药物性肝损伤的机制

合集下载

药物性肝损伤(教学及宣教)

药物性肝损伤(教学及宣教)
药物性肝损伤 临床表现
药物性肝病可以表现为目前所知任何类型急性或慢性肝脏疾病,其中急性肝损伤约占报告病例数的9O%以上,少数患者可发生威胁生命的暴发性或重症肝功能衰竭。
急性药物型肝病若为肝细胞型,可表现为肝炎型,在黄疸出现前1~2天有乏力、胃纳减退、上腹不适、恶心、呕吐、尿色深等前驱症状。严重病例可呈肝衰竭表现,可并发肝昏迷而死亡。生化检查ALT、AST明显增高,可伴有血清胆红素升高;亦可表现为脂肪肝型,临床特点为脂肪肝、氮质血症和胰腺炎。一般在连续用药3~5天以上,出现恶心、呕吐、厌食、上腹痛、尿色深、肝肿大、黄疸、肾功能减退,有少尿、血尿素氮增高及代谢性酸中毒。生化检查ALT及AST明显增高,血清胆红素一般低于 17.1μmol/L,亦可高达51.3μmol/L。凝血酶原时间延长,偶有血糖过低,本病预后差,如不及时停药,病死率很高。急性药物型肝病还可表现为肝内胆淤型药物性肝炎,包括单纯淤胆型,临床表现为起病隐袭,常无前驱症状,发病时无发热、皮痛或嗜酸粒细胞增多。黄疸轻,于停药后很快消失。生化检查AST增高,碱性磷酸酶和胆固醇大多正常;淤胆伴炎症型肝炎可有发热、畏寒、恶心、腹胀、乏力、皮疹,随后出现黄疸,皮肤瘙痒,大便色浅,肝大并压痛,嗜酸细胞增加。生化检查胆红素、ALT、AST、胆固醇及碱性磷酸酶均中高度升高。混合型药物性肝炎既有肝炎型的表现亦有胆汁淤积的表现。
药物性肝损伤 发病机制
要了解药物致肝损伤的机制,首先需了解药物在肝脏中的代谢特点。通常经消化道吸收的药物,经过门静脉进入肝脏。肝脏是药物聚集、转化、代谢的重要器官,大多数药物在肝内的代谢过程包括转化与结合两个时相即Ⅰ相代谢及Ⅱ相代谢。Ⅰ相代谢反应主要包括氧化、还原和水解反应,药物经过此相反应后极性增高,即水溶性增大,易于排出体外,参与Ⅰ相代谢的酶主要是细胞色素P450(CYP);Ⅱ相代谢反应主要为结合反应,经过此相反应后,药物可与葡萄糖醛酸、甲基、硫基、甘氨酸等基团结合,形成极性更强的物质,通过胆汁或尿液排出体外。有些药物仅需Ⅰ相代谢,有些药物则需要Ⅰ相及Ⅱ相代谢才能完成。肝脏中Ⅰ相及Ⅱ相代谢酶的基因在人群中具有为多态性,因此,不同个体对药物的耐受性及敏感性也有很大差异。在有些个体,有些药物在此代谢过程中会产生有毒或致癌的物质,进一步造成肝损伤,或原本不具抗原性的药物,在肝内转化后形成具有抗原性的代谢产物,引起免疫性肝损伤。

中国药物性肝损伤诊治指南(2023版)解读PPT课件

中国药物性肝损伤诊治指南(2023版)解读PPT课件

04
药物性肝损伤的临床表现和诊断
临床表现
急性药物性肝损伤
急性药物性肝损伤通常会出现发热、恶心、呕吐、黄疸、瘙痒、乏力等症状。可能出现肝脏肿大、压痛或叩击痛等体 征。严重病例可能出现急性肝衰竭、肝性脑病等严重并发症。
慢性药物性肝损伤
慢性药物性肝损伤可能会出现乏力、食欲减退、腹胀、肝区疼痛等症状。病情严重时可能出现肝硬化、肝衰竭等并发 症。
中国药物性肝损伤诊治指南(2023 版)解读
汇报人:xxx 2023-12-10
目 录
• 药物性肝损伤的定义和分类 • 药物性肝损伤的流行病学 • 药物性肝损伤的病理学 • 药物性肝损伤的临床表现和诊断 • 药物性肝损伤的治疗和管理 • 总结和展望
01
药物性肝损伤的定义和分类
药物性肝损伤的定义
物性肝损伤中较为常见。
03
急性胆汁淤积型
急性胆汁淤积型的特征是肝内胆汁淤积,小胆管炎症和胆栓形成。这些
Hale Waihona Puke 胆栓可随胆汁排入胆道系统,造成胆道阻塞,引起黄疸。
药物性肝损伤的病理分型
肝细胞型
肝细胞型是指损伤主要集中在肝细胞,包括急性肝炎型和 慢性肝炎型。这类损伤通常是由于药物的直接毒性作用或 免疫反应引起的。
03
药物性肝损伤的病理学
药物性肝损伤的病理表现
01
急性肝炎型
急性肝炎型是药物性肝损伤最常见的病理表现类型。其特征是肝细胞肿
胀、气球样变、坏死和炎细胞浸润。在严重的情况下,可能会出现肝细
胞的大片坏死和肝衰竭。
02
慢性肝炎型
慢性肝炎型的特点是门静脉周围纤维化,门静脉分支的狭窄和假小叶的
形成。肝细胞可出现水肿、脂肪变性,严重时坏死。脂肪变性在慢性药

药物性肝损伤PPT课件

药物性肝损伤PPT课件

发病机制与病理生理
发病机制
药物性肝损伤的发病机制较为复杂, 涉及药物的代谢、免疫反应、氧化应 激等多个方面。
病理生理
药物性肝损伤的病理生理过程包括肝 细胞的坏死、炎症、纤维化等,最终 可能导致肝硬化或肝功能衰竭。
发病机制与病理生理
发病机制
药物性肝损伤的发病机制较为复杂, 涉及药物的代谢、免疫反应、氧化应 激等多个方面。
肝区疼痛
右上腹或中上腹疼痛,可放射至 肩背部。
黄疸
皮肤、巩膜发黄,尿液颜色变深 。
实验室检查
肝功能异常
谷丙转氨酶(ALT)、谷草转氨 酶(AST)等指标升高。
总胆红素升高
直接胆红素和间接胆红素均升 高。
白蛋白降低
合成功能受损。
凝血功能异常
凝血酶原时间延长,凝血酶原 活动度降低。
实验室检查
肝功能异常
慎重使用药物
在使用任何药物前,应仔细阅读说明 书,了解药物的副作用和禁忌症。
定期监测肝功能
长期用药的患者应定期进行肝功能检 查,以便及时发现肝损伤。
预防措施与注意事项
• 注意药物间的相互作用:避免同时使用多种药物 ,特别是已知有肝毒性的药物。
预防措施与注意事项
• 注意药物间的相互作用:避免同时使用多种药物 ,特别是已知有肝毒性的药物。
长期用药导致的肝损伤
患者因长期服用多种药物,导致药物性肝损伤,出现乏力 、食欲不振等症状,停药后肝功能仍持续异常。
案例二:长期用药导致的肝损伤
要点一
总结词
要点二
详细描述
长期用药导致的肝损伤
患者因长期服用多种药物,导致药物性肝损伤,出现乏力 、食欲不振等症状,停药后肝功能仍持续异常。
案例三:联合用药的肝毒性风险

