七年级数学上册第三章一元一次方程回顾与小结作业课件新版新人教版
合集下载
人教版七年级上册数学习题课件:第三章 一元一次方程
a=
.
分析 因为两个方程的解相同, 先求出方程 2x= 的解, 再将其代入方程 3(x+a)=a-5x中, 从而 求出a的值.
章末复习
母题2 (教材P83习题3.1第5题) 列方程:某校七年级1班共有学生48人, 其中 女生人数比男生 人数的 多3人, 这个班有男生多少人?
章末复习
考点:列方程. 考情:列方程是中考常见考题, 常以选择题和填空题的形式出现. 策略:设未知数找相等关系列方程.
B.20x+60(x+2)=280
C.20(x+2)+60x=280
D.20(x-2)+60x=280
章末复习
分析 根据相等关系“买甲种药材的钱+买乙种药材的钱=280元”列出 方程.我们可以列出表格, 使题目中的数量关系更加明确, 列表如下:
章末复习
链接4 [枣庄中考]五一期间, 某电器按成本价提高30%后标价,
章末复习
素养提升
专题 数形结合思想
【要点指导】列方程解应用题时, 正确地列出方程是关键. 在分析 应用题中的数量关系时, 数形结合思想是行之有效的方法. 由数思 形, 由形思数, 把数与形结合起来, 可以很方便地展示题中的数量 关系.
章末复习
例 甲、乙两地相距40千米, 摩托车的速度是45千米/时, 货车的速 度 是35千米/时. (1)若两车分别从甲、乙两地同时开出, 相向而行, 几小时后两车 相遇? (2)若两车分别从甲、乙两地同时开出, 同向而行, 几小时后, 摩托 车追 上货车?(摩托车出发点在货车出发点的后面) (3)若两车都从甲地到乙地, 要使两车同时到达, 货车应先出发几 小时?
D.2
解析 将x=3代入2x-a=1,得2×3-a=1,解得a=5.
人教版七年级上册第三章一元一次方程小结复习课件2
=1,
右边=1,
所以 x=-3是原方程的解.
一.课前检测
3.列方程解应用题 制作一张桌子要用一个桌面和4条桌腿, 1m³木材可制作
20个桌面,或者制作400条桌腿.现有12 m³木材,应用多少 木材制作桌面,多少木材制作桌腿,恰好配成这种桌子多 少套?
初中数学
初中数学
制作一张桌子要用一个桌面和4条桌腿, 1m³木材可制 作20个桌面,或者制作400条桌腿.现有12 m³木材,应 用多少木材制作桌面,多少木材制作桌腿,恰好配成这 种桌子多少套? 分析:(1)桌面数:桌腿数=1:4;
桌面数 桌腿数 套数
1
4
1
2
8
2
3 ……
12 ……
3 ……
n
4n
n
初中数学
解:设应用xm³木材做桌面,则用(12-x)m³木材做桌腿,恰好 配成整套桌子.
依题意,列出方程 解方程,得
400(12-x)=4×20x. 5(12-x)=x, 60-5x=x, -6x=-60, x=10.
口头检验: x=10是原方 程的解且符合 实际意义.
小结复习(三)
初中数学
一.课前检测 1.若x=-2是方程 x +5=m+2的解,求m的值.
2
分析:由x=-2是方程
x 2
+5=m+2的解,则将x=-2
代入方程
x 2
+5=m+2后得到关于m的方程 ,由此
求出m的值.
初中数学
一.课前检测
1.若x=-2是方程 x +5=m+2的解,求m的值. 2
解:将 x=-2代入方程
二.例题讲解
例3 我们规定:若关于x的一元一次方程ax=b的解为b+a,则 称该方程为“和解方程”. 例如:方程2x=-4的解为x=-2,而-2=-4+2,则方程2x=-4为 “和解方程”. 请根据上述规定解答下列问题: 已知关于x的一元一次方程3x=m是“和解方程”,求m的值.
3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件
【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.
人教版数学七年级上册第三章《一元一次方程》小结与复习课件
根据题意,得x+50=2[(450-x)-50], 解得x=250,则450-x=200. 答:甲商城本来有该品牌服装250件,乙商城本来有该品牌服装 200件.
