理论力学8章分析解析

合集下载

理论力学 第八章

理论力学 第八章

x o ' = x o ' (t ) 牵连运动方程 y o ' = y o ' ( t ) = ( t )
动系与定系之间的坐标变换关系
x = xO′ + x′ cos y′sin y = yO′ + x′ sin + y′ cos
沿半径为r的圆 例8-1 点M相对于动系 Ox′y′ 沿半径为 的圆 相对于动系 周以速度v作匀速圆周运动 圆心为O 作匀速圆周运动(圆心为 周以速度 作匀速圆周运动 圆心为 1 ) ,动系x′y′ O Oxy 以匀角速度ω绕点 作定轴转动, 相对于定系 以匀角速度 绕点O作定轴转动, 绕点 作定轴转动 如图所示。 重合, 重合。 如图所示。初始时x′y′ 与 与 重合 O Oxy 重合,点M与O重合。 的绝对运动方程。 求:点M的绝对运动方程。 的绝对运动方程
. 已知: 已知 ω, OA, = r, OO1 = l, OA水平 求: ω1 = ?
解:
1.动点:滑块A . 动系:摇杆AB 2. 运动分析 绝对运动:绕O点的圆周运动
相对运动:沿O1B的直线运动 牵连运动:绕O1轴定轴转动
√ √ √
3.
ve = va sin = ωr
r
2 2
l +r ve r2ω ∴ω1 = = 2 2 O A l +r 1
4. 绝对运动方程 vt vt x = x′ cos y′ sin = r1 cos r cosωt r sin r sin ωt y = x′ sin + y′ cos = r1 cos vt sin ωt + r sin vt co-3 用车刀切削工件的直径端面,车刀刀尖 M沿水平轴 作往复运动,如图所示。设oxy为定坐 沿水平轴x作往复运动 沿水平轴 作往复运动,如图所示。 为定坐 标系,刀尖的运动方程为 x = bsin (ωt ) 。工件以 标系, 逆时针转向转动。 等角速度 ω逆时针转向转动。 求:车刀在工件圆端面上切出的痕迹。 车刀在工件圆端面上切出的痕迹。

理论力学PPT课件第8章虚位移原理与能量法

理论力学PPT课件第8章虚位移原理与能量法
理论力学ppt课件第8章虚位移原理与能量法
目录
虚位移原理 能量法 拉格朗日方程 哈密顿原理 最小作用量原理
01
CHAPTER
虚位移原理
03
与实际位移的区别
实际位移会改变系统的能量和状态,而虚位移不会。
01
虚位移
系统在平衡状态下的一种假设的、微小的位移,不改变系统的内能。
02
特点
虚位移是约束允许的、可以无限接近的、无穷小且不改变系统能量的位移。
虚位移概念
虚位移原理
对于一个处于平衡状态的完整系统,所有主动力在虚位移上所做的功之和等于零。
表述公式
$ΣF_{i}δr_{i} = 0$
解释
该公式表示系统在平衡状态下,主动力在任意虚位移上所做的功之和为零。
虚位移原理的表述
判断系统平衡状态
通过计算主动力在虚位移上所做的功之和,如果结果为零,则系统处于平衡状态。
哈密顿量是系统的总动能和总势能之和,加上约束条件的势能。
该原理适用于完整约束和非完整约束系统,是经典力学中最基本的原理之一。
哈密顿原理的表述
哈密顿原理与拉格朗日方程的关系
01
哈密顿原理和拉格朗日方程是经典力学中两个重要的基本原理,它们之间存在密切的联系。
02
拉格朗日方程是从哈密顿原理推导出来的,描述了系统运动状态随时间的变化规律。
哈密顿原理是更一般的原理,可以推导出拉格朗日方程,也可以推导出其他形式的运动方程。
03
哈密顿原理在经典力学中有着广泛的应用,例如在分析力学、振动分析、稳定性分析等领域。
在振动分析中,哈密顿原理可以用来描述振动系统的能量分布和传播规律。
哈密顿原理的应用实例
在分析力学中,哈密顿原理可以用来求解约束系统的运动轨迹和运动状态。

08-理论力学-第二部分运动学第八章刚体的平面运动

08-理论力学-第二部分运动学第八章刚体的平面运动

形S在该瞬时的位置也就确定了。
88
运动学/刚体的平面运动
四、平面运动的分解 ——平移和转动
当图形S上A点不动时,则
刚体作定轴转动 。
当图形S上 角不变时,
则刚体作平移。
故刚体平面运动可以看成是 平移和转动的合成运动。
例如:车轮的平面运动可以看成: 车轮随同车厢的平移 和相对车厢的转动的合成。
99
2121
如图示平面图形,某瞬时速度瞬心为P点, 该瞬时平面图形内任一点B速度大小
vB vP vBP vBP
B
大小:vB BP
方向:BP,指向与 转向相一致。
vB
S
vA
C
vC
同理:vA=ω·AP, vC=ω·CP
由此可见,只要已知图形在某一瞬时的速度瞬心 位置和角速度 ,就可求出该瞬时图形上各点的速度。
的平面Ⅱ内的运动。
66
运动学/刚体的平面运动
二、平面运动的简化 刚体的平面运动可以简化为
平面图形S在其自身平面内的运动。 即在研究平面运动时,不需考虑 刚体的形状和尺寸,只需研究平 面图形的运动,确定平面图形上 各点的速度和加速度。
三、平面运动方程 为了确定代表平面运动刚体的
平面图形的位置,我们只需确定平 面图形内任意一条线段的位置。
vBA
s
B
vB vA
A
vA
方向: AB, 指向与 转向一致。
即:平面图形上任一点的速度等于基点的速度与该点随
平面图形绕基点转动的速度的矢量和。 ——基点法
基点法是求解平面图形内一点速度的基本方法。 1414
运动学/刚体的平面运动
二、速度投影法
由于A, B点是任意的,因此