药物性肝损伤

药物性肝损伤
✓建议4:不建议NAC用于儿童严重DILI患者。
DILI的预防
减少同时 使用药物
的种类
仔细询问 药物过敏

预防 措施
选择用药、 监测肝功能
必要时使 用护肝药
注意药物 配伍
DILI的预防
• 特殊情况可以预防性的使用“保肝”药 • 1.抗肿瘤化疗,尤其是大剂量使用化疗药物; • 2.抗结核治疗; • 3.器官移植后使用抗排异药物; • 4.长期使用抗癫痫药; • 5.长期使用治疗甲亢的药物; • 目前无证据显示2种或以上抗炎保肝药物对DILI有更好的疗效,因此不推
行区旅居史等高度可疑的临床线索时,应考虑检测。 • 若有相关临床表现,应排除肝豆状核变性和肝静脉阻塞综合征。
DILI诊断相关建议
• 建议2:对疑似胆汁淤积型DILI患者。 • 所有病例均应进行B超/CT等腹部影像学检查,以除外胆道疾病。 • 腹部影像学检查未发现明确胆道疾病证据的患者,应做原发性胆汁性肝
正确的诊断书写格式? 药物性肝损伤,肝细胞损伤型,急性,RUCAM 6分(很可能),严重程度2级
病例1
• 1月19天,男性,2020.09.24入院 • 病史:咳嗽2天,伴喘息,无发热,无呕吐等,未予特殊处理,既往体健 • 体查:双肺呼吸音粗,可闻及明显干湿啰音 • 诊断:喘息性支气管肺炎 • 化验,TBil:9.3umol/L,
痛、发热,皮疹和/或嗜酸性粒细胞>5%。
DILI的治疗-针对发病机制
➢固有型 ✓促排出:洗胃、导泻、血液净化 ✓解毒剂:N-乙酰半胱氨酸(NAC) ➢代谢特异质型 ✓促排出:血液净化 ✓解毒剂: N-乙酰半胱氨酸(NAC) ➢免疫特异质型 ✓抗免疫:糖皮质激素
不建议NAC用于儿童严重 DILI患者