10. 为鼓励居民勤俭用电,某地对居民用户用电收费标 准作如下规定:每户每月用电如果不超过 100 度, 那么每度按 0.50 元收费;如果超过 100 度不超过 200 度,那么超过的部分每度按 0.65 元收费;如果 超过200度,那么超过的部分每度按 0.75 元收费.
(二)等式的性质
1. 等式的性质1:等式两边加 (或减) 同一个数 (或式子),结果仍相 等.如果 a=b,那么 a± c =b±c. 2. 等式的性质2:等式两边乘同一个数,或除以同一个不为 0 的数, 结果仍相等.如果 a=b,那么 ac= _b_c_;如果 a = b (c≠0),那么
a =__b__. cc
合并同类项,得 7x = 9.
系数化为1,得 x 9 . 7
9. “十一”期间,甲、乙两商场有某品牌服装共450件,由于甲 商场销量上升,需从乙商场调运该服装50件,调运后甲商场该服 装的数量是乙商场的2倍,求甲、乙两商场本来各自有该品牌服 装的数量.
解:设甲商城本来有该品牌服装x件,则乙商城本来有该品牌服 装(450-x)件,
审题是基础,找等量关 系是关键.
验:检验方程的解是否符合题意.
答:写出答案 (包括单位).
解题过程要书写出来的步骤是设、列、解、答。
2. 常见的几种方程类型及等量关系: (1) 行程问题中基本量之间关系: 路程=速度×时间. ① 相遇问题: 全路程=甲走的路程+乙走的路程; ② 追及问题: 甲为快者,被追路程=甲走路程-乙走路程; ③ 流水行船问题: v顺=v静+v水,v逆=v静-v水.
10. 为鼓励居民勤俭用电,某地对居民用户用电收费标 准作如下规定:每户每月用电如果不超过 100 度, 那么每度按 0.50 元收费;如果超过 100 度不超过 200 度,那么超过的部分每度按 0.65 元收费;如果 超过200度,那么超过的部分每度按 0.75 元收费.
(二)等式的性质
1. 等式的性质1:等式两边加 (或减) 同一个数 (或式子),结果仍相 等.如果 a=b,那么 a± c =b±c. 2. 等式的性质2:等式两边乘同一个数,或除以同一个不为 0 的数, 结果仍相等.如果 a=b,那么 ac= _b_c_;如果 a = b (c≠0),那么
a =__b__. cc
合并同类项,得 7x = 9.
系数化为1,得 x 9 . 7
9. “十一”期间,甲、乙两商场有某品牌服装共450件,由于甲 商场销量上升,需从乙商场调运该服装50件,调运后甲商场该服 装的数量是乙商场的2倍,求甲、乙两商场本来各自有该品牌服 装的数量.
解:设甲商城本来有该品牌服装x件,则乙商城本来有该品牌服 装(450-x)件,
审题是基础,找等量关 系是关键.
验:检验方程的解是否符合题意.
答:写出答案 (包括单位).
解题过程要书写出来的步骤是设、列、解、答。
2. 常见的几种方程类型及等量关系: (1) 行程问题中基本量之间关系: 路程=速度×时间. ① 相遇问题: 全路程=甲走的路程+乙走的路程; ② 追及问题: 甲为快者,被追路程=甲走路程-乙走路程; ③ 流水行船问题: v顺=v静+v水,v逆=v静-v水.
人教版七年级数学上册作业课件 第三章 一元一次方程 实际问题与一元一次方程 第4课时 电话计费问题
的水?设这个月共用 x 立方米的水,下列方程正确的是( A )
A.1.2×20+2(x-20)=1.5x B.1.2×20+2x=1.5x C.1.22+2 x=1.5x D.2x-1.2×20=1.5x
2.某县城出租车的收费标准是:起步价5元,超过3千米后,每行驶1千米
加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地付款17元,
知识点2:方案决策问题 4.张老师一个人带领若干名学生去凤凰古城旅游.甲旅行社:老师要全 票,学生享受半价优惠;乙旅行社:全部按全票的6折优惠.已知全票票价 为240元. (1)若有3名学生,则选择__乙___旅行社省钱; (2)若有7名学生,则选择__甲___旅行社省钱; (3)当有__4__名学生时,甲、乙两旅行社的收费一样.