08第八章习题解答

08第八章习题解答

第八章习题解答8-1匀质杆AB 长l ,重G ,沿光滑的圆弧轨道运动如图示。

设当OA 在水平位置时,3arcisn =θ,125gl v A =,求此时轨道对于杆AB 的约束力。

题8-1图解:以杆AB 为研究对象,受力分析A F N 、B F N、G 如图示,杆AB 作定轴转动。

∵53arcsin =θ 53sin =∴θ 54cos =θ 25242sin =θ 2572cos =θ ∵ l R 85=、125gl v A = l g R v A 1516==∴ω l OC 83=AB 杆的质心加速度为OC a ⋅=21ω,OC a ⋅=α2 惯性力主矢*F和主矩*M 方向如图所示,大小为mg l l g m a m F 528315161*1=⋅⋅=⋅=l m a m F 832*2⋅⋅=⋅=ααα222*19243])83(121[ml l m ml M =+=题8-1答案图列平衡方程式∑=0)(F m zO 01924353832=−⋅⋅αml l mg l g 215216=α 0=∑ixF 0sin cos 2cos N *1*2N =−++⋅A B F F F F θθθ 0=∑iyF0cos sin 2sin *1*2N =−−+⋅mg F F F B θθθ mg l g ml F 2158121521683*2=⋅=代入上式得:mg F B4349N =,mg F A 4337N =8-2 匀质杆AB 长l ,重G ,用两根软绳悬挂如图示。

求当其中一根软绳切断,杆AB 开始运动时,另一根软绳中的拉力。

题8-2图解:建立参考基e C−,连体基1e O −和2e B −设当AO 被切断时,BO 的角加速度为1α,AB 杆的角加速度为2α题8-2答案图以杆AB 为研究对象,受力分析如图示重力G ,绳中张力T F 。

杆AB 作平面运动,惯性力主矢*F 和主矩*M 方向如图所示,大小为:C ma F =*,2*αC J M =e C e C e tC C a a a a αω222 ++= , 02=eC a ω e B e B e tC a a a αω112 +=, 01=e B a ω , B e B a a=α1 e C e B C a a a αα21 +=, eC e B C a m a m a m αα21 += 11*122ααl m ma F e B ==∴ 22*22ααl m ma F e C == 22*121αml M =0)(=∑F m Dz0121442222=+⋅−⋅ααml lmg l ml lg 562=α0)(=∑F m Cz012122222T =−⋅⋅αml l Fmg F 52T =8-3 匀质杆AB 长2l ,重G ,一端A 用长l 的软绳OA 拉住,一端B 放在光滑地面上如图示。

理论力学哈工大第七版第8章精品

理论力学哈工大第七版第8章精品

C

一般情况下,在每一瞬时,平面图形上都唯一地存在一 个速度为零的点,称为瞬时速度中心,简称速度瞬心。
2.平面图形内各点的速度分布
基点:C
vM vMC CM
平面图形内任意点的速度等于该点随图形绕瞬时速 度中心转动的速度。
3.速度瞬心的确定方法

已知 vA , vB的方向,

vA不平行于



0
vB 0
90
vB vA r, vBA 0
例8-4 已知:如图所示的行星轮系中,大齿轮Ⅰ固定,半
径为r1 ,行星齿轮Ⅱ沿轮Ⅰ只滚而不滑动,半径为r2。
系杆OA角速度为 O 。
求:轮Ⅱ的角速度ωⅡ及其上B,C 两点的速度。
解: 1.轮Ⅱ作平面运动 基点:A
2.vD vA vDA 0
第八章 刚体的平面运动
§ 8-1 刚体平面运动的概述和运动分解
1.平面运动
刚体平面运动:行星齿轮
刚体平面运动:车轮运动情况
在运动中,刚体上的任意一点与某一固定平面始终保持相 等的距离,这种运动称为平面运动。
平面运动
平面图形的运动
刚体平面运动的简化
2.运动方程
xO f1 t
yO
方向垂直于 AB ,指向同
平面图形内任一点的速度等于基点的速 度与该点随图形绕基点转动速度的矢量和。
例8-1 已知:椭圆规尺的A端以速度vA沿x 轴的负向运动, 如图所示,AB=l。
求:B端的速度以及尺AB的角速度。
解: 1. AB作平面运动
2. vB vA vBA 大小 ? vA ? 方向