药物性肝损伤的机制与防治策略

药物性肝损伤的机制与防治策略

药物性肝损伤的机制与防治策略药物性肝损伤是指由于药物或药物代谢产物对肝脏造成损害而引起的一种临床疾病。

目前,越来越多的药物被发现对肝脏具有潜在的毒性,造成肝损伤的情况也在不断增加。

药物性肝损伤在临床上表现为肝功能异常、黄疸、肝细胞坏死等症状,甚至可导致肝功能衰竭、肝硬化甚至死亡。

因此,对药物性肝损伤的机制和防治策略进行深入研究具有重要意义。

一、药物性肝损伤的机制1. 肝脏药物代谢肝脏是药物代谢的主要器官,药物在体内经过肝脏的代谢转化后才能够被排出体外。

大部分药物在肝脏中由细胞色素P450酶系统代谢,但部分药物在代谢过程中会产生活性代谢产物,这些代谢产物对肝脏细胞产生损害,引发肝损伤。

2. 免疫介导的药物性肝损伤某些药物可以通过免疫介导机制引起肝脏损伤,包括对抗生素、解热镇痛药、抗结核药等。

这些药物在体内通过激活免疫系统,导致免疫细胞在肝脏中产生炎症反应,最终导致肝脏损伤。

3. 药物本身的毒性有些药物本身具有一定的毒性,当超过一定剂量的情况下,会直接对肝细胞产生损害,导致药物性肝损伤。

如布洛芬、对乙酰氨基酚等。

4. 肝脏再灌注损伤在高血压、肝脏手术、肝硬化等情况下使用某些药物时,可能会导致肝脏再灌注损伤。

这些药物可能会导致肝脏缺氧、氧自由基产生增加,从而损害肝脏细胞。

5. 药物互相作用有些药物在体内会相互作用,导致药物浓度升高,增加对肝脏的毒性。

因此,在合理用药时,需注意避免药物之间的互相作用,以减少肝脏损伤的风险。

二、药物性肝损伤的防治策略1. 合理用药在用药过程中,应根据患者的肝功能、疾病情况等合理选择药物,避免对肝脏产生严重的毒性。

对于肝脏有损伤风险的患者,应特别注意选择不会加重肝脏负担的药物。

2. 定期监测肝功能对于使用具有潜在肝毒性药物的患者,应定期监测肝功能指标,一旦发现异常应及时调整用药方案。

在患者出现肝损伤迹象时,应停止使用可能导致肝损伤的药物,避免进一步加重肝脏负担。

3. 加强监测和报告医疗机构及药品生产商应加强对药物性肝损伤的监测和报告工作,及时发现肝损伤风险并采取相应措施。

炎症状态下托伐普坦致药物性肝损伤及其机制研究

炎症状态下托伐普坦致药物性肝损伤及其机制研究

炎症状态下托伐普坦致药物性肝损伤及其机制研究炎症状态下托伐普坦致药物性肝损伤及其机制研究引言:药物性肝损伤是指由药物引起的肝脏功能障碍的一类临床综合征。

托伐普坦是一种用于治疗自身免疫性疾病的药物,具有良好的疗效。

然而,一些病例报道显示,在炎症状态下使用托伐普坦后,患者出现了药物性肝损伤的风险。

因此,本文旨在探讨炎症状态下托伐普坦致药物性肝损伤的机制。

炎症状态与肝损伤:炎症是机体对抗病原体和组织损伤的一种保护性反应,但过度或慢性炎症状态可能导致各种疾病发生。

在炎症状态下,肝脏的代谢和解毒功能受到抑制,免疫细胞活性增强,这可能增加肝脏对外源性药物的敏感性。

托伐普坦与药物性肝损伤:托伐普坦是一种Janus激酶抑制剂,通过抑制炎症反应来治疗自身免疫性疾病。

然而,一些报道显示,在使用托伐普坦期间,患者出现了肝功能异常和药物性肝损伤。

研究表明,托伐普坦可能通过多种机制导致药物性肝损伤。

机制研究:1. 肝细胞损伤:托伐普坦在炎症状态下可能干扰肝脏中多种代谢酶的功能,导致药物代谢产物的积累,从而损伤肝细胞。

此外,托伐普坦可能诱导细胞凋亡和激活肝星状细胞,导致肝脏纤维化和损伤。

2. 免疫反应:炎症状态下,免疫细胞活性增强,可能导致免疫介导的药物性肝损伤。

托伐普坦抑制Janus激酶信号通路,可能导致免疫细胞功能异常,进一步增强药物性肝损伤的风险。

3. 氧化应激:炎症状态下产生大量氧自由基和过氧化氢,导致细胞氧化应激。

托伐普坦可能通过抑制氧化应激反应来治疗炎症,但在某些情况下,过度的氧化应激可能导致药物性肝损伤。

治疗策略:在炎症状态下使用托伐普坦时,应注意监测肝功能和肝酶水平。

对于患者出现肝功能异常或药物性肝损伤的情况,需谨慎评估停药或调整剂量。

在治疗上可尝试联合应用抗氧化剂和肝保护药物来预防和治疗药物性肝损伤。

结论:炎症状态下使用托伐普坦可能增加药物性肝损伤的风险,可能与托伐普坦的影响肝细胞代谢、激活免疫细胞以及引起氧化应激反应等机制有关。

药物性肝损伤的发病机制

药物性肝损伤的发病机制

2、获得性免疫:在部分DILI患者中,临床发现常伴有药物过敏反应,如发热(31%)、皮疹(26%)、血和活检肝组织内嗜酸性粒细胞增多(7%);药物诱导肝毒性反应,均有一定的潜伏期(1~4周);若再次暴露于同一药物,可诱导肝毒性症状,并在血液内检测到特异性抗体浓度增加。至此,人们提出两种特异性免疫损伤理论,一种是半抗原理论,另一种是P-i理论。半抗原理论:即药物或者其代谢产物因分子量少,无免疫原性,但与肝蛋白质或修饰蛋白质如CYP酶类共价结合后,形成新的蛋白。药物复合物。后者在药物损伤肝细胞死亡后释放出来,在MHCⅡ类分子协助下经过抗原呈递细胞(APC细胞)刺激淋巴细胞,诱导抗体的产生和激活特异性免疫反应。药物一蛋白复合物诱导的抗原抗体反应主要通过两种机制损伤肝细胞,一种是补体介导的细胞溶解;另一种是抗体依赖细胞介导的细胞毒性作用。属于这类损伤机制的药物有非甾体类固醇抗炎药双氯芬酸、麻醉吸入剂氟烷等。
三、免疫损伤机制
1、先天性免疫:肝内存在的巨噬细胞、多形核白细胞包括中性粒细胞、嗜酸性和嗜碱性粒细胞、自然杀伤细胞和携带有T淋巴细胞受体的自然杀伤性T淋巴细胞构成肝脏非特异性免疫系统。当药物应激及肝细胞损伤后,可激活先天性免疫反应。其中自然杀伤性T淋巴细胞占肝脏淋巴细胞的一半左右,在白细胞介素12和白细胞介素18的辅助下,加剧对肝细胞损伤。肝细胞坏死后还可释放一种高移动组合蛋白盒-1物质,可以进一步活化枯否细胞,释放肿瘤坏死因子α、干扰素γ和白细胞介素4等细胞因子,诱导肝细胞炎症反应和组织损伤加重。最近有研究结果显示肝细胞线粒体内含有一种细菌样分子结构,如甲酰基肽类及非甲基化cpG基序。该类细菌样物质释放后与甲酰基受体-1和Toll受体-9结合,也激活先天性免疫反应。
另外,多重耐药相关蛋白(multidrug resistanceassociatedprotein,MRP)-2和MRP-3在胆汁淤积型DILI的发病过程中起作用。Stapelbroek等的研究结果显示,编码这两种蛋白的基因发生变异,不仅破坏胆汁的分泌,还加速原有肝病的进展。

药物性肝损伤

药物性肝损伤

药物性肝损伤(drug-induced liver injury,DILI),是指人体暴露于常规剂量或高剂量药物后,因药物本身或其代谢产物对肝脏的直接毒性,或人体对药物或其代谢产物产生过敏或代谢特异质反应,而导致的肝脏损伤,是肝生化异常的常见原因之一。

DILI约占药物不良反应的6%,是药物上市后被撤回的最常见原因。

推算年发病率约19/10万,发病率男、女相似,但随着年龄增长显著增加。

药物性肝病占社区急性肝炎或黄疸患者的5%,是急性肝功能衰竭的主要原因(在美国占50%以上,其中36%为非甾体类消炎药,特别是对乙酰氨基酚),DILI是不明原因肝损伤的常见原因,尤其是50岁以上患者。

DILI可区分为可预测性和不可预测性两种,前者主要是药物的直接毒性作用所致。

近年来,由于对新药的筛选越来越严格、对药物不良反应的监测更加严密,除非药物有特异作用且评价效益与风险时前者明显地占上风,否则不能上市,因此临床上直接肝细胞毒性药物引起肝损伤的比例下降。

大多数(>95%)药物性肝损伤系不可预测性,其发生机制又可以分为:代谢特异质(metabolic idiosyncrasy)和过敏特异体质(hypersensitive idiosyncrasy)两类,其特征如表1。

免疫特异质肝损伤机制过敏即免疫机制介导的肝损害有以下特点:(1)不可预测性;(2)仅发生在某些人或人群(特异体质),或有家族集聚现象;(3)与用药剂量和疗程无关;(4)在实验动物模型上常无法复制;(5)具有免疫异常的指征;(6)可有肝外组织器官损害的表现。

免疫介导相关的药物性肝损的通常临床依据为:(1)使用过某种药物后,出现发热、关节痛、皮疹等肝外表现;(2)血液学检查发现嗜酸性细胞增多、循环免疫复合物阳性、非器官特异性的自身抗体阳性(药物相关的自身抗体);(3)肝组织学检查表现为嗜酸性细胞浸润、肉芽肿形成等。

