , the unknown low concentration x can be measured as Eq. 11 when the fre ­quency corresponding to the peak value of the absor-wavelength/cmFig . 5 Center frequency drift phenomenon 图5中心频率漂移现象HE Ying et al:Precise measurements the broadening characteristics and parameters of methane near-infra­red absorption spectrum at high pressure6期747bance signal and the current pressure were known:“6046.9638-vx=1—.0.00848P(11)6046.9556046.9506046.9456046.9406046.9356046.9306046.9256046.9201.0 1.52.0 2.53.0 3.54.0 4.55.0 5.5pressure/atmFig.6Calculated the pressure shift coefficient of nitrogen-in­duced图6计算的氮气诱导压力频移系数In TDLAS system the amplitude of the wavelength scanning signal was within a certain range to ensure the normal operation of the laser.As the pressure increased the absorption signal linewidth had gradually increased while the proportion of the directly detected signal with­out absorption part gradually decreased.Therefore Lorentz line-type fitting results of absorbance signal were incomplete(as shown of dotted line in Fig.7)which re­sults in the concentration inversion deviation augment.In the experiment a group of methane standard gas­es with different concentrations were transported into the high-pressure absorption cell and the absorbance sig­nals after air pressure stabilizing were obtained as shown in Fig.7.The gas concentration can be inverted accord­ing to Eq.11with the center frequency of absorption sig­nal and the pressure that the maximum relative error of 0.2%methane concentration was calculated as 4.0% as shown in Table2.This method provided another meth­od for concentration inversion in the condition of absor­bance signals severe broadening at high pressure.4ConclusionsIn Conclusion the methane absorption spectrum at 6046.96cm-1in high-pressure environment was mea­sured with a spectrum detection platform by optimally ex­tracting absorbance signals through empirical mode de­composition algorithm filtering and Lorentz line-type fit­ting.Then the broadening characteristics of methane ab­sorption spectrum at high pressure were studied.These studies show that the peak value of absorbance decreased and the linewidth increased with the pressure increasing. The methane-nitrogen mutual broadening coefficient mea­sured at high pressure was about0.0624cm-1atm-1,slight­ly higher than the air broadening coefficient in Hitran data­base.The pressure shift coefficient of nitrogen-inducednEa3UEqJsqE6046.446046.626046.806046.986047.166047.34wavelength/cm1Fig.7Absorbance signals of different concentration at high pressure图7不同浓度的高压下吸光度信号表2甲烷标气浓度与反演浓度结果Table2Methane standard gas concentration and inverted concentrationTimeTure concentra­tion/%)Inverted concen-tration/(%)Relative error/(%)10.5000.512 2.4020.4000.390 2.5030.3000.311 3.6740.2000.208 4.00under high pressure was-0.0084cm-1atm-1,which was not listed in Hitran database.The gas concentration can be inverted by measuring center frequency of absorption line when the absorbance cannot be effectively obtained in higher pressure condition with the corresponding relation-ship between the pressure shift coefficient of nitrogen-in­duced gas concentration center frequency and pres­sure.At the same time the feasibility of the experimental system and spectrum processing algorithm was verified which laid a foundation for subsequent research on gas spectral characteristics at high pressure.References[1]Aoyagi Y,Osada H,Misawa M,et al.Advanced diesel combustionusing of wide range,high boosted and cooled EGR system by single cylinder engine[C].SAE Technical Paper,2006,2006-01-0077. [2]Pantani M,Castagnoli F,D'Amato F,et al.Two infrared laser spec­trometers for the in situ measurement of stratospheric gas concentra-tion[j].Infrared physics&technology,2004,46(1):109-113. [3]Roller C,Namjou K,Jeffers J,et al.Simultaneous NO and CO2mea­surement in human breath with a single IV-VI mid-infrared laser [J].Optics letters,2002,27(2):107-109.[4]Rieker G B,Jeffries J B,Hanson R K.Calibration-free wavelengthmodulation spectroscopy for measurements of gas temperature and concentration in harsh environments[j].Applied Optics,2009,48(29):5546-5560.[5]Farooq A,Jeffries J,Hanson R.High-pressure measurements ofCO2absorption near2.7|xm:Line mixing and finite duration colli­sion effects[J].Journal of Quantitative Apectroscopy and Radiative Tranfer,2010,111:949.[6]CAI Ting-Dong GAO Guang-Zhen WANG Min-Rui et al.Mea­surements of CO2concentration at high temperature and pressure en­vironment using Tunable Diode Laser Absorption Spectroscopy[J].Spectroscopy and Spectral Analysis(蔡廷栋,高光珍,王敏锐,等.高748 红外与毫米波学报39卷温高压下基于TDLAS的二氧化碳浓度测量方法研究.光谱学与光谱分析),2014,34(7):1769-1773.[7]SUN Meng.The absorption lin-shapes recovery research of gas detec­tion system based on TDLAS[D].Shan Dong University,Thesis for Master Degree,孙猛.基于TDLAS技术气体检测的理论模型修正研究.山东大学硕士学位论文),2014:31-44.[8]Michopoulos P,Baloutsos(;,Economou A,et al.Effects of nitrogendeposition on nitrogen cycling in an Aleppo pine stand in Athens (Greece[j].Science of t he Total En.vironm.ent,2004,323:211—218.[9]Huang N E,Shen Z,Long S R,et al.The empirical mode decompo­sition and the Hilbert spectrum for nonlinear and non-stationary timeseries analysis[j].Proceedings of the Royal Society,1998,454 (1971):90;—995.〜〜[10]JIA Wei HE Ying ZHANG Yu-Jun et al.Spectral analysis andline strength measurement method of near-infrared overlapped ab­sorption lines[j].Journal of Infrared and Millimeter Waves,贾巍,何莹,张玉钧,等.近红外混叠吸收线光谱解析及线强测量方法研究.红外与毫米波学报),2018,37(1):106-111.11]Li J S Yu B L Fischer H.Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing[J].Applied Spectroscopy,2015,69(4):496—506.。