f2 t
f3 t

《理论力学》第八章刚体的平面运动

《理论力学》第八章刚体的平面运动

刚体的平面运动特点
刚体的平面运动具有 连续性,即刚体上任 意一点的运动轨迹都 是连续的。
刚体的平面运动具有 周期性,即刚体的运 动轨迹可以是周期性 的。
刚体的平面运动具有 对称性,即刚体的运 动轨迹可以是对称的。
02
刚体的平面运动分析
刚体的平动分析
平动定义
刚体在平面内沿着某一确定方向作等速直线运动。
详细描述
通过综合分析动能和势能的变化,可以深入理解刚体在平面运动中的能量转换过程。例 如,当刚体克服重力做功时,重力势能转化为动能;当刚体克服摩擦力做功时,机械能 转化为内能。这种能量转换过程遵循能量守恒定律,即系统总能量的变化等于外界对系
统所做的功与系统内能变化之和。
06
刚体的平面运动的实例分析
刚体的平面运动通常可以分为两种类型:纯滚动和滑动。在 纯滚动中,刚体只滚不滑,刚体上任意一点在任意时刻都位 于一个固定的圆周上。在滑动中,刚体既滚又滑,刚体上任 意一点在任意时刻都位于一个变化的圆周上。
刚体的平面运动分类
纯滚动
刚体只滚不滑,刚体上任意一点 在任意时刻都位于一个固定的圆 周上。
滑动
刚体既滚又滑,刚体上任意一点 在任意时刻都位于一个变化的圆 周上。
势能定理
总结词
势能定理描述了势能与其他形式的能量转换的关系。
详细描述
势能定理指出,在刚体的平面运动过程中,非保守力(如摩擦力、空气阻力等)对刚体所做的功等于系统势能的 减少量。非保守力做正功时,系统势能减少;非保守力做负功时,系统势能增加。
动能和势能的综合分析
总结词
在刚体的平面运动中,动能和势能的综合分析有助于理解运动过程中能量的转换和守恒。
做平动,这种运动也是复合运动。

理论力学 第8章 动力学普遍定理

理论力学 第8章 动力学普遍定理

xC

mi
M
xi
,
yC

mi
M
yi
,
zC

mi
M
zi
10
在均匀重力场中,质点系的质心与重心的位置重合。可采 用静力学中确定重心的各种方法来确定质心的位置。但是,质 心与重心是两个不同的概念,质心比重心具有更加广泛的力学 意义。 二、质点系的内力与外力 外力:所考察的质点系以外的物体作用于该质点系中各质点的力。 内力:所考察的质点系内各质点之间相互作用的力。
应用质点运动微分方程,可以求解质点动力学的两类问题。
6
1.第一类:已知质点的运动,求作用在质点上的力(微分问题) 2.第二类:已知作用在质点上的力,求质点的运动(积分问题) 已知的作用力可能是常力, 也可能是变力。变力可能是时间、 位置、速度或者同时是上述几种变量的函数。
7
例1 曲柄连杆机构如图所示.曲柄OA以匀角速度 转
只有外力才能改变质点系的动量,内力不能改变整个质点系 的动量,但可以引起系统内各质点动量的传递。
20
[例3] 质量为M的大三角形柱体, 放于光滑水平面上, 斜面上另 放一质量为m的小三角形柱体,求小三角形柱体滑到底时,大三角 形柱体的位移。
解:选两物体组成的系统为研究对象。
受力分析, Fx(e) 0, 水平方向 Px 常量。
l2 r2 l
得 F mr2 2 l 2 r 2
9
质点系的质心,内力与外力
一.质点系的质心 质点系的质量中心称为质心。是表征质点系质量分布情况的 一个重要概念。
质心 C 点的位置: (M mi )
rC

mi
M
ri
或 MrC mi ri

第八章理论力学哈工大

第八章理论力学哈工大

§8-2 点的速度合成定理
例:小球在金属丝上的运动
牵连点:在任意瞬时,与动点相重合的动 坐标系上的点,称为动点的牵连点。
讨 论
动坐标系是一个包含与之固连的刚体在内的 运动空间,除动坐标系作平移有牵连点的运动能够给动点以直接的影响。 为此,定义某瞬时,与动点相重合的动坐标 系上的点(牵连点)相对于静坐标系运动的 速度称为动点的牵连速度
已知:
, OA r , OO1 l , OA水平。求 : 1 ?。
解: 1、动点:滑块 A 动系:摇杆 O1B 2、运动分析: 绝对运动-绕O点的圆周运动;相对运动-沿 O1B的直线运动;牵连运动-绕O1轴定轴转动。 3、 √ √ √
ve va sin r sin ve r 2 1 2 2
动点与动系的选取原则(P186思考题)
⒈ 动点与动系不能选在同一物体上,否则无相对运动。
⒉ 动点相对于动系的相对运动轨迹要一目了然,即是一条 简单、明了的已知轨迹曲线 —-圆弧或直线。
绝对、相对和牵连运动之间的关系
可以利用坐标变换来建立绝对、相对和牵连运动之间的关系。
O 动点:M 动系: ' x ' y ' 绝对运动运动方程
MM 1 va lim t 0 t
速度合成定理
MM 1 显然: ve lim t 0 t
M 1M 1 vr lim t 0 t
va ve vr
动点的绝对速度等于它 的牵连速度与相对速度 的矢量和
上式为矢量方程,它包含了绝对速度、牵 连速度和相对速度的大小、方向六个量, 已知其中四个量可求出其余的两个量。