在这类肝损中,通常药物中间代谢物通过抗原提呈细胞(树突状细胞)作用,经I型组织相容性抗原激活特异性细胞毒性T细胞介导致肝细胞损伤。

药物性肝损伤综述报告

药物性肝损伤综述报告

药物性肝损伤综述报告药物性肝损伤(Drug-induced liver injury,DILI)是指由于接触药物而导致肝脏功能异常或组织损伤的一类疾病。

药物性肝损伤是临床上常见的肝疾病之一,其发生率在药物不良反应中居首位。

药物性肝损伤的严重程度可不同,从暂时性的肝酶升高到急性肝衰竭、肝坏死等严重后果。

药物性肝损伤的发生机制复杂,尚不完全清楚。

目前认为,药物性肝损伤与药物代谢障碍、免疫反应和氧化应激等因素相关。

药物代谢障碍主要指药物在肝脏中的代谢途径异常,使药物或其代谢产物在肝脏积蓄,从而形成肝毒性物质。

免疫反应方面,有些药物可能触发免疫系统异常反应,导致肝脏受损。

此外,氧化应激也可能是药物性肝损伤的发生机制之一。

临床上,药物性肝损伤的表现可以多样化。

轻度的肝损伤可能仅表现为肝酶升高,而不伴有其他症状。

但在某些情况下,患者可能出现黄疸、腹痛、乏力、食欲不振等肝功能异常的症状。

对于严重的药物性肝损伤,患者可能发生肝衰竭、肝坏死等严重后果,甚至危及生命。

药物性肝损伤的诊断主要依赖于详细的临床病史和肝功能检测结果。

在排除其他可能引起肝损伤的因素后,进一步评估与药物应用的时间关系以及其他致肝毒性药物的使用等因素,可以帮助确定药物性肝损伤的诊断。

治疗药物性肝损伤的方法包括停用可能引起肝损伤的药物、对症治疗和对肝功能的支持。

在诊断和治疗过程中,应密切监测肝功能指标的变化,根据患者的临床症状和肝功能改善情况,调整治疗策略。

为减少药物性肝损伤的发生,临床上在药物使用过程中需注意患者的肝脏状况,对于具有肝毒性的药物应谨慎使用,并进行适当的监测和评估。

此外,患者应遵循医生的用药指导,在用药期间定期复查肝功能,及时了解肝脏状况。

总之,药物性肝损伤是一种常见的临床问题,可能对患者的健康造成重大影响。

准确诊断和及时干预对于预防和治疗药物性肝损伤至关重要。

医生应提高对药物性肝损伤的认识和警惕性,以减少该疾病的发生和危害。

药物性肝损伤PPT课件

药物性肝损伤PPT课件
有(2)(4)(9)者可确诊,有(2)(4)两项及其他项者为可疑。
15
药物性肝炎的治疗与预防
(一)药物性肝炎的治疗
1.立即停用有关的或可疑药物,并观察几天内病情是否改善。 2.卧床休息,给予足够的热量与蛋白质、维生素类,饮食不佳者静脉输注葡萄糖,
同时可加速药物的排泄。 3.保肝药物,维生素类药物,降酶药等。 4.有过敏症状或明显胆汁淤积者可选用肾上腺皮质激素或强力宁。 5.特殊药物性肝损害有特异性治疗。如异烟肼引起的肝损害可用较大剂量的维生素
2.中草药引起的肝损害:
近年来中草药引起的肝损害发生率 据国内1995~1997年间文献报道,中草药所致的肝损害占所有药物性肝损
害的20~30.2%,且呈逐年上升的趋势。
4
5
3.治疗肝病的药物引起肝损害
许多治疗肝病的药物也可引起肝损害。 抗病毒药物(如干扰素)和免疫调节剂可引起肝损害。 保肝药物、降酶药物、治疗肝病的中草药 例如联苯双酯可加重肝损害,引起AST升高及黄疸。 小柴胡汤中的柴胡,Itoh等报道40例中9例转氨酶升高及黄疸,
四环素影响肝脏脂肪代谢过程而导致肝脏脂肪变性氨甲喋呤6巯嘌呤等选择性地干扰肝实质细胞代谢的某一环节影响肝脏蛋白质的合成甲氰咪胍和心得安使肝脏血流减少引起肝脏解毒功能障碍利福平新生霉素干扰胆红素向胆小管排泌或由血中摄取而引起淤胆型肝炎药物性肝损伤的发病机理二个体因素遗传性特异质体质或遗传因子的变异均可使某些人对一些药物的敏感性增加
混合型:
ALT和ALP均升高,ALT/ALP 2~5
(医学科学国际组织委员会)
13
药物性肝炎的诊断
早期诊断 关键在于有高度警惕性。 凡遇肝损害者应首先排除药物性肝损害 问诊时应认真询问服药史及药物 过敏史,特别注意药物剂量、给药途径、疗程以及同时应用的其他药物。发现可疑 药物及时停药,观察停药后肝损害有无好转。 药物性肝损害的临床症状轻重可因所用药物和患者个体特异质性而出现较 大差异和不同的临床类型。因此在服用已知有肝损害的药物和新药或长期用药要注 意监测肝功能。