基于腔衰荡光谱技术的大气甲烷浓度测量

基于腔衰荡光谱技术的大气甲烷浓度测量

2020年11期技术创新科技创新与应用Technology Innovation andApplication图1CRDS 装置示意图基于腔衰荡光谱技术的大气甲烷浓度测量焦建瑛,张涛,王嵩梅,何少平(北京市燃气集团有限责任公司,北京100035)引言甲烷(CH 4)是一种温室气体,并在大气化学方面担负着重要作用[1]。

在海洋中,甲烷水化物在受到温度或压力变化时,会释放甲烷气体[2]。

另外,海洋中一些微生物新陈代谢过程也会产生或消耗甲烷[3]。

所以,甲烷浓度测量对于温室效应监控、天然气水合物勘探、海洋生态环境研究具有重要意义。

不论是大气中还是海洋里,甲烷均属于痕量气体。

在痕量气体浓度测量方面,腔衰荡光谱技术(CRDS )作为一种具有高灵敏度和高光谱分辨率的直接吸收光谱测量技术被人们所关注[4]。

由于其谐振腔结构的使用,使待测气体在有限空间内的吸收光程长达km 量级。

从原理角度分析,CRDS 还具有对光源光强起伏不敏感,可自标定等特点。

自1988年,Anthony O'Keefe 和David A.G.Deacon 使用脉冲激光器进行了首次气体吸收光谱测量,提出了腔衰荡光谱技术(CRDS )[5]。

到1997年,D.Romanini 等人通过声光开关(AOM )及压电陶瓷位移控制器(PZT )解决了连续光源(CW )在CRDS 中的实现问题[6],并将激光二极管(LD )引入CRDS 中[7];之后于1999年,发表了关于使用分布反馈式激光二极管(DFB-LD )实现CRDS 测量痕量气体的文章[8]。