va ve vr
点的速度合成定理:动点在某瞬时的绝对速度等于 它在该瞬时的牵连速度与相对速度的矢量和。 讨论 ⑴ ⑵ ⑶

理论力学第八章点的合成运动和例题讲解

理论力学第八章点的合成运动和例题讲解
MM ' 为绝对位移 M1M ' 为相对位移
MM' = MM1 + M1M'
MM' = MM1 + M1M' 将上式两边同除以△t, 取△t →0时的极限,得
lim M M lim M M 1 lim M 1 M t 0 t t 0 t t 0 t
va vevr
即在任一瞬时动点的绝对速度等于其牵连速度与相对速度 的矢量和,这就是点的速度合成定理。 说明:① 点的速度合成定理适用于牵连运动(动系的运动)为
O1B的角速度1。
解:取OA杆上A点为动点,摆杆O1B 为动系,基座为静系。
绝对速度va = r ,方向 OA
相对速度vr = ? 方向//O1B 牵连速度ve = ? 方向O1B
由速度合成定理 va vevr作出速度平行四边形 如图所示。
ve vasin r
r r2 l2
r 2 r2 l2

1. 绝对运动:动点相对于静系的运动。 2. 相对运动:动点相对于动系的运动。 点的运动 3. 牵连运动:动系相对于静系的运动。 刚体的运动 在任意瞬时,动坐标系中与动点相重合的点叫牵连点。
绝对运动中动点的速度与加速度称绝对速度 v a 与绝对加速度 a a 相对运动中动点的速度和加速度称相对速度 v r 与相对加速度 a r
§8-2 点的速度合成定理
点的速度合成定理将建立动点的绝对速度、相对速度和牵连 速度之间的关系。
设有一动点M按一定规律沿着固连于动系O’x’y’z’ 的曲线AB 运动, 而曲线AB同时又随同动系O’x’y’z’ 相对静系Oxyz运动。
当t t+△t 时 AB A' B' , M M' 也可看成M M1 M´

理论力学8

理论力学8
摇杆绕固定轴O1来回摆动。设曲柄长OA=r,两轴间距离OO1 l
求曲柄在水平位置瞬时,摇杆O1B绕O1轴的角速度1及滑块A相
对摇杆O1B的相对速度。
运动学/点的合成运动
解:
选取动点: OA 上的A点 动系: O1B 定系: 基座
运 绝对运动:圆周运动 动 分 相对运动:直线运动 析 牵连运动:定轴转动 :
运动学/点的合成运动
另一方面,在实际问题中,不仅要在固联在地面上
的参考系上还要在相对于地面运动着的参考系上观察和
研究物体的运动。下面先看几个例子。
沿直线轨道纯滚动 的圆轮,研究轮缘上A 点的运动,对于地面上 的观察者,是旋轮线轨 迹,对站在轮心上的观 察者是圆。
A点的运动可看成随轮心的平移与绕轮心转动的合成。
运动学/点的合成运动
MM MM1 M1M 将上式两边同时除以t并取 t0得
lim MM lim MM1 t 0 t t 0 t
lim
M1M
t 0 t
va ve vr
即:在任一瞬时动点的绝对速度等于牵连速度与相对速
度的矢量和,这就是点的速度合成定理。
点的速度合成定理是瞬时矢量式,共包括大小‚方向 六个元素,已知任意四个元素,就能求出其它两个。
运动学/点的合成运动
例如,直管OB以匀角速度绕定轴O转动,小球M
以速度u在直管OB中作相对的匀速直线运动,如图示。 将动坐标系固结在OB管上,以小球M为动点。随着动 点M的运动,牵连点在动坐标系中的位置在相应改变。 设小球在t1、t2瞬时分别到达M1、M2位置,则动点的 牵连速度分别为
ve1 OM1
运动学/点的合成运动
第八章
点的合成运动
在前两章中研究点和刚体的运动时,认为地球( 参考体)固定不动,将坐标系(参考系)固连于地面。 因此,点和刚体的运动是相对固定参考系而言的。

理论力学第八章平面运动

理论力学第八章平面运动
基点:C
r vM
r vMC
r
uuuur CM
• 速度瞬心的确定方法
已知 vA ,的vB方向, 且 v不A 平行于 v。B
vrA // vrB ,且不垂直于AB
vrB
vvrrBBvArAvr0AvrABvrMAB
0
瞬时平移(瞬心在无穷远处)
纯滚动(只滚不滑)约束
找出下列平面运动刚体的速度瞬心。 A
第八章 刚体平面运动
1、刚体平面运动的定义及运动方程 2、刚体平面运动分解为随基点平动和绕基点转动 3、平面运动图形上点的速度分析 4、平面运动图形上点的加速度分析
1、刚体平面运动的定义
若刚体在运动过程中,刚体上的任意一点与 某一固定平面始终保持相等的距离,这种运 动称为平面运动。
刚体平面运动特点
刚体上所有各点均在平行于某固 定平面的平面内运动。
刚体的平面运动,可以简化为平面 图形在其自身平面内的运动来研究。
平面图形 S 的位置可用其上任一 线段如AB 来确定,线段AB的位 置又可用A 点的坐标 xA 、yA 和 线段AB与 x 轴的夹角 φ 来确定。 点 A 称为基点。
刚体平面运动方程
当平面图形 S 运动时,坐标 xA 、
yA 和夹角 φ 一般都是随时间 t 而 变化的,分别为时间 t 的单值连
续函数,即
xA f1 (t)
y A f 2 (t)
f3 (t)
这就是平面图形S 的运动方程,也就是刚体平面运动的运动方程。
2、刚体平面运动分解为随基点平动和绕基点转动
xO f1 t
1.5rad
/
s
BC
vB BC
2.25rad
/s
vA
2)瞬心法