那么甲ቤተ መጻሕፍቲ ባይዱ乙两地的距离应不超过(
)D
A.11千米
B.5千米
C.7千米
D.8千米
3.为了加强市民的节水意识,合理利用水资源,某市采用阶梯收费的调 控手段以达到节水的目的,该市自来水收费价目表如下:
如:若某户居民1月份用水8 m3,则应缴费2×6+3×(8-6)+5=23(元). (1)若用户4月份共用水9.5 m3,则需缴费多少元? (2)若该户居民某月缴费54元,则该户居民该月用水多少m3? 解 : (1)2×6 + 3×(9.5 - 6) + 5 = 12 + 10.5 + 5 = 27.5( 元 ). 答 : 需 缴 费 27.5 元.(2)设该户居民该月用水x m3,若用水10 m3,则缴费2×6+3×(10-6) +5=29(元)<54元,故该户居民用水 一定超过 10 m3.依题意,得2×6+ 3×(10-6)+5(x-10)+5=54,解得x=15.故该户居民该月用水15 m3.
2022七年级数学上册第三章一元一次方程章末复习作业课件新版新人教版20221208229
第三章 一元一次方程
章末复习(三) 一元一次方程
知识点一 一元一次方程及其解的概念及应用
1.下列方程中是一元一次方程的是( C )
A.3-x4 =2y-1
B.3x -4=x
C.4x-5=3x
D.5 x2+1=0 2
2.(永州中考)已知 x=2 是关于 x 的一元一次方程(a-2)x+2=0 的解,则 a 的
解:(1)设一个水瓶是x元,则一个水杯是(48-x)元, 根据题意,得3x+4(48-x)=152, 解得x=40. 答:一个水瓶是40元,一个水杯是8元
(2)甲商场所需费用为(40×5+8×20)×80%=288(元); 乙商场所需费用为5×40+(20-5×2)×8=280(元). 因为288>280,所以选择乙商场更合算
24 40 则 40+x=280. 答:从甲地到乙地的水路长与公路长分别为 240 km 和 280 km
13.(安徽中考)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当 地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲, 乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又 联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米, 按此速度完成这项隧道贯穿工程,甲,乙两个工程队还需联合工作多少天?
【核心素养】 15.(分类讨论与方程思想)某旅行社拟在暑假期间向学生推出“A景区一日游” 活动,收费标准如下:
人数m
0<m≤100
100<m≤200
m>200
收费标准
90
85
75
(元/人)
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学
生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组
章末复习(三) 一元一次方程
知识点一 一元一次方程及其解的概念及应用
1.下列方程中是一元一次方程的是( C )
A.3-x4 =2y-1
B.3x -4=x
C.4x-5=3x
D.5 x2+1=0 2
2.(永州中考)已知 x=2 是关于 x 的一元一次方程(a-2)x+2=0 的解,则 a 的
解:(1)设一个水瓶是x元,则一个水杯是(48-x)元, 根据题意,得3x+4(48-x)=152, 解得x=40. 答:一个水瓶是40元,一个水杯是8元
(2)甲商场所需费用为(40×5+8×20)×80%=288(元); 乙商场所需费用为5×40+(20-5×2)×8=280(元). 因为288>280,所以选择乙商场更合算
24 40 则 40+x=280. 答:从甲地到乙地的水路长与公路长分别为 240 km 和 280 km
13.(安徽中考)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当 地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲, 乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又 联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米, 按此速度完成这项隧道贯穿工程,甲,乙两个工程队还需联合工作多少天?