目前,采用激光二极管CRDS 对大气中痕量气体进行测量已成为一种较为普遍的手段[9-11]。

本文将采用腔衰荡光谱技术,对大气中甲烷浓度进行测量,并分析实验中出现的现象。

1原理及实验腔衰荡光谱技术测痕量气体浓度是基于气体分子对光的吸收作用。

在一个稳定谐振腔中,均匀得分布着待测气体,经过模式匹配的激光在谐振腔中形成稳定振荡,腔内光强衰减主要因为待测气体的吸收损耗和腔镜的透射损耗。

基于TDLAS技术的甲烷气体浓度识别系统

基于TDLAS技术的甲烷气体浓度识别系统

122化工自动化及仪表2021年基于TDLAS技术的甲烷气体浓度识别系统阚玲玲1叶蕾1王喜良2陈建玲<宋福政&(1.东北石油大学电气信息工程学院;2.上汽通用东岳汽车有限公司冲压车间;3.中海石油(中国)有限公司天津分公司;4.大庆油田有限责任公司第五采油厂第五油矿高一队)摘要以不同浓度的甲烷气体为研究对象,利用甲烷在1653.7n m处的吸收峰,搭建基于TDLAS技术的甲烷气体浓度识别系统,利用Matlab软件拟合不同配比甲烷气体浓度曲线,并用其他标准浓度气体进行精度验证。

搭建的基于TDLAS技术的甲烷浓度识别系统由气体浓度配比、光电检测和信号采集处理3部分组成。

使用高精度流量计,利用高纯氮气稀释高浓度甲烷配比低浓度甲烷气体作为检测气体,并通过实验数据分析配比误差。

实验结果表明:搭建的基于TDLAS技术的甲烷气体浓度识别系统气体标定准确,气体浓度识别精度高。

关键词可调谐二极管激光吸收光谱二次谐波气体浓度标定识别中图分类号TH744文献标识码A文章编号1000-3932(2021)02-0122-07天然气的主要成分是易燃易爆的甲烷(CH&)气体#由于甲烷能够吸收特定波长的红外辐射,近年来,基于红外检测技术的天然气管道泄漏检测方法得到广泛关注[1,2&。

现阶段,利用可调谐二极管激光吸收光谱技术(Tunable Diode Laser Ab­sorption Spectroscopy,TDLAS)测量气体浓度已广泛应用⑶。

为了降低TDLAS系统的检测限,针对系统中无法避免的干扰和噪声,越来越多的后续处理算法被研究和应用⑷。

2014年,吉林大学郑传涛课题组在TDLAS系统中引入小波去噪(WD),最小检测限(MDL)从4ppm(1ppm=0.001")降到了1ppm,在4~50ppm浓度范围内,最大检测误差从6.2%降至3.8%[5&。

2015年安徽大学课题组提出了一种基于离散小波变换(DWT"的方法,选择最佳小波可调谐半导体激光吸收光谱(TDLAS)进行自适应处理,用于分子光谱和痕量气体检测等定量分析同。

甲烷气体分子高灵敏高分辨吸收光谱的理论与实验研究

甲烷气体分子高灵敏高分辨吸收光谱的理论与实验研究

甲烷气体分子高灵敏高分辨吸收光谱的理论与实验研究【摘要】:本论文主要就高灵敏、高分辨探测气体分子吸收光谱进行了理论分析和实验研究。

利用外腔可调谐二极管激光对甲烷气体分子2ν_3振动吸收带R9支八条吸收线线强度、压力诱导展宽和压力诱导频移等吸收线参数进行了高精度的测量。

利用波长调制和谐波探测技术对频率位于6105.626cm~(-1)附近的两条间隔仅6MHz的F1、F2吸收双线进行高灵敏检测,从理论和实验上同时分析了影响本实验灵敏度主要噪声原因。