引起药物性肝损害的常见药物及相关机制

引起药物性肝损害的常见药物及相关机制

引起药物性肝损害的常见药物及相关机制药物性肝损伤是如何分型的临床上,药物性肝损伤可分为肝细胞损伤型、胆汁淤积型和混合型;如果以谷丙转氨酶升高ALT和/或谷草转氨酶AST明显升高为主要表现,通常提示肝细胞有损伤, ALT升高幅度超过3倍正常上限时,为肝细胞损伤型;如果以碱性磷酸酶AKP和/或谷氨酰转肽酶GGT明显升高为主要表现,AKP升高幅度超过2倍正常上限时,为胆汁淤积型;有些患者,既有ALT升高的表现,也有AKP或GGT升高的表现,为混合型.哪些指标异常预示严重的肝损伤ALT/AST、ALP/GGT等酶学指标升高的幅度越大,通常反映肝脏的损伤也越大;此外,总胆红素、白蛋白、凝血酶原时间等指标明显的异常,比如总胆红素明显升高、白蛋白明显降低、凝血酶原时间明显延长,通常意味着肝脏的损伤更严重,肝脏的真正功能受到了损害;临床上,出现“胆酶分离”转氨酶水平下降,但总胆红素却明显升高时,往往是严重肝损伤的特征,这些患者的预后不良,可出现急性肝功能衰竭,死亡风险增加,此时的转氨酶下降并不是好事情;在药物性肝损伤的患者中,如果ALT水平超过3倍正常上限,同时总胆红素水平超过2倍正常上限,那么,这些患者的预后同样不良,死亡率可高达10%;前言由于许多种药物有潜在的肝毒性,所以肝脏是较易受损害的脏器之一;据世界卫生组织统计,药物性肝损害已上升至全球死亡原因的第5位;在美国,50%以上的急性肝功能衰竭是由药物引起的;在我国,药物性肝炎约占急性肝炎住院患者的10%;此外,有研究发现,氨基转移酶升高的成人中有10%-50%是由药物引起的;因此,在临床医务工作中,我们应该重视药物所引起的肝损害;定义及流行病学由于药物及其代谢产物的毒性作用或机体对药物产生过敏反应从而对肝脏造成损害,引起肝组织发炎,即为药物性肝损害drug-induced liver injury, DILI;DILI的发生大多数是由于特异质或意外反应所致;同扑热息痛药所诱导的依赖过量药物所致的肝毒性相比,人们传统上认为特异质反应呈剂量非依赖性;然而,具有良好记载的致特质性药物性肝损伤的诸多药物已被证明有剂量依赖组分,对大多数药物而言,肝毒性是非常罕见的,据估计,其发生率在1/10000 - 1/ 100000范围内, 在大多数临床药物试验中,因所包含的患者人数最多不超过10000,而且药物的肝毒性几乎都是在上市阶段才得以发现的;所以,对多数药物而言,使用者用药后发生DILI的频率仍是未知的,在这方面,大多数流行病学的研究受到研究方法的局限性;在既往报道的许多研究中,药物与肝损伤的关系尚不确定;大部分流行病的逻辑研究是回顾性的,且缺乏标准化的诊断检查以排除引起肝损伤的其他原因;而且,许多研究来自于三级转诊中心,且许多研究有偏倚,药品不良反应少报漏报情况人所共知,当然DILI也不例外;因此,我们对DlLI真正发病率情况,仍然知之甚少;到目前为止,仅在法国有一个以人群为基础的针对DILI发生率所着手进行的研究,本研究表明,居民的DlLI发病率是100000, 此结果可作为DILI真实发生率的金标准8.来自瑞典和英国的回顾性研究,据报道粗发病率是每年每10万居民中有2-3人出现本病,这一结果可能被低估了;因黄疸住院的患者中有2-10%是源于药物性急性肝损害;在瑞典,%77/1164的肝病门诊患者是DILI所致,其中一半是新发病者,另一半是因为DILI住院治疗后门诊随访者;来自瑞士的一个研究表明,在住院患者中,DILI的总发病率是%;引起肝损害药物的种类引发药物性肝损害的药物品种几乎遍及各类药物,约有1 000多种,其中包括我们一直认为安全可靠的中草药17;不同种类药物引起肝损伤的比例国内外报道不一致,但归纳起来主要有以下几类:1.抗微生物药物:包括利福平,阿奇霉素,异烟肼,克拉霉素,左氧氟沙星,氟康唑,伊曲康唑,头孢他啶,阿昔洛韦,阿莫西林,头孢呋辛,头孢曲松,更昔洛韦,替卡西林/克拉维酸,头孢羟氨苄,头孢唑啉,头孢克洛,头孢哌酮,头孢噻肟,亚胺培南+西司他丁钠,红霉素,罗红霉素,庆大霉素,米诺环素,去甲万古霉素,吡哌酸,环丙沙星,呋喃妥因,甲硝唑,替硝唑,丙硫异烟胺,帕司烟肼,伏立康唑,利巴韦林等;2.中草药:包括雷公藤多甙,血脂康,小金丸,追风透骨丸,复方青黛丸,脉络宁,鳖甲煎丸,六味安消,壮骨关节丸,消核片,松龄血脉康,西黄丸,桃红清血丸,正天丸,大黄蔗虫丸,龙胆泻肝丸,双黄连口服液,生精胶囊,骨疏康,珍宝丸,痔血胶囊,骨康,癃闭舒,降脂片,仙灵骨葆,胃痛定,九郡败毒丸,银屑敌,通栓灵1 号,降压宝,鹿茸红参胶囊,4 号蜜丸,跌打止痛类中成药,含土茯苓汤剂,含何首乌汤剂,含藏红花汤剂,含全蝎、僵蚕、白附子汤剂,795 和792 号汤剂,土三七,溪黄草,何首乌等;目前已知的能够引起肝损伤的常用中药包括:黄药子、菊三七、苍耳子、何首乌、雷公藤、艾叶、望江南、苍术、天花粉、桑寄生、贯众、蒲黄、麻黄、柴胡、番泻叶、蜈蚣、合欢皮、丁香、川楝子、鸦胆子、毛冬青、蓖麻子、黎芦、丹参、罂粟、姜半夏、泽泻、大黄、虎杖、贯众、千里光、防己、土荆芥、肉豆蔻、商陆、常山、大枫子、朱砂、斑蝥、穿山甲、黄芩、缬草、乌头、白果等;已知可引起肝损伤的中药复方制剂包括有: 壮骨关节丸、小柴胡汤、大柴胡汤、复方青黛胶囊丸、克银丸、消银片丸、消核片、白癜风胶囊、白复康冲剂、白蚀丸、六神丸、疳积散、麻杏石甘汤、葛根汤、大黄牡丹皮汤、防风通圣散、湿毒清、血毒丸、追风透骨丸、消咳喘、壮骨伸筋胶囊、骨仙片、增生平、牛黄解毒片、天麻丸、复方丹参注射液、地奥心血康、昆明山海棠片等;需注意,即使是一些外用中药也可致不同程度的肝损伤:如鱼胆、鱼藤、海兔、雄黄、薄荷油、生棉子油、桐子及桐油等;因此,在服用上述中药时,尤其应该谨慎,无法用其他药物替代而必须选择上述中药治疗时,应注意定期到医院随访监测,以期早期发现肝损伤的信号;3.激素、抗甲状腺及降糖药物:包括泼尼松,甲泼尼龙,妊马雌酮,孕三烯酮,甲巯咪唑,丙硫氧嘧啶,格列喹酮,二甲双胍,格列吡嗪等;4.抗肿瘤药物:包括环磷酰胺,甲氨蝶呤,吡柔比星,阿柔比星,紫杉醇,门冬酰胺酶,索拉非尼,多西他赛,长春地辛,长春瑞宾,阿糖胞苷,氟脲嘧啶,氟达拉滨,奥沙利铂,舒尼替尼,阿那曲唑,托瑞米芬,曲妥珠单抗,亚砷酸,替吉奥,CHOP 方案环磷酰胺+阿霉素+长春新碱+泼尼松等;5.循环系统用药:包括辛伐他汀,阿托伐他汀钙,非诺贝特,吉非贝齐,氟伐他汀,洛伐他等;汀,普伐他汀,瑞舒伐他汀,阿昔莫司,藻酸双酯钠,氟桂利嗪,胺碘酮,硝酸异山梨酯,吲达帕胺,复方利血平氨苯蝶啶,1,6-二磷酸果糖等;6.神经系统用药:包括对乙酰氨基酚,别嘌醇,布洛芬,卡马西平,阿司匹林,安乃近,双氯芬酸,洛索洛芬,美洛昔康,尼美舒利,去痛片,复方氨酚烷胺片含对乙酰氨基酚,氨咖黄敏胶囊含对乙酰氨基酚,苯溴马隆,地西泮,米氮平,氯美扎酮等;7.调节机体免疫功能药物:包括环孢素15,吗替麦考酚酯,他克莫司各2,西罗莫司, 硫唑嘌呤,来氟米特,干扰素等;8.血液系统用药:低分子肝素, 噻氯匹定,尿激酶,蚓激酶等;9.消化系统用药:西咪替丁,美沙拉嗪等;10.其他:坦洛新,依达拉奉,异维A 酸,阿法骨化醇,阿苯达唑等;药物在肝内的生物转化肝脏在药物或外源性毒物的代谢和处置中起着十分重要的作用,大多数药物和毒物在肝内经生物转化作用而排出体外;肝脏的病理状态可以影响药物在体内的代谢过程,从而影响药物的疗效和不良反应;另一方面,药物的代谢过程中的产物,可以造成肝损害;药物在肝内所进行的生物转化过程,可分为两个阶段:①氧化、还原和水解反应;②结合作用;1.第一相反应多数药物的第一相反应在肝细胞的光面内质网微粒体处进行;此系由一组药酶又称混合功能氧化酶系所催化的各种类型的氧化作用,使非极性脂溶性化合物产生带氧的极性基因如羟基,从而增加其水溶性;有时羟化后形成的不稳定产物还可进一步分解,脱去原来的烷基或氨基等;其反应可概括如下:D+A→DA NADPH+DA+H+→DAH2+NADP- DAH2+O2+HADPH→A+DOH+H2O+NADP- 注:D=药物;A=细胞色素P450药酶是光面内质网上的一组混合功能氧化酶系,其中最重要的是细胞色素P450以下简称P450,其他有关的酶和辅酶包括:NADPH细胞色素P450还原酶、细胞色素b5、磷脂酰胆碱和NADPH等;P450是一种铁卟啉蛋白,能进行氧化和还原;当外源性化学物质进入肝细胞后,即在光面内质网上与氧化型P450结合,形成一种复合物,再在NADPH细胞色素P450还原酶作用下,被NADPH所提供的电子还原,并形成还原型复合物;后者与分子氧O2作用,产生含氧复合物,并接受NADPH所提供的电子,与O2形成H2O,同时药物或毒物被氧化成为氧化产物; P450:药物代谢的第一相反应,主要在肝细胞的光面内质网微粒体进行,此过程系由一组混合功能氧化酶系又称药酶所催化促进,其中最重要的是P450和有关的辅酶类;P450酶系包括二个重要的蛋白质组分:含铁的血红素蛋白和黄素蛋白,后者能从NADPH将电子转移至P450底物复合体;药物与P450结合位点与血红素分子非常接近,有利于电子的转移;药物与氧化型P450结合,此时血红素的铁为三价铁Fe3+,通过NADPH还原酶的作用,将NADPH的电子转移给P450,使其还原,血红素铁成二价Fe2+;还原型的P450药物复合物与氧分子作用,成为含氧复合物,并接受NADPH所提供的电子,与氧生成H2O,同时药物也被氧化,P450又成为氧化型Fe3+;如此反复循环,使药物进行第一相的代谢;P450实际上为同一家庭的多种异构型;迄今为止,人类P450的基因已发现有27种,编码多种P450;基本上分成至少4个基因族,又可进一步区分为不同亚族;其分类为CYP1,CYP2,CYP3和CYP4,亚族的分类按英语A、B、C……和阿拉伯数字1,2,3,……进一步分类;按其功能,人类的P450可分成二类;CYP1,2,3,主要代谢外源性化合物,如药物、毒物等,有交叉的底物特异性,常可被外源性物质诱导,在进化过程中,其保守性差;GYP4则主要代谢内源性物质,有高度特异性,通常不能被外源性物质诱导,在进行过程中相对保守;此类P450在类固醇、脂肪酸和前列腺素代谢中起作用;在药物代谢中起重要作用的P450;一般说来,药物经过第一相的氧化、还原等作用,变为极性和水溶性较高而活性低的代谢物,再经过第二相的结合作用,通过胆汁或尿液排到体外;但有些药物,在P450药酶作用下,转化为对肝细胞肝毒性的代谢物;2.