【核心素养】 15.(分类讨论与方程思想)某旅行社拟在暑假期间向学生推出“A景区一日游” 活动,收费标准如下:
人数m
0<m≤100
100<m≤200
m>200
收费标准
90
85
75
(元/人)
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学
生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组
人教版七年级上册(新)第三章《一元一次方程》说课课件(30张PPT)
本节课是在学生已具备的感性认识基础上,重点研究什么是方程,一元
一次方程和找相等关系列方程。通过对这一部分内容的学习,使学生认识到 方程是更方便、更有力的数学工具,从算术方法到代数方法是数学的进步, 让学生充分感受到方程作为刻画现实世界有效模型的意义,体会列方程中蕴 涵的“数学建模思想”。
2、教学目标分析
础.它一方面是对小学学段学习的有关算术方法解题和简单方程的运 用的进一步发展,也是今后学习二元一次方程组、一元二次方程、函 数等知识的基础,有承上启下的作用。
1、教材的地位和作用
《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程
的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学 模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在 解决问题中与他人合作的重要性,获得解决问题的经验.
(1)一台计算机已使用1700小时,预计每月再使用150小时, 经过多少月这台计算机的使用时间达到规定的检修时间2450小时? (2)用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5倍, 长方形的长、宽各应是多少? (3)某校女生占全校学生数的52%,比男生多80人,这个学校有多 少学生?
情感目标
程是刻画现实世界的一种有效的数学模型,初步体会建立
数学模型的思想。
3、教材重点、难点分析
知道什么是方程,一元一次方程,使学生理解问题情
境,探究情境中包含的数量关系,最终用方程来描
Hale Waihona Puke 重点述和刻画事物间的相等关系。
难点
思维习惯的转变, 从问题情境中找等量关系列方程
二、学情分析
学生刚刚进入中学,理性思维的发展还很有限,他们在知识经 验、心理品质等方面依然保留有小学生的特点:天真活泼,对新鲜 事物很感兴趣,具有强烈的求知欲,形象思维已经比较成熟,但抽 象思维能力还比较薄弱。
初中数学人教版七年级上册《第三章解一元一次方程(二)—去括号与去分母》课件
例 一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,
逆风飞行要3小时,求两城距离.
解:设飞机在无风时的速度为x km/h,
则在顺风中的速度为(x+24) km/h ,在逆风中的速度为(x-
根据题意,得
24)km/h.
17
6
+ 24 = 3( − 24).
解得 x=840.
若同时出发,则快者追上慢者时,快者用的时间=慢者用的时间.
3.航行问题
顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度.
顺风速度=无风速度+风速;逆风速度=无风速度-风速.
往返于A,B两地时,顺流(风)航程=逆流(风)航程.
甲、乙两运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往
返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A
点后,又立即转身跑向B点……若甲跑步的速度为5 m/s,乙跑步的速度为
4 m/s,则起跑后100 s内,两人相遇的次数为( B
A.5
B.4
C.3
100×2
解:设两人相遇的次数为x,依题意有
5+4
解得x=4.5,
因为 x为整数,
所以 x取4.
我们可以解决哪些实际问题呢?
例 一艘船从甲码头到乙码头顺流而行,用了 2 h;从乙码头返
回甲码头逆流而行,用了 2.5 h.已知水流的速度是 3 km/h,求
船在静水中的平均速度.
分析:等量关系为这艘船往返的路程相等,即
顺流速度___顺流时间___逆流速度___逆流时
=
×
×
间.
解:设船在静水中的平均速度为 x km/h,
兴和县师院附中七年级数学上册 第三章 一元一次方程单元复习课件 新版新人教版
第3章 一元一次方程
单元复习(三) 一元一次方程
考点一 一元一次方程及其解的概念
1.下列方程中是一元一次方程的是( C )
A.1-x2 =3y-2 B.1y -2=y
C.3x+1=2x
D.3x2+1=0
2.以下方程中 , 以x=-2为解的方程是〔 C〕
A.5x-3=6x-2 B.3x-2=2x C.2x-1=3x+1 D.2x+3=4x-2
=6(天),即需要 6 天完成
16.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生 产3种差别型号的电视机 , 出厂价分别为A种每台1500元 , B种每台2100元 , C种每台2500元. (1)假设家电商场计划用9万元同时购进两种差别型号的电视机共50台 , 请 你研究一下商场的进货方案 ; (2)假设商场销售一台A种电视机可获利150元 , 销售一台B种电视机可获利 200元 , 销售一台C种电视机可获利250元 , 那么为了使销售时获利最多 , 在 (1)中所求得的方案中 , 你选择哪种方案 ?