考虑了这些噪声因素后,获得了最小探测灵敏度。

另外采用共焦FP腔和激光耦合原理结合光与分子相互作用理论,数值分析了影响腔增强以及腔饱和光谱的一些因素,最后对腔饱和光谱进行了预研,初步建立了实现腔饱和光谱的实验方案。

论文就以上内容分成六章进行了阐述。

第一章为引言部分,介绍了主要应用于分子光谱领域的高灵敏、高分辨技术,引出了本文要研究的内容。

第二章对饱和吸收光谱的理论进行了详细的归纳总结,主要从最基本的吸收线的展宽和压窄效应出发,分析了引起展宽的多种因素,最后给出了饱和光谱的一般的理论描述。

第三章首先分析了波长调制和谐波探测这种高灵敏检测技术的基本原理,从理论上分析了激光能量起伏对这种高灵敏检测技术的影响,同时提出了简单的解决方案,最后从理论模拟腔共振效应的谐波信号为基础,分析其对这种高灵敏检测技术的影响。

第四章针对本文研究的2ν_3带R9支的八条吸收线的结基本参数进行了分析,首先描述了甲烷分子的基本结构、振动模式、配分函数以及近红外吸收光谱等,利用直接吸收光谱结合谐波探测技术测量了这八条线的吸收线强度以及F1、F2吸收双线的压力展宽和压力频移系数,最后对频率稳定到甲烷吸收线的性能进行了研究,这些都为建立高灵敏检测瓦斯气体提供必要的数据。

第五章结合第三章的理论分析,从实验上消除了背景起伏对谐波信号的影响,分析了影响本实验灵敏度的主要噪声—腔共振效应,通过测量接近探测极限的低浓度甲烷气体的谐波信号以及腔共振效应噪声随调制幅度的变化关系,选择了具有最佳信噪比的最佳调制幅度,最后在消除背景起伏对谐波信号的影响以及采用最佳的调【关键词】:甲烷分子光谱振转吸收带波长调制和谐波探测技术腔饱和光谱技术腔共振效应【学位授予单位】:山西大学【学位级别】:博士【学位授予年份】:2005【分类号】:O433.5【目录】:目录4-12摘要12-18第一章引言18-321.1激光光谱学概况18-191.2高灵敏激光光谱技术19-241.2.1直接吸收光谱技术19-201.2.2调制光谱技术20-211.2.3腔增强吸收光谱技术21-221.2.4差分吸收及扫描平均技术221.2.5光声光谱技术22-241.3高分辨激光光谱技术24-291.3.1准直分子束光谱技术24-251.3.2饱和光谱技术25-271.3.3量子拍光谱技术27-281.3.4双光子无多普勒光谱技术28-291.4本文主要研究的内容29参考文献29-32第二章饱和吸收光谱理论32-602.1收线展宽机制32-452.1.1均匀展宽32-402.1.2非均匀展宽40-432.1.3弹性碰撞43-452.2饱和吸收光谱理论与技术45-562.2.1饱和吸收光谱理论45-532.2.2饱和光谱技术及应用53-56本章小结56参考文献56-60第三章调制光谱与谐波探测技术的理论分析60-783.1波长调制光谱与频率调制光谱60-633.2谐波探测理论63-663.3激光能量起伏对波长调制光谱的影响66-733.3.1残余幅度调制66-673.3.2组合幅度调制和波长调制的谐波探测理论67-713.3.3消除背景起伏对谐波信号影响71-733.4腔共振效应对波长调制光谱的影响73-76本章小结76参考文献76-78第四章甲烷气体分子2v_3带R9支吸收线参数的高精度测量78-1064.1分子光谱理论初步78-814.1.1Born-Oppenheimer 近似78-804.1.2振转光谱80-814.2甲烷分子近红外吸收光谱81-854.2.1甲烷分子结构81-824.2.2振动与对称824.2.3近红外光谱82-844.2.4配分函数84-854.3定量吸收光谱85-874.3.1Beer-Lambert定律854.3.2吸收线强度85-874.3.3压力展宽和压力频移系数的测量874.4TEC500型外腔二极管激光器特性讨论87-904.4.1Littman外腔式二极管激光器的工作原理87-884.4.2TEC500型外腔二极管激光器的电压调制率的测量88-904.5吸收线参数的测量90-1044.5.1吸收线强度的测量90-954.5.2压力展宽和压力频移系数的测量95-1004.5.3稳定激光器频率到甲烷吸收线100-104本章小结104参考文献104-106第五章高灵敏探测甲烷气体的实验研究106-1205.1消除激光能量起伏对谐波探测灵敏度影响的实验研究106-1095.1.1幅度调制和频率调制之间相位差φ的测量106-1095.1.2实验结果及讨论1095.2腔共振效应的实验研究109-1115.3高灵敏探测微量甲烷气体的实验研究111-1185.3.1实验装置与技术112-1135.3.2最小探测灵敏度的分析113-1185.3.3所测频率范围内其它气体吸收线的讨论118本章小结118参考文献118-120第六章高分辨分子饱和吸收光谱研究120-1406.1弱分子内腔饱和谱的理论分析121-1306.1.1FP腔光场的理论描述121-1236.1.2腔内存在吸收介质时的共焦FP腔理论123-1246.1.3腔增强吸收的理论分析124-1266.1.4腔饱和吸收的理论分析126-1276.1.5甲烷分子腔饱和谱的数值模拟127-1306.2锁定激光器频率到高精度FP腔共振峰130-1356.2.1Pound-Drever-Hall锁频技术的相关理论131-1336.2.2Pound-Drever-Hall锁频技术的实验研究133-1356.3月空饱和吸收光谱的实验预研135-1376.3.1腔饱和吸收光谱的实验方案135-1366.3.2腔饱和吸收光谱的测量结果及分析136-137本章小结137-138参考文献138-140全文总结及今后工作展望140-142博士期间完成的科研论文142-144博士期间参与的科研项目和专利144-145致谢145-146承诺书146 本论文购买请联系页眉网站。