第二相反应药物经过第一相反应后,往往要通过结合反应,分别与极性配体如葡萄糖醛酸、硫酸、甲基、乙酰基、硫基、谷胱甘肽、甘氨酸、谷酰胺等基因结合;药物的结合反应有两种类型,第一种药物与活性基团结合表39-2,第二种是被激活的药物与有关化合物结合通过结合作用,不仅遮盖了药物分子上某些功能基因,而且还可改变其理化性质,增加其水溶性,通过胆汁或尿液排出体外;药物结合作用的相对能力也有不同,如葡萄糖醛酸结合、乙酰化和甲基化是高能力组,甘氨酸、谷酰胺和硫酸结合为低能力组;例如,与硫酸结合通常是代谢苯环化合物的主要途径之一,但它有一定的限度,可能是可利用的“活性硫酸盐”PAPS含量有一定的限度;如低剂量的扑热息痛,主要是与硫酸结合,高剂量时则主要与葡萄糖醛酸结合;很大剂量时,由于结合能力耗竭,可能通过第一种途径,生成N-羟基衍生物,造成肝损害;发病机制药物在体内代谢过程中,大多数需经肝脏生物转化后被消除,药物或其代谢产物均可能对肝脏造成损伤;不同药物所导致的肝脏损伤机制不同;有些药物可以直接导致肝脏损伤,有些则需要在肝内转化成为另外一些物质对肝脏产生直接或间接的损害;药物性肝病可能的发病机制有:1.非免疫机制:包括直接损害及间接损害;直接损害主要有毒性代谢产物的作用,即某些药物在肝内经过P450药酶的作用,代谢转化为一些毒性产物,例如亲电子基、自由基和氧基,与大分子物质蛋白、核酸结合造成脂质过氧化,最终导致肝细胞坏死和凋亡;间接损害则是由于胆汁排泌机制出现障碍时,导致肝内胆汁淤积,肝细胞膜结构完整性被破坏,进而对肝脏造成损害;2.免疫机制:主要有药物作为半抗原造成变态反应和药物诱发的CYP抗体反应;前者为药物或其活性代谢产物作为半抗原与肝特异蛋白结合形成抗原,经抗原呈递细胞加工后,与MHC组织相容复合物分子一起被免疫活性细胞识别,导致变态反应,进而出现不同程度的肝脏损害;后者为药物在CYP转化为活性代谢产物,与CYP共价结合修饰蛋白质形成抗原,激活Th、B细胞产生抗体,进而对肝细胞产生损害;易感性因素药物性肝损害的易感性因素有以下几个方面:1.遗传性因素由于遗传基因差异可使得某些个体肝脏药酶系统与众不同, 故可呈现药物代谢的个体差异, 其中以CYP450 的酶基因变异最为重要;如CYP2D6 缺陷为异喹呱肝毒性的主要决定因子,实际上,超过75 %的异喹呱肝毒性患者为CYP2D6 缺陷,这种酶缺乏为常染色体隐性遗传;CYP2C19 缺陷与At rium 肝毒性有关,一项既往有At rium肝毒性的小量患者研究表明所有患者均有部分或完全的CYP2C19 缺陷,而在对照组中只有3 %~5 %存在缺陷,结论尚需大样本试验证实;乙酰化功能缺陷与2 型N2乙酰基转移酶NAT2 失活有关, NAT2 缺陷可致磺胺及肼苯酞嗪肝毒性;另在N2乙酰转移酶2 个基因位点发生的突变者,人群中存在着乙酰化快型和慢型两种类型;在乙酰化慢型者,异烟肼性肝损害发病的危险性较高;巯氧化缺陷可能与氯丙嗪肝炎有关; 谷胱甘肽合成缺陷对扑热息痛肝毒性更敏感;免疫系统的遗传变异可能与药物肝毒性有关, 一些HLA 单倍型与一些药物代谢有关,在HLA A11者,氟烷、三环类抗抑郁剂、双氯芬酸导致的肝损害发生率高,在HLA DR6 者,氯丙嗪导致的肝损伤发生率高,尤其是阿莫西林/克拉维酸肝毒性与HLA DRB1 1501 关系更密切;2.酶诱导及抑制因素是指某些亲脂性药物或外源性物质农药、毒物等可以使肝内药酶的合成明显增加, 从而对其他药物的代谢能力增加;到目前为止, 已知有200 多种的药物和环境中的化学物质, 具有酶诱导作用;例如苯巴比妥、保泰松、苯妥英钠、利福平、灰黄霉素、DDT、杀虫剂等;药酶的诱导有时会造成药物性肝损害或化学致癌;酶抑制作用正好与前者相反,有时药物通过抑制药酶, 使另外一种药物的代谢延迟, 药物的作用加强或延长;鉴于以上作用, 一种药物或毒物在体内代谢时, 对另一种药物的代谢可以产生巨大影响;这也是联合用药更容易发生药物性肝损害的重要原因;3.获得性因素:这些因素包括:1 年龄: 大于60 岁为异烟肼及呋喃坦啶的肝毒性促进因子;而儿童多对水杨酸盐毒性敏感,常可引起微囊泡性脂肪肝及Reye′综合征;2 性别:相比男性而言,女性更易出现甲基多巴及硝基呋喃肝毒性,而男性易患硫唑嘌呤所致肝炎;3 营养状况:可通过不同途径影响肝毒性;例如,肥胖可促进氟烷的肝毒性,而禁食及营养不良由于消耗肝细胞谷胱甘肽的储存,可促进扑热息痛性肝炎;4 妊娠:亦可为影响因素;例如,大部分四环素所致严重肝炎可在妊娠妇女接受静脉用药时发生;动物实验中,孕鼠对扑热息痛肝毒性更为敏感,可能由于胎儿及胎盘对谷胱甘肽过度利用有关;5 慢性酒精滥用:促进扑热息痛肝毒性,可能由复杂机制引起,包括CYP450 的诱导,由CYP2 E1 形成的毒性代谢产物,及由于谷胱甘肽缺陷降低了对这些代谢产物的抵抗力;6 药物相互作用: 可由不同途径产生药物肝毒性;如:酶的诱导可增加某种药物的毒性代谢产物,如在利福平-异烟肼合用时,利福平加速了异烟肼向毒性代谢产物的转换;苯巴比妥的酶诱导可因同样机制加速抗抑郁药的肝毒性;相反,酶阻滞亦可起作用,如在三乙酰夹竹桃毒素-雌激素相互作用时,三乙酰夹竹桃毒素通过阻滞CYP3A4 ,阻滞了雌激素的代谢,导致雌激素过量性胆汁淤积;7 自体合并的肝脏疾病或肝外疾病:自身合并有急性或慢性肝病并不更易有肝中毒,但在有进展性肝病的患者,肝损易于发生,部分是由于肝容量、对组织损伤的修复能力及重生肝细胞的减少所致;某些肝外疾病可加重药物的肝毒性,如甲亢可促进卤烷性肝炎, HIV 感染加重磺胺甲基异恶唑的肝毒性;8 炎症反应: 炎症反应本身可致动物对药物损伤敏感,亦可能是个体肝毒性易感性的重要决定因素之一;在急性与慢性炎症状态下可影响药物毒性的敏感性;在急性炎症,炎症调节因子的增加会加速甚至启动细胞死亡过程,促进药物的肝毒性作用,例如:在人体中,雷尼替丁可导致很轻微并可逆转的异质性肝损,而对于小鼠没有肝毒性,但当预先用小剂量的脂多糖内毒素LPS使小鼠对雷尼替丁肝毒性易感,即可产生类似于人的药物异质性反应,考虑与LPS 导致的炎症调节作用有关;而在慢性炎症中,细胞会有适应的改变以减少药物的损伤;临床病理类型及其表现药物引起的肝细胞毒性包括几乎任何急性或慢性肝损害的临床和病理表现, 在所有类型中最常见的是急性肝炎;据报道由药物引起的急性肝损伤占因黄疽住院患者的5-10%, 占急性肝衰竭的1/3-1/2,而药物是美国和欧洲暴发性肝衰竭最常见原因;药物性肝损害的主要临床表现类似于急性黄疽性肝炎或胆汁淤积性肝病,,急性肝炎分3种类型:1.肝细胞损伤型急性肝细胞性肝炎最常见, 约占%, 通常与病毒性肝炎相似, 可导致暴发性肝衰竭和数天内死亡或致隐袭性肝硬化, 如氟烷;多表现为发热、乏力、纳差和转氨酶升高至正常的2倍以上;引起此型肝损害的药物多见于扑热息痛、异烟腆、曲格列酮和抗病毒药等, 多在服药1周到1个月发病, 停药后恢复较快;2.胆汁淤积型急性胆汁淤积性肝炎约%,, 可能被误解为胆道阻塞;这种类型的损伤可能与免疫介导的门静脉炎氯丙嗪或单独归因于转运系统的抑制环抱菌素A,但预后较好, 不常危及生命, 表现为黄疽、瘙痒,ALT中度增加;常见药物血管紧张素转换酶抑制剂、阿莫西林/克拉维酸、冬眠灵、红霉素等;起病隐匿, 服药时间都在1个月以上, 停药后恢复较慢;3.混合型混合性肝炎约%,多由苯妥英钠、磺胺类药物引起;兼具肝细胞性肝炎和胆汁淤积性肝炎的特点,ALT, 和ALP中等至显着增加, 类似于非典型肝炎或颗粒区肝炎,此外, 还可出现急性肝坏死;药物性肝损害的预防临床工作中,可以通过以下几个方面尽可能减少或避免药物性肝损害的发生:1.用药前,认真评价患者机体的基础情况,严格掌握适应症;2.对于曾有药物过敏史或过敏体质的患者,选用的药物、剂量及给药途径应倍加注意;3.具有肝毒性的药物应避免联用,对于肝功能不良患者、老年人及儿童应慎用或减量使用;4.制定合理给药方案:尽可能减少多药并用,避免剂量偏大,疗程过长;5.注意观察患者体征、监测肝功能,一旦发现肝功能异常或黄疸,尽快查明原因,更换治疗药物,使药物性肝损害降至最低;临床药师应积极向患者宣传安全合理用药,并应消除患者一些错误观念;如中药同样可致不良反应,而且近年发生率呈不断上升趋势;临床药师应与医师和护师通力协作,积极开展药物不良反应监测工作,并注意收集国内外文献报道的药物性肝损伤信息,协助医师对药物性肝损伤尽快做出判断,及早采取相应;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