思考 : (4)中能把〞1.80”后面的〞0”去掉吗 ?
当堂练习
1.用四舍五入法按要求取近似值 : 〔1〕75 436〔精确到百位〕 75 436≈7.54×104 〔2〕0.785〔精确到百分位〕 0.785≈0.79 2、以下由四舍五入ห้องสมุดไป่ตู้到的近似数 , 各精确到哪一位 ?
〔1〕 600万 ; 〔2〕 7.03万 ;
解:x=11013
x-1 (4) 2
=1-x+4 3
;
解 : x=1
4-6x (5) 0.01
-6.5=0.002.-024x
-7.5.
解 : x=1
10.已知 y=3 是方程 6+14 (m-y)=2y 的解,求关于 x 的方程 2m(x -1)=(m+1)(3x-4)的解.
单元复习(三) 一元一次方程
考点一 一元一次方程及其解的概念
1.下列方程中是一元一次方程的是( C )
A.1-x2 =3y-2 B.1y -2=y
C.3x+1=2x
D.3x2+1=0
2.以下方程中 , 以x=-2为解的方程是〔 C〕
A.5x-3=6x-2 B.3x-2=2x C.2x-1=3x+1 D.2x+3=4x-2
=6(天),即需要 6 天完成
16.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生 产3种差别型号的电视机 , 出厂价分别为A种每台1500元 , B种每台2100元 , C种每台2500元. (1)假设家电商场计划用9万元同时购进两种差别型号的电视机共50台 , 请 你研究一下商场的进货方案 ; (2)假设商场销售一台A种电视机可获利150元 , 销售一台B种电视机可获利 200元 , 销售一台C种电视机可获利250元 , 那么为了使销售时获利最多 , 在 (1)中所求得的方案中 , 你选择哪种方案 ?
思考 : (4)中能把〞1.80”后面的〞0”去掉吗 ?
当堂练习
1.用四舍五入法按要求取近似值 : 〔1〕75 436〔精确到百位〕 75 436≈7.54×104 〔2〕0.785〔精确到百分位〕 0.785≈0.79 2、以下由四舍五入ห้องสมุดไป่ตู้到的近似数 , 各精确到哪一位 ?
〔1〕 600万 ; 〔2〕 7.03万 ;
解:x=11013
x-1 (4) 2
=1-x+4 3
;
解 : x=1
4-6x (5) 0.01
-6.5=0.002.-024x
-7.5.
解 : x=1
10.已知 y=3 是方程 6+14 (m-y)=2y 的解,求关于 x 的方程 2m(x -1)=(m+1)(3x-4)的解.
人教版七年级数学上学期 第三章《一元一次方程》全章小结精品课件
①每天每台机器生产量×台数=一天生产产品总数; ②每箱装产品个数×箱数+剩余数=一天生产产品总数. 题中给出量关系: 每天每台A型机器产量比B型机器产量多生产1个. 未知量很多,设谁为未知数?
情景探究
某家工厂有A型和B型两种机器生产同样的一种产品. 已知5台A型机器生产 一天的产品装满8箱后还剩4个,7台B型机器生产一天的产品装满11箱后 还剩1个,每台A型机器比B型机器一天多生产1个产品,每个箱子装产品 数固定,求每箱装多少个产品?
5. 对于数轴上不重合的两点A,B,给出如下定义:若数轴上存在一点M,通过比较线段AM和BM
的长度,将较短线段的长度定义为点 M 到线段 AB 的绝对距离. 若线段 AM 和 BM 的长度相等,
将线段 AM 或 BM 的长度定义为点 M 到线段 AB 的绝对距离.
(1)当数轴上原点为O,点A表示的数为-1,点B表示的数为5时,
3.下列解方程变形正确的是 ③ .
①由 x 1 1 x ,得 2x 1 3 3x .
3
2
②由 4x 1 y 4 ,得 12x 15 5y 4 .
5
3
③由 y 1 y 3y 1 y,得 3y 3 2y 3y 1 6y .
23 6
④由 x 2 3x 2 1,得 (2x 2)3x 2 4 .