光谱吸收式甲烷传感器说明书

光谱吸收式甲烷传感器说明书

产品说明书GJG4型光谱吸收式甲烷传感器编写人员董雷,薛野,韦云波部门研发中试部日期2010-11-8版本号 1目录1GJG4型光谱吸收式甲烷传感器功能说明 (2)2GJG4型光谱吸收式甲烷传感器工作原理 (3)3BGD-16M各功能单元分析 (4)3.1光学/光电子部分 .............................................................................................. 错误!未定义书签。

3.1.1解调器光路.............................................................................................. 错误!未定义书签。

3.1.2梳状滤波器.............................................................................................. 错误!未定义书签。

3.1.3光纤光栅.................................................................................................. 错误!未定义书签。

3.1.4O波段扫频激光器 .................................................................................. 错误!未定义书签。

3.2电路部分 ............................................................................................................ 错误!未定义书签。

1654nm甲烷吸收激光光谱 -回复

1654nm甲烷吸收激光光谱 -回复

1654nm甲烷吸收激光光谱-回复1654nm甲烷吸收激光光谱分析原理及应用引言:甲烷(CH4)是一种常见的温室气体,对全球气候变化有重要影响。

了解甲烷的排放来源和传输路径对于环境保护和气候变化研究具有重要意义。

近年来,甲烷吸收激光光谱成为一种有效分析甲烷气体浓度的技术,其原理与应用备受关注。

本文将详细介绍1654nm甲烷吸收激光光谱的分析原理及其在环境监测、气候研究和工业应用中的应用。

一、甲烷吸收激光光谱的原理甲烷吸收激光光谱的原理基于激光与分子之间的相互作用。

当激光波长为1654nm时,其波长与甲烷分子的吸收带重合。

甲烷分子在这一波长的激光作用下会发生能级跃迁,吸收入射光的能量,使得光强逐渐减弱。

通过测量透射光强的衰减,可以获得样品中甲烷浓度的信息。

二、1654nm甲烷吸收激光光谱的分析步骤1. 激光器的选择与调节:选择适合的激光器,使其波长接近1654nm,并对激光器进行调整,以确保输出的激光功率和频率的稳定性。