理论力学哈工大第七版第8章

理论力学哈工大第七版第8章

动能和守恒
动能
通过动能的概念,我们可以 明确物体在运动中所具有的 能量。
势能
势能是指物体在某一位置上 存储的能量,常用于分析引 力场和弹性力场。
动能守恒定理
动能守恒定理可以方便地分 析物理系统的动态过程,并 预测它的相对变化。
中心力场和二体问题
中心力场
中心力场的研究对于物理学家来 说是一个非常重要的课题。我们 将会讨论它的基本概念和如何计 算。
符号
m L t
量纲
[M] [L] [T]
单位
kg m s
力学题目课与习题
题目课
题目课设定了一部分难度适宜且涵盖了重点难点的例题。可以帮助学生深入理解物理学的核 心知识。
习题
习题是结合教学实际编写的设计,内容齐全,涵盖了力学的基础知识,具有很强的启发性和 实际应用性。
学习力学的知识有助于解 决各种实际问题和工程项 目。
本章的学习深入挖掘了物 理学的知识,使我们进一 步认识和探索这个领域。
维度和量纲
维度
维度是指物理量的基本种类。力学的基本维度是质 量、长度和时间。
量纲
量纲是指物理量所具有的简化属性描述,通常用方 括号来表示。
牛顿万有引力定律的前置知识
物理量
质量 长度 时间
探索理论力学第七版第8 章
在本章中,我们将探讨关于牛顿定律、动能和守恒、二体问题等的基础概念, 深入研究纯理论的力学。
牛顿定律
1
牛顿第一定律
物体将保持静止或匀速直线运动,除非有外力作用于它。
2
牛顿第二定律
物体的加速度与施加在它上面的力成正比,与它的质量成反比。
3
牛顿第三定律
任何两个物体之间都会有相等且反向的反作用力。

吉林大学理论力学课件-第8章

吉林大学理论力学课件-第8章

★ 瞬时转动轴.角(加)速度
C
z
例 题 2 题
w1
B A
O
O´ O
半径为r的圆盘绕 z 轴作纯滚动,角速度为 w1 r 轴作纯滚动,角速度为 =常数;OO´轴的长度为 l 。求:A、B、C 三点 = OO 轴的长度为 A B 的速度和加速度。
★ 瞬时转动轴.角(加)速度
z
z
z
y
y
O O
x
x
x
★ 运动方程 运动方程
(Eulerian angle)
* 欧拉角
★ 运动方程 运动方程
* 欧拉角
xh 坐标面与 ON-节线:o 坐标面与 ON Oxy坐标面的交线; Oxy
ON与 Ox 轴的夹角; ON ;
y -进动角(angle of precession): (angle of precession)
y = y ( ) t q = q ( ) t 运动方程 j = j ( ) t y ( ), ( ), ( ) 确定了 t 瞬 t q t j t 确定了
时定点运动刚体在空间的位 置。 置。
★ 欧拉定理
达朗贝尔-欧拉有限位移定理 达朗贝尔-欧拉有限位移定理
(d'Alernbert ­ Euler displacement theorem) (
q -章动角(angle of nutation) : nutation
O 与Oz轴的夹角; z Oz ;
j -自转角(angle of rotation) : :
ON与Ox轴的夹角; ON Ox ; y q j -三者相互独立。
★ 运动方程
*欧拉角
z
z

理论力学课件 第8章PPT精品文档52页

理论力学课件 第8章PPT精品文档52页
▪ 1. 点的速度合成的矢量法 ▪ 动点沿曲线轨道AB运动,轨道对于固定坐
标Oxy发生运动。 ▪ 动点沿AB的运动为相对运动。 ▪ 在静坐标上观察到的动点运动为绝对运动。
▪ t 时刻,动点在轨道AB的M1点。t+△t,轨
道运动到A’B’,动点运动到A’B’的M’2。 ▪ M1 M’2是绝对位移。 ▪ M1 M2是相对位移。 ▪ M1 M’1是动点在M处的牵连位移。
▪ 站在地面观察到动 点(滑块)的速度 为绝对速度:
va=rω
▪ 相对速度:滑块对于 摇杆的速度
▪ 站在动系(摇杆AB) 看到动点(滑块)沿 着AB运动,其相对速
度为vr,方向沿AB方
向。
▪ 牵连速度:牵连速度 是摇杆上与滑块重合 的点A’的速度,
▪ ve=O1Aω1,
▪ 速度合成:
▪va=ve+ vr , ▪ 未知:ve的大小,
va ve vr
▪ 例8-1 曲柄OA的O为固 定铰接。A端与滑块铰 接。滑块则可以在摇杆 O1B上滑动。摇杆的O1 端与地面铰接。已知 OA=r,O1O=l,曲柄 OA的角速度为ω,求曲 柄在水平位置时摇杆的 角速度ω1 。
▪ 解:AB为动系。 滑块为动点。
▪ 绝对速度:滑块对 于地面的速度。
▪ §8-1 相对运动、牵连运动、绝对运动
▪ 坐标系:
▪ 1.静坐标系(定参考系):固结于地面 上的坐标系。
▪ 2.动坐标系(动参考系):固结于运动 刚体上的坐标系。
▪ 运动分类 ▪ 绝对运动:动点相对于静坐标系的运动。
▪ 相对运动:动点相对于动坐标系的运动。
▪ 牵连运动:动坐标系相对于静坐标系的运 动。
▪ 速度合成: va = ve+ vr , ▪ 未知量: va和vr的大小 ▪ 半径CA方向的投影式:

理论力学第7版第八章刚体的平面运动

理论力学第7版第八章刚体的平面运动
根据 va ve vr 做速度平行四边形
ve va cos r1 sin( ),
2
ve O2 A
sin( )sin cos
1
vr va sin r1 cos( )
ac
2 2 v r
si
n
(2 cos
2
)
1
2
r
方向:与 v e相23同。
aa ae ar aC
——点的加速度合成定理 a a an
[例2] 曲柄滑杆机构
已知: OA=l, =45o 时,,;
求:小车的速度与加速度.
解:动点:OA杆上 A点;
动系:固结在滑杆上;
绝对运动:圆周运动, 相对运动:直线运动,
牵连运动:平动;
va ve vr
大小 l ? ?
方向 √ √ √
ve va cos l cos45
2 l()
2
小车的速度: v ve
为牵连点。若二者不重合,动
系应扩大到参考体之外。此时
桥式吊车
,牵连点就不是动参考体上的
点,而是动系上的点。
动点: 物块A
相对运动: 直线
动系: 固结于小车 牵连运动: 平动
牵连点:A’
绝对运动: 曲线
8
绝对速度 :va ——绝对运动中,动点的速度 相对速度 :vr ——相对运动中,动点的速度
牵连速度 :ve ——牵连运动中,牵连点的速度
4
动点:AB杆上A点 动系:固结于凸轮O'上
定系:固结在地面上 绝对运动: 沿AB的直线运动 相对运动: 曲线(圆弧) 牵连运动: 直线平动
5
分析动点、动系改变,对运动分析的影响:
动点:A(在AB杆上) 动系:偏心轮 静系:地面

理论力学第8章-1

理论力学第8章-1
o
rO
x
i
O
y 动点在定系中的矢径:
rM ro r
牵连点在定系中的矢径:
y
rM rM ro r
动点的相对速度:
x
动点的牵连速度:
drM d ( ro r ) ro xi yj zk ve dt dt
四、三种速度和三种加速度 1、绝对速度 va和绝对加速度 aa
动点在绝对运动中的速度和加速度。
2、相对速度 v 和相对加速度 ar 动点在相对运动中的速度和加速度。 3、牵连速度 ve 和牵连加速度 ae 牵连点(动坐标系中与动点相重合的点,不是动点)的速度
r
和加速度。
五.三种运动的轨迹 绝对轨迹:动点在静系中运动的轨迹。 相对轨迹:动点在动系中运动的轨迹。 牵连点轨迹:牵连点在静系中的轨迹。
动点:A1(在O'A1 摆杆上) 动系:圆盘 定系:机架 绝对运动:曲线(圆弧) 相对运动:曲线 牵连运动:定轴转动
影片:810
动 点: A(在AB杆上) [注] 应说明动点在哪个 动 系:偏心轮 定 系:地面 物体上。 绝对运动:直线 相对运动:圆周(曲线) (A点始终在偏心轮的圆弧上 运动) 牵连运动:定轴转动


[例8-4] 曲柄摆杆机构 已知:OA=r , , OO1=l,图示瞬时OA⊥OO1 求:摆杆O1B角速度 1 解:取套筒A点为动点,摆杆O1B为动系, 基座为定系。

绝对速度va = r 相对速度vr = ? 牵连速度ve = ?
方向⊥ OA 方向//O1B 方向⊥O1B
由速度合成定理 va vr ve 作出速度平行四边形 如图示。
牵连运动:
平动

哈工大理论力学 第八章课件

哈工大理论力学 第八章课件
各点的速度方向分别为各点 与A1点连线的垂线方向,转向与 相同,由此可见车轮顶点的速 度最快,最下面点的速度为零。
vA1 0
vA3
A2
A4
vA4
O
vO
vA2
A1
vA2 vA4 2r 2v
vA3 2r 2v
理论力学
中南大学土木建筑学院
22
[例2] 已知:曲柄连杆机构OA=AB=l, 取柄OA以匀 转动。求:当 =45º 时, 滑块B的速度及AB杆的角速度。
理论力学

23
中南大学土木建筑学院
速度投影法 研究AB, v A ,l 方向OA, v B方向沿BO直线 根据速度投影定理 vB AB v A AB v A v B cos v B v A /cos
l /cos45 2l () 不能求出 AB 速度瞬心法 研究AB,已知 v A , vB 的方向,因此 可确定出P点为速度瞬心

轮A作纯滚动,轮O不动。
求 vM 1 , vM 2 。 解:OA定轴转动; 轮A作平面运动, 瞬心P点
v A ( R r ) o r Rr o r
(

v M 1 PM 1 2r v M 2 PM 2 2r
Rr 2 ( R r )o , r o
理论力学
中南大学土木建筑学院
2
例如: 曲柄连杆机构中连杆AB的运动, A点作圆周运动,B点作直线运动,因此, AB 杆的运动既不是平移也不是定轴转动, 而是平面运动。
理论力学
中南大学土木建筑学院
3
理论力学
中南大学土木建筑学院
4
二、平面运动的简化 刚体的平面运动 到固定平面 Ⅰ的距离不变