2
4
-4 .
练习巩固
4. 解方程:3x 1 1 2x 3 .
7
3
x 67 23
5. 父亲和女儿现在的年龄之和是91,当父亲的年龄是女儿现在年龄的2倍的时候, 女儿的年龄是父亲现在年龄的 1,求女儿现在的年龄.
3
解:设女儿现在的年龄是x岁. 依题意有 x 1(91 x)91 x 2x .
情景探究
某家工厂有A型和B型两种机器生产同样的一种产品. 已知5台A型机器生产 一天的产品装满8箱后还剩4个,7台B型机器生产一天的产品装满11箱后 还剩1个,每台A型机器比B型机器一天多生产1个产品,每个箱子装产品 数固定,求每箱装多少个产品?
5. 对于数轴上不重合的两点A,B,给出如下定义:若数轴上存在一点M,通过比较线段AM和BM
的长度,将较短线段的长度定义为点 M 到线段 AB 的绝对距离. 若线段 AM 和 BM 的长度相等,
将线段 AM 或 BM 的长度定义为点 M 到线段 AB 的绝对距离.
(1)当数轴上原点为O,点A表示的数为-1,点B表示的数为5时,
3.下列解方程变形正确的是 ③ .
①由 x 1 1 x ,得 2x 1 3 3x .
3
2
②由 4x 1 y 4 ,得 12x 15 5y 4 .
5
3
③由 y 1 y 3y 1 y,得 3y 3 2y 3y 1 6y .
23 6
④由 x 2 3x 2 1,得 (2x 2)3x 2 4 .
2
4
-4 .
练习巩固
4. 解方程:3x 1 1 2x 3 .
7
3
x 67 23
5. 父亲和女儿现在的年龄之和是91,当父亲的年龄是女儿现在年龄的2倍的时候, 女儿的年龄是父亲现在年龄的 1,求女儿现在的年龄.
3
解:设女儿现在的年龄是x岁. 依题意有 x 1(91 x)91 x 2x .
人教版数学七年级上册第三章一元一次方程小结课件
3. 方程的解:使方程左右两边的值相等的未知数的值叫做方程
的解.
4. 解方程:求方程解的过程叫做解方程.
知识梳理
二、等式的性质
1. 等式的性质1:等式两边加 (或减) 同一个数 (或式子),结
果仍相等.如果 a=b,那么 a±c=b±c.
2. 等式的性质2:等式两边乘同一个数,或除以同一个不为
0 的数,结果仍相等.如果 a=b,那么 ac=bc;如果 a = b
移项,得 8x-18x= -9+10.
合并同类项,得 -10x=1.
系数化为1,得 x=
1
− .
10
19
D. −
10
2−1
,
2
深化练习
4
解方程:
−2
5
=2−
+3
.
2
解:去分母,得 2(x-2) = 20-5(x+3).
去括号,得
移项,得
2x-4 = 20-5x-15.
2x+5x = 20-15+4.
(c≠0),那么 = .
知识梳理
三、解一元一次方程的一般步骤
1. 去分母:方程两边都乘各分母的最小公倍数,别漏乘.
2. 去括号:注意括号前的系数与符号.
3. 移项:把含有未知数的项移到方程的左边,常数项移到方
程右边,移项注意要改变符号.
4. 合并同类项:把方程化成 ax = b(a≠0)的情势.
3(2x+1)-12 = 12x-(10x+1).
去括号,得
3 4 1
4 3 2
(2) [
6x+3-12 = 12x-10x-1.
6x-12x+10x = -1-3+12.
的解.
4. 解方程:求方程解的过程叫做解方程.
知识梳理
二、等式的性质
1. 等式的性质1:等式两边加 (或减) 同一个数 (或式子),结
果仍相等.如果 a=b,那么 a±c=b±c.
2. 等式的性质2:等式两边乘同一个数,或除以同一个不为
0 的数,结果仍相等.如果 a=b,那么 ac=bc;如果 a = b
移项,得 8x-18x= -9+10.
合并同类项,得 -10x=1.
系数化为1,得 x=
1
− .