2. 光学系统的设计:通过适当选择和配置光学元件,如透镜、偏振器、光束分束器等,将激光束引导到待测试物质上,并收集透射光。

3. 甲烷样品的准备:准备含有甲烷的气体样品,确保样品的纯度和浓度可控。

4. 光强的测量:利用光电探测器或光谱仪测量透射光的光强,并获取光谱数据。

5. 数据处理与分析:将测得的光谱数据进行分析处理,利用吸收峰的强度与甲烷浓度之间的相关关系,计算出样品中甲烷的浓度。

三、1654nm甲烷吸收激光光谱的应用1. 环境监测:甲烷是一种重要的温室气体,对全球气候变化产生重要影响。

利用1654nm甲烷吸收激光光谱可以实时、快速地测量大气中甲烷的浓度及其时空分布,用于监测甲烷的排放源和传输路径,为环境保护和气候变化研究提供重要数据支持。

2. 气候研究:甲烷是自然界与人类活动共同释放的温室气体,对地球气候系统的稳定性有重要影响。

通过1654nm甲烷吸收激光光谱的分析,可以精确测量甲烷在不同气候区域的浓度变化,并研究其与全球气候变化的关系,为气候变化模型的建立和预测提供数据依据。

1654nm甲烷吸收激光光谱 -回复

1654nm甲烷吸收激光光谱 -回复

1654nm甲烷吸收激光光谱-回复甲烷(CH4)是一种重要的温室气体,其对地球的气候变化产生深远的影响。

为了深入了解甲烷分子的结构和行为,科学家们利用1654纳米(nm)波长的激光进行甲烷吸收光谱研究。

本文将一步一步回答关于相关实验的问题。

1. 什么是激光光谱?激光光谱是一种用于研究物质分子结构和行为的实验方法。

它利用激光束照射样品,通过观察样品对特定波长光的吸收、散射或发射,来获取关于物质的信息。

2. 为什么选择1654nm波长的激光?选择适当的激光波长是非常重要的,因为不同波长的激光可以与物质相互作用的方式不同。

对于甲烷的研究,1654nm波长的激光被发现可以与甲烷分子的振动模式相匹配,从而引发其吸收。

这种激光波长对于探究甲烷分子的结构和行为非常有用。

3. 甲烷的吸收光谱研究有什么重要意义?通过研究甲烷的吸收光谱,我们可以了解甲烷分子中不同化学键的振动和转动模式,并推断出整个分子的结构。

这对于研究甲烷的化学性质、反应机制以及其在地球变暖中的作用有着重要的意义。

4. 如何进行甲烷吸收光谱实验?实验中,首先准备一束波长为1654nm的激光。

将这束激光照射到含有甲烷的样品上,并在样品后方放置一个光谱仪。

光谱仪可以分析经过样品的激光被吸收的程度,从而得出甲烷的吸收光谱图。

5. 甲烷吸收光谱有什么特点?甲烷的吸收光谱在1654nm处显示出明显的吸收峰。

这是由于甲烷分子在这个波长下的转动振动模式与激光能量的匹配。

通过测量吸收峰的强度和形状,我们可以推测甲烷分子中不同键的振动频率和可能的构象。

6. 如何解读甲烷吸收光谱?解读甲烷吸收光谱需要通过对比实验数据和已有的理论模型进行分析。

通过测量不同浓度的甲烷样品,我们可以绘制出吸收峰的强度和浓度之间的关系。

同时,根据已知的甲烷分子结构和振动模式,我们可以通过理论计算来揭示实验数据背后的物理机制。

7. 甲烷吸收光谱的应用有哪些?甲烷吸收光谱广泛应用于环境科学、大气化学和气候变化研究中。

有机化合物分子中常见基团吸收峰课件

有机化合物分子中常见基团吸收峰课件

在有机化合物合成研究中的应用
总结词
基团吸收峰在有机化合物合成研究中具 有指导作用,通过分析目标化合物的基 团吸收峰,可以优化合成条件和路线。
VS
详细描述