理论力学第8章习题解答

理论力学第8章习题解答

理论力学第8章习题解答第八章质点系动力学:矢量方法习题解答8-1 一个质量为5 kg 弹头M 以水平速度v = 60 m/s 飞行,在D 处爆炸成位于同一水平面内如图示速度方向的两块碎片A 和B 。

已知碎片A 的速度大小v A = 90 m/s 。

试求:(1) 碎片A 的质量m A ;(2) 碎片B 的速度大小v B 。

解:取弹头M 为研究对象,弹头爆炸前后动量守恒 () 30cos B A v m M Mv -= () 30sin 0B A A A v m M v m --=解得M v vm A A 33=,AA B v v vv v 32--=,代入数据得:kg 92.1=A m ,m/s 64.112=B v .8-2 一个质量为m 1的人手里拿着质量为m 2的物体,以仰角θ,速度v 0向前跳起。

当他到达最高点时将物体以相对速度u 水平地向后抛出。

如果不计空气阻力,问由于物体的抛出,跳远距离增加了多少?解:取m 1和m 2物体系统为研究对象,人跳至最高点时只有水平速度 ?c o s 01v v =,所费时间 gv t ?sin 0=。

抛物前后系统水平动量守恒,即 ()()u v m v m v m m -+=+1211021c o s ?,式中1v 为抛物后人的速度。

解得21201c o s m m um v v ++=?,可见,人的速度增量为2121Δm m um v +=,从而跳远距离增加()gm m uv m v t s 21021sin ΔΔ+==?.8-3质量为m 1的平台AB 放在水平面上,平台与水平面间的滑动摩擦因数为f 。

质量为m 2的小车D 由绞车拖动,相对平台的运动规律为221bt s =,其中b 为已知常数。

不计绞车质量,求平台的加速度。

解:1)设平台与水平面间的滑动摩擦因数比较小,当小车D 相对平台运动时,平台AB 的有速度1v (向左),小车D 的相对速度bt sv == r ,(向右),小车D 的绝对速度bt v v v v +-=+-=1r e a ,(向右),滑动摩擦力为 N fF F = 题8-3图题8-3受力图题8-1图由动量定理,()[]F v bt m v m t=-+-1211d d()021=++-N F g m m解得()212121m m g m m f b m a ++-=, ()g m m bm f 212+≤.当()gm m bm f 212+>时,01=a .8-4 质量为m 1的矩形板可在如图所示的光滑水平面上运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2018/10/20
理论力学第8章
22

补充例题。圆轮纯滚动的运动特点。 1. 圆轮在水平面上作纯滚动。轮心A作水平直 线运动。 无滑动条件:轮心A的 水平位移OC等于轮缘 滚动过的弧长,即 OC=MC。设OC长度为x, MC的圆心角为φ,则

x r
2018/10/20 理论力学第8章 23

OA sin AB sin r sin sin l
2018/10/20 理论力学第8章 13
2018/10/20
理论力学第8章
14

用基点法建立A和B的 速度关系。
v B v A v BA vB v A sin vBA sin 0 v A cos vBA cos r cos vBA AB l cos cos sin( ) vB r sin r sin r cos cos cos r , cos
2018/10/20
理论力学第8章
34

轮A的速度和加速度分析:
vA v A r A, A 10rad / s R vC 2 R A 4m / s aA aA r A , A 10rad / s 2 R t n aC a A aCA aCA
v B v A v BA vB cos30 v A cos30 vB sin 30 v A sin 30 vBA v B v A r vBA 0,
2018/10/20
BA 0
理论力学第8章
19


对于轮B: C为瞬心。
vC v B vCB 0 vB vCB vCB vB r vCB B r
aB a A a a
n BA

t BA
法向加速度和切向加速度的表达式 为:
a
2018/10/20
n BA t BA
AB

2 AB
AB AB
理论力学第8章 18


例8.5曲柄OA长r,以匀角速度ω绕O转动,连 杆AB长l=2r,轮B半径为r,在水平地面上作纯 滚动。求图示位置时,连杆AB以及轮B的角加 速度。 解:速度分析 对于AB上的两点A和B,有:
2018/10/20
理论力学第8章
30

解:杆AB的速度分析。点A和点B的速度方向已 知,点O为刚体AB的瞬时速度中心。
v A OA vA AB OA vB OB AB OB vB OB 1 2 O1 B O1 B
2018/10/20
理论力学第8章
vC v A vCA
2018/10/20
理论力学第8章
10
vC v A vCA
如果vCA=CA. ω =vA,或:
CA vA

则vC =0,C称为速度中心,简称瞬 心。平面图形内任一点的速度,等 于该点绕瞬心转动的速度。
2018/10/20 理论力学第8章 11


习题8.1 三角板ABC与摇杆O1A和O2A铰 接, O1A以匀角速度ω1转动,求A和C的 速度。 解:瞬心法:三角板的点A 和B的速度方向已知,作三 角板的瞬心D。三角板绕D 转动的角速度为ω。
drB drA dr ' dt dt dt v B v A v BA