药物性肝病的发病机制造成药物性肝病的机制基本上可分为:内源性肝毒性(可预测性肝毒剂)和特异质性反应(非预测性肝毒剂)二类。

近年来由于对新药筛选有严格的要求,由于可预测性肝毒剂很少能通过临床的试验,因而临床上的药物性肝病绝大多数是非预测性肝毒药物所引起的,仅有少数服药者出现不良反应,没有明显的量效关系,在实验动物中常不易复制。

这类药物性肝病的机制又进一步分为代谢异常和过敏反应二种。

近年来对药物性肝病的发病机制已有相当深入的了解,但与完全明了还有一定的差距。

现概述几种重要的机制。

一、毒性代谢产物的作用某些药物在肝内经过细胞色素P450药酶作用,代谢转化为一些毒性产物,如亲电子基、自由基和氧基,与大分子物质如蛋白质、核酸共价结合或造成细胞质膜的脂质过氧化,最终导致肝细胞坏死亲电子基:药物被P450氧化产生的亲电子基与肝细胞的大分子蛋白质的巯基(半胱氨酸)部位共价结合。

谷胱甘肽则为内源性解毒剂,如毒性代谢物产生超过了肝内谷胱甘肽含量的阈值,就会造成肝毒性作用。

典型的例子是乙酰氨基酚。

在正常情况下,绝大部分的乙酰氨基酚与葡萄糖醛酸和硫酸结合而解毒,但也有一部分在CYP1A2,CYP2E1和CYP3A4的作用下,转化为毒性产物NAPQ1。

在服用治疗剂量时,NAPQ1在细胞内与GSH结合形成硫醇尿酸和半胱氨酸衍生物而解毒。

如果服用过量,可耗竭肝细胞内的GSH,NAPQ1便与肝细胞的大分子结合,造成肝细胞坏死。

动物实验证明,如先用药酶诱导剂(苯巴比妥或3-甲胆蒽)处理,可显着增加肝坏死的程度。

若及时用谷胱甘肽前体乙酰半胱氨酸或硫乙胺治疗,可使肝坏死减轻。

另一个例子是溴苯在肝内经环氧化作用形成3,4-环氧化合物,可被谷胱甘肽结合解毒,如产生过多则与大分子结合,造成肝细胞死亡。

自由基:药物经P450氧化或还原后形成带有不成对电子的代替物,即自由基,造成细胞膜和细胞器膜的不饱和脂肪酸过氧化,从而改变膜的流动性与通透性,使膜的Ca2+-ATP酶失活,胞质内Ca2+浓度增高,破坏细胞骨架,激活磷脂酶,并使氨基酸功能团受损,核酸转化和突变,使肝细胞死亡。

典型的例子是卤素化合物,如甲氯化碳和氟烷。

四氯化碳能先后影响内质网、线粒体和溶酶体等细胞器。

由于粗面内质网的损伤,蛋白质合成被抑制,甘油三酯与蛋白质结合成脂蛋白的过程受阻,使肝内脂肪积聚,造成脂肪变性。

线粒体的损害,使脂肪代谢降低,能量产生减少,也促进了脂肪变性。

四氯化碳被细胞色素P450分解,形成自由基团(CCL3),作用于脂肪酸的双键,产生过氧化作用,破坏肝细胞膜、线粒体和溶酶体,导致肝细胞坏死。

低蛋白抑制药酶活力,使四氯化碳分解减少,因此可减低其毒性。

反之,苯巴比妥和DDT诱导药酶,促进四氯化碳分解,从而增加其对肝脏的毒性。

氟烷(溴氯三氟乙烷)在肝内通过还原反应可转化为氯二氟乙烯(CDF)、氯三氟乙烯(CTF)和无机氟化合物。

在低氧条件下,可诱导此还原转化过程的酶系,使其代谢增快。

CDF和CTF均为含自由基或负碳离子(碳自由基)的中间代谢物,能与大分子结合并使膜脂质过氧化,造成肝坏死。

动物实验证明,在低氧条件下(14%O2),给大鼠吸入氟烷可造成与在人类相似的肝坏死。

如在高氧条件下(100%)吸入氟烷,则肝脏无损害。

因此,在用氟烷麻醉时,缺氧病人易发生肝坏死。

氧基:某些药物在氧化还原循环中形成的氧基(也称氧自由基)也具有肝毒性。

例如:硝呋妥因(呋喃坦啶)和阿霉素的代谢物能接受一个不成对的电子,形成自由基,后者与氧作用产生一个超氧阴离子(O2-),造成脂质过氧化和巯基氧化。

肝细胞坏死的最终共同通道:由于亲电子基、自由基或氧基的毒性作用,破坏膜的完整性和膜的Ca2+-ATP酶系,使细胞内外环境Ca2+的稳态破坏,最终造成肝细胞死亡。

另一方面,其代谢产物也可与肝细胞的蛋白质结合,形成新抗原,诱导免疫反应。

毒性代谢产物与肝细胞的大分子结合:异烟肼在肝内经过乙酰化后,分解成异烟酸和乙酰肼,后者与肝细胞内大分子共价结合造成肝细胞坏死。

苯巴比妥、利福平等药酶诱导剂,增加乙酰肼的产生,从而增加异烟肼对肝脏的毒性。

使用药酶抑制剂(如对氨基水杨酸)时,则药物性肝病的发生率降低。

根据人体对异烟肼的代谢快慢,可分成快灭活(快乙酰化)和慢灭活(慢乙酰化)两类人群,由常染色体隐性基因决定。

快灭活者产生较多的乙酰肼,异烟肼所致的肝损害主要发生在此类人群中。

国人以慢灭活人群为多,因此异烟肼肝损害不如外国多见。

二、药源性胆汁淤积的机制肝内胆汁淤积是由于胆汁流障碍,胆汁不能正常地流入胆管而引起的一系列病理和临床表现。

胆汁主要在肝细胞形成,排入毛细胆管,再进入叶间胆管、胆管、总胆管。

药物所致的淤胆主要是在肝细胞水平的胆汁流障碍。

肝细胞是一种高度极化的上皮细胞,它的基侧膜面向肝窦,顶端膜形成毛细胆管腔,在基侧膜面与毛细胆管膜交界处有一种特殊装置,称为紧密连接,将细胞旁间隙封闭,使毛细胞胆管与肝窦隔开,阻止胆汁流入血液。