在合成研究中,基团吸收峰的分析可以帮 助研究者了解目标化合物的结构和性质, 从而优化合成条件和路线。通过对合成产 物的吸收峰进行分析,可以判断合成是否 成功,并指导后续的合成实验。
取代基的数量
多个取代基的存在可能会产生协同效应,从而影响吸收峰的位置和强度。
溶剂的影响
溶剂的极性
溶剂的极性对吸收峰的位置和强 度有显著影响。在极性溶剂中, 基团的吸收峰通常会红移,而在 非极性溶剂中则可能蓝移。
溶剂的粘度
粘度较高的溶剂可能会使吸收峰 的形状和强度发生变化。
温度的影响
温度对吸收峰位置的影响
在烷烃的同分异构体中,直链烷烃的C-H键振动吸收峰位置略高于支链烷烃。
芳香烃基团的吸收峰特性
芳香烃基团如苯环、萘环等,其 吸收峰主要出现在中波数区域, 一般在1600-1450 cm^-1范围内。
这些基团中的C=C双键振动是其 主要吸收来源,其吸收强度较强,
且易发生红移或蓝移。
在不同取代程度的芳香烃中,随 着取代程度的增加,C=C双键的 吸收峰位置逐渐向低波数移动。
THANKS。
这些基团中的O-H键振动是其主要吸收来源,其吸收 强度较强,且易发生红移或蓝移。
醇、酚、醚基团如甲醇、苯酚、乙醚等,其吸收峰主 要出现在高波数区域,一般在3500-2500 cm^-1范 围内。
在醇和酚中,随着取代程度的增加,O-H键的吸收峰 位置逐渐向低波数移动。
醛、酮、羧酸基团的吸收峰特性
醛、酮、羧酸基团如甲醛、丙酮、乙 酸等,其吸收峰主要出现在中高波数 区域,一般在2900-2100 cm^-1范 围内。

基于LabVIEW与气体特征吸收光谱的甲烷浓度检测系统

基于LabVIEW与气体特征吸收光谱的甲烷浓度检测系统

2 . I n s i t t u t e o f Me a s u r i n g a n d C o n t r o l l i n g T e c h n o l o g y, N o r t h U n i v e r s i t y o f C h i n a , T a i y u a n 0 3 0 0 5 1 , C h i n a )
关键词 : 差分 吸 收 ; 甲烷检 测 ; 数字滤波 ; 数 据 拟 合 中 图分 类 号 : T P 2 1 2 . 6 文献标识码 : A 文章编号 : 1 0 0 2—1 8 4 1 ( 2 0 1 3 ) 1 0— 0 0 7 0— 0 3
De s i g n o f Me t ha n e Co nc e n t r a t i o n Mo n i t o r i ng S y s t e m Ba s e d o n La b VI EW a n d Cha r a c t e r i s t i c Abs o r pt i o n S pe c t r um
乔记 平 , 秦 建敏 , 闫晓燕 , 张朝 霞
( 1 | 太原理工大学物理与光 电工程学院 , 山西太原 0 3 0 0 2 4 ; 2 . 中北 大学 电子与计算机科学技术学院 , 山西太原 0 3 0 0 5 1 )
摘要 : 根 据 甲烷 气体 的 特 征 吸 收 光 谱 与 浓 度 变化 之 间 的 关 系 , 结 合 虚 拟仪 器技 术 , 提 出 了一 种 基 于差 分 吸 收 原 理 的 红
Q I A O J i — p i n g 。 , Q I N J i a n — ai r n , YA N X i a o — y a h , Z HA N G Z h a o — x i a