刚体内任一点的速度等于基点速度以及该点绕 基点转动速度的矢量和。
理论力学第8章 8
2018/10/20

定理:平面运动任意两点的速度在其 连线的投影值相等。
证明:点A、B的速度关系为:

vB v A vBA
2O1 B 2 4O1 B 2 2O1 B 2
2018/10/20
理论力学第8章
32
O1 B 2 a 2 sin t a BA O1 B AB 2 2 2 2 AB AB sin t n t n aB a A a BA cos a BA sin
31

AB的加速度分析:
a a a a
t B n B n A t BA
a
n BA
t n t n a a a cos a B A BA BA sin n t n a a sin a BA BA cos B t n n aBA sin aBA cos aB 2 AB AB cos O1 B12
等式两边在AB连线投影。 由于vBA与连线AB垂直, 因此vA 与 vB 。在AB的 投影相等。
2018/10/20 理论力学第8章 9



8.4 求平面图形各点速度的瞬心法 一般情况下,在每一瞬时,平面图形上 都存在一个速度为零 的点,称为瞬时速 度中心,简称瞬心。 1. 瞬心的求法 设某瞬时,平面图形的角速度为ω,点A 的速度为vA。过A点作AC与速度vA方向 垂直。C点的速度为:
v A O1 A1 DA O1 A vC DC DC1 DA
2018/10/20
理论力学第8章
12

例8.4 曲柄OA,长度为r,以匀角速度ω转 动,转角为φ= ω t。连杆AB长度为l,求 滑块B的速度以及连杆AB的角速度。
解:基点法。 角度∠ABO可由几何 关系求得:




运动分类 绝对运动:动点相对于静坐标系的运动。 相对运动:动点相对于动坐标系的运动。 例如,观察圆轮在地面上的滚动。 轮心O’对于静坐标作水平直线运动。 轮心O’对于动坐标来说是静止的。

2018/10/20
理论力学第8章
2
2018/10/20
理论力学第8章
3
8.2 刚体的平面运动

求轮缘与地面接触点C的加速度:
aC a A a aCy a
2018/10/20
n CA
a
t CA
aCx a A r 0
n CA
理论力学第8章 25

2. 圆轮在凸面上作纯滚动。轮心A作弧线运动。 设轮子半径r,凸面曲率半径ρ。

无滑动条件:瞬心的速度为零。
vC 0


1.刚体的平面运动: 刚体 运动时,如果刚体内任 意一点与某固定平面的 距离始终相等,则这种 刚体运动称为平面运动。 刚体作平面运动时,每 一点都在一个平面内运 动,而且这些平面都彼 此平行。
理论力学第8章 4
2018/10/20




2.刚体的平面运动的描述方法: 刚体的平面运动可用刚体内的一个平面 图形的运动来描述。 平面图形运动的表示方法: 平面图形在其 平面内运动时,图形的位置可以由平面 内任意一条直线的位置来确定。 综上所叙,刚体的平面运动可以用刚体 内某一条线段的平面位置及其方位角来 确定。
aA 2 2 a r cos30 3 1 t a B a BA sin 30 r 2 3 t a BA 2 AB AB 3
t BA
2018/10/20 理论力学第8章 21

对于轮B:
aB r B aB B r 3
2
第8章 刚体的平面运动




8.1 点的运动的相对性 坐标系: 1.静坐标系(定参考系):固结于地面上的 坐标系。 2.动坐标系(动参考系):固结于运动刚体 上的坐标系。 运动分类 绝对运动:动点相对于静坐标系的运动。 相对运动:动点相对于动坐标系的运动。
理论力学第8章 1



2018/10/20
0
2 2 2
aCy a
2 2
n CA
r a r r
2 2
r r r r
2018/10/20 理论力学第8章 27


习题8.2 车轮沿曲面运动,已知轮心O在某瞬 时的速度vO和加速度aO。试问车轮的角加速度 是否为aO cosθ/R?(式中R是车轮半径)速度 瞬心C的速度和加速度大小和方向如何确定? 解:车轮沿曲面作纯滚动。根据全加速度的定 义,有:
RO RO 0
n n vCy aCO aO 2 v R 2 O R 2 2 vO vO R R


2018/10/20
理论力学第8章
29

习题8.18 四连杆机构AOO1B中,已知 OA=OO1=O1B=100mm,杆OA以匀角速度 ω=2rad/s绕O转动。当φ=90°时,杆O1B水平。 求此时杆AB和杆的角速度和角加速度。
a R o ao cos
t o n 2 ao Ro aosin
ao cos o R

2018/10/20 理论力学第8章 28

瞬心的速度为零。加速度则用基点法计算。
n t n t aC aO aO aCO aCO t t aCx aO aCO
t BA
O1 B 2 2 OA 2 cos AB AB sin sin OA 2 4O1 B 2 OA 2
2
4O1 B 2
t aB B 4 2 O1 B
2018/10/20
理论力学第8章
33


题8.19 轮A的半径R=0.2m,轮B的半径r=0.1m, 两轮在水平轨道上做纯滚动。图示瞬时,C点 为A轮最高点,轮心A的速度vA=2m/s,加速度 aA=2m/s2,求轮B的角速度和角加速度。 解:
2018/10/20 理论力学第8章 20

加速度分析:对于AB上的两点A和B,有:
t n a B a A a BA a BA t n a a sin 30 a cos 30 B BA BA t n 0 a a cos 30 a sin 30 A BA BA n a A r 2,a BA 0
相关文档
最新文档