肝细胞水平胆汁流形成的过程包括:①将血液内的胆汁酸、胆红素、卵磷脂等有机物质从肝窦摄入肝细胞;②以上物质在肝细胞内转运;③胆汁通过毛细胆管排出。

这些步骤的障碍,可造成肝内淤胆。

胆汁流的原始动力,是将胆汁内的成分从肝窦摄取通过基侧膜进入肝细胞内,这个过程往往与胆汁酸的分泌密切相关,称为胆汁流依赖胆汁酸的机制,这个机制有赖于肝细胞基侧膜的转运体(transporter),包括依赖钠的牛磺胆酸转运体(NTCP)和不依赖钠的转运体(OATP),以及产生ATP的钠泵,共同作用,将血液内的胆汁酸输入到肝细胞内,同时也将电解质和水分一起带入,然后通过细胞质内通过被动弥散或微泡转运至毛细胆管附近。

胆汁形成的另一种机制称为不依赖胆汁酸的机制,它主要依赖GSH和电解质的分泌而进行。

毛细胆管水平的胆汁形成也需要多种转运体,包括依赖ATP的单价胆汁酸转运体(cBAT)和多价胆汁酸转运体(MRP2)。

毛细胆管膜上的多耐药基因产物(MDR1和MDR3)分泌兼极性阳离子药物和磷脂。

由于胆汁是通过毛细胆管膜分泌的,所以该膜的流通性和完整性的受损,在胆汁淤积发生机制中也起重要作用。

三、药物性肝病免疫机制药物或其代谢物与肝特异蛋白质结合成为抗原,经巨噬细胞加工后,被免疫活性细胞识别,导致过敏变态反应。

肝细胞的损害可能由于T杀伤细胞或抗体依赖的K细胞(ADCC反应)攻击所致。

如有多量免疫复合物在肝组织沉着,可能造成重症肝炎。

肝外的变态反应如关节炎、皮疹、等,往往是由于循环内免疫复合物在局部的沉着。

某些药物引起的慢性活动性肝炎,是典型的免疫反应,可在周围血内测到多种自身抗体。

氟烷类麻醉剂:氟烷及异氟醚、恩氟醚等吸入麻醉剂,均可引起药物性肝损害,以氟烷发生肝损害的几率较高。

氟烷在CYP2E1作用下,产生代谢物三氟乙酰氯化物(CF3COC1),后者与肝细胞内质网的半抗原(含赖氢酸残基的ε-氨基多肽)结合,形成新的抗原,从而激起免疫反应。

从氟烷性肝病病人血清中分离到的抗体可以与多种肝内抗原作用,最主要的是作用于CYP2E1。

此种抗原在细胞膜表达,与相应的抗体或免疫的T细胞结合,造成肝细胞损伤。

其他的氟烷类麻醉剂如蒽氟烷、异氟烷、七氟烷、地氟烷等,由于在肝内代谢较少,因此较少发生肝损伤。

另外一些药物,如排尿酸药、利尿剂、替尼酸等引起的肝损伤时,血液中可测到针对CYP2C9的抗体,可能通过抗体介导的细胞毒作用(AD-CC)使肝细胞坏死。

替尼酸(tienilic acid):本品为排尿酸利尿剂,最早应用于法国,因发现有肝、肾毒性,在美国限制应用。

约1/800的服药者,可发现肝损害,在血清中可测出抗肝、肾微粒体抗体(抗-LKM2抗体)。

用免疫印迹和免疫沉淀法,此抗体与肝微粒体的P-4508(亦称P450MP儿起反应。

此P450MP 是作用于甲基苯乙妥英苯环的羟化。

在替尼酸引起肝病患者的血清中,可测到针对此新抗原的抗体,肝损害可能是ADCC的作用。

药物在肝脏内的代谢一、药物在肝内的生物转化肝脏在药物(或外源性毒物)的代谢和处置中起着十分重要的作用,大多数药物和毒物在肝内经生物转化作用而排出体外。

肝脏的病理状态可以影响药物在体内的代谢过程,从而影响药物的疗效和不良反应。

另一方面,药物的代谢过程中的产物,可以造成肝损害。

药物在肝内所进行的生物转化过程,可分为两个阶段:①氧化、还原和水解反应;②结合作用。

(一)第一相反应多数药物的第一相反应在肝细胞的光面内质网(微粒体)处进行。

此系由一组药酶(又称混合功能氧化酶系)所催化的各种类型的氧化作用,使非极性脂溶性化合物产生带氧的极性基因(如羟基),从而增加其水溶性。

有时羟化后形成的不稳定产物还可进一步分解,脱去原来的烷基或氨基等。

其反应可概括如下D+A→DANADPH+DA+H+→DAH2+NADP-DAH2+O2+HADPH→A+DOH+H2O+NADP-(注:D=药物;A=细胞色素P450)药酶是光面内质网上的一组混合功能氧化酶系,其中最重要的是细胞色素P450,其他有关的酶和辅酶包括:NADPH细胞色素P450还原酶、细胞色素b5、磷脂酰胆碱和NADPH等。

细胞色素P450(以下简称P450)是一种铁卟啉蛋白,能进行氧化和还原。

当外源性化学物质进入肝细胞后,即在光面内质网上与氧化型P450结合,形成一种复合物,再在NADPH细胞色素P450还原酶作用下,被NADPH所提供的电子还原,并形成还原型复合物。

后者与分子氧(O2)作用,产生含氧复合物,并接受NADPH所提供的电子,与O2形成H2O,同时药物(或毒物)被氧化成为氧化产物。

细胞色素P450:药物代谢的第一相反应,主要在肝细胞的光面内质网(微粒体)进行,此过程系由一组混合功能氧化酶系(又称药酶)所催化促进,其中最重要的是P450和有关的辅酶类。

P450酶系包括二个重要的蛋白质组分:含铁的血红素蛋白和黄素蛋白,后者能从NADPH将电子转移至P450底物复合体。

药物与P450结合位点与血红素分子非常接近,有利于电子的转移。

药物与氧化型P450结合,此时血红素的铁为三价铁(Fe3+),通过NADPH还原酶的作用,将NADPH的电子转移给P450,使其还原,血红素铁成二价(Fe2+)。

还原型的P450药物复合物与氧分子作用,成为含氧复合物,并接受NADPH所提供的电子,与氧生成H2O,同时药物也被氧化,P450又成为氧化型(Fe3+)。

如此反复循环,使药物进行第一相的代谢。

P450实际上为同一家庭的多种异构型。

迄今为止,人类P450的基因已发现有27种,编码多种P450。

基本上分成至少4个基因族,又可进一步区分为不同亚族。

其分类为CYP1,CYP2,CYP3和CYP4,亚族的分类按英语A、B、C……和阿拉伯数字1,2,3,……进一步分类。

相关文档
最新文档