子相对于原子核的运动对应于电子能级能级跃迁产生紫

子相对于原子核的运动对应于电子能级能级跃迁产生紫
分子通式为CnH2n+2;只含有σ键电子,故只发生 σ→σ﹡跃迁,出现在10~200nm,即远紫外光区。
1、饱和烃 分子通式为CnH2n+2;只含有σ键电子,故只发生
σ→σ﹡跃迁,吸收带出现在10~200nm,即远紫外 光区,只能被真空紫外分光光度计检测到(因为波 长λ< 160nm的紫外光被空气中的氧或玻璃吸收,故 远紫外光也被称为真空紫外光)。
例如甲烷(CH4)一般跃迁的范围在125~135nm, 碘甲烷(CH3I)的吸收峰则在150~210nm(σ→σ*跃迁) 及259nm( n→σ*跃迁)。
这种能使吸收峰波长向长波方饱和脂肪烃 分子通式为CnH2n+2;含有双键。即含有σ健和π键电
子,可发生σ→σ﹡跃迁和π→π*跃迁。 这类化合物有孤立双键的烯烃(如乙烯)和共轭双
例如,检定甲醇或乙醇中的杂质苯,可利用苯在 256nm处的B吸收带,而甲醇或乙醇在此波长处几乎没 有吸收检定之。
2、如果一化合物,在可见区或紫外区有较强的吸收 带,有时可用摩尔吸收系数来检查其纯度。
例如,菲的氯仿溶液在296nm处有强吸收 (lgε= 4.10 )。用某法精制的菲,熔点100℃ ,沸点 340℃ ,似乎已很纯,但用紫外吸收光谱检查,测得的 值比标准低10%,实际含量只有90%,其余很可能是 蒽等杂质.
结论:紫外吸收光谱可以为我们提供识别未知物 分子中可能具有的生色团、助色团和估计共轭程度 的信息,这对有机化合物结构的推断和鉴别往往是 很有用的,这也就是吸收光谱的最重要应用.
四、纯度检查
紫外吸收灵敏度很高,可检测化合物中所含微量的 具有紫外吸收的杂质。
1、如果化合物在紫外区没有吸收峰,而其中的杂质 有较强吸收,就可方便地检出该化合物中的痕量杂质。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甲烷(CH4)的红外吸收谱线是其分子在红外频率范围内吸收特定的辐射能量。

甲烷的主要红外吸收谱线位于约3000至3800 cm-1的波数范围内,其中包括以下特征性峰:
1. 对称伸缩振动(symmetric stretching):在约2900至3000 cm-1的波数范围内,有一个强吸收峰。

2. 异称伸缩振动(asymmetric stretching):在约2900至3000 cm-1的波数范围内,有一个较强的吸收峰。

3. 弯曲振动(bending):在约1300至1500 cm-1的波数范围内,有一个较强的吸收峰。

需要注意的是,具体的吸收谱线位置和强度可能会受到实验条件、分辨率和仪器精度的影响。

如果你需要更精确和详细的甲烷红外吸收谱线信息,建议参考化学或物理学相关的文献或数据库,如NIST化学网站
另外,对于甲烷的红外吸收谱线,具体的波数、频率和波长等数值如下:
对称伸缩振动:2917.1 cm-1(频率),3.435 μm(波长)
异称伸缩振动:2962.4 cm-1(频率),3.375 μm(波长)
弯曲振动:1464.4 cm-1(频率),6.832 μm(波长)
这些数值是通过实验研究和计算得出的,可以用于分析和解释甲烷在红外频率范围内的吸收光谱。

在甲烷分析和检测中,红外光谱技术广泛应用,可以通过测量甲烷吸收谱线来确定甲烷的存在和浓度等参数。

相关文档
最新文档