10
19
D. −
10
2−1
,
2
深化练习
4
解方程:
−2
5
=2−
+3
.
2
解:去分母,得 2(x-2) = 20-5(x+3).
去括号,得
移项,得
2x-4 = 20-5x-15.
2x+5x = 20-15+4.
(c≠0),那么 = .
知识梳理
三、解一元一次方程的一般步骤
1. 去分母:方程两边都乘各分母的最小公倍数,别漏乘.
2. 去括号:注意括号前的系数与符号.
3. 移项:把含有未知数的项移到方程的左边,常数项移到方
程右边,移项注意要改变符号.
4. 合并同类项:把方程化成 ax = b(a≠0)的情势.
3(2x+1)-12 = 12x-(10x+1).
去括号,得
3 4 1
4 3 2
(2) [
6x+3-12 = 12x-10x-1.
6x-12x+10x = -1-3+12.
七年级数学上册第三章一元一次方程3.3解一元一次方程(二)—去括号与去分母课件(新版)新人教版
初中数学(人教版)
七年级 上册
第三章 一元一次方程
知识点一 解一元一次方程——去括号
定义 去括号 按照去括号法则,把方程中的括号去掉,这个 过程叫做去括号 去括号 法则 将括号外的因数连同它前面的符号看成一个整体,按照分配律与括号内各项相乘.括号外 的因数是正数,去括号后各项符号与原括号内相应的各项符号相同;括号外的因数是负数, 依据 乘法对加法的分配律
1 =-4- 1 =- 15 . a- a 4 4
点拨 本题第2个方程中含有一个字母常数,除用上述方法解题,也可把 字母常数看作已知数,在求得两方程的相同解后可得到关于这个字母常 数的方程,即可求得该字母常数的值.
题型三 选择适当的方法解一元一次方程 例3 用适当的方法解下列方程:
x 0.17 0.2 x =1; 0.7 0.03 1 1 2( x 1) x ( x 1) (2)x- = . 2 3 2
1 2 5 8
合并同类项,得-7x=-77.系数化为1,得x=11.
5 5 8 4 5 5 3 移项,得y+y+ y=1+ - . 8 4 2 21 3 2 合并同类项,得 y= .系数化为1,得y= . 8 4 7
(2)去括号,得y+ =1-y- y+ .
3 2
温馨提示 运用分配律去括号时,不要漏乘括号内任何一项.
1 a 1 a x4 3 x2 2
解析 解方程 -8=- ,
x4 3
x2 2
去分母,得2(x-4)-48=-3(x+2),
去括号,得2x-8-48=-3x-6, 移项、合并同类项,得5x=50, 系数化为1,得x=10. 把x=10代入方程4x-(3a+1)=6x+2a-1, 得4×10-(3a+1)=6×10+2a-1, 解得a=-4. 当a=-4时,
七年级 上册
第三章 一元一次方程
知识点一 解一元一次方程——去括号
定义 去括号 按照去括号法则,把方程中的括号去掉,这个 过程叫做去括号 去括号 法则 将括号外的因数连同它前面的符号看成一个整体,按照分配律与括号内各项相乘.括号外 的因数是正数,去括号后各项符号与原括号内相应的各项符号相同;括号外的因数是负数, 依据 乘法对加法的分配律
1 =-4- 1 =- 15 . a- a 4 4
点拨 本题第2个方程中含有一个字母常数,除用上述方法解题,也可把 字母常数看作已知数,在求得两方程的相同解后可得到关于这个字母常 数的方程,即可求得该字母常数的值.
题型三 选择适当的方法解一元一次方程 例3 用适当的方法解下列方程:
x 0.17 0.2 x =1; 0.7 0.03 1 1 2( x 1) x ( x 1) (2)x- = . 2 3 2
1 2 5 8
合并同类项,得-7x=-77.系数化为1,得x=11.
5 5 8 4 5 5 3 移项,得y+y+ y=1+ - . 8 4 2 21 3 2 合并同类项,得 y= .系数化为1,得y= . 8 4 7
(2)去括号,得y+ =1-y- y+ .
3 2
温馨提示 运用分配律去括号时,不要漏乘括号内任何一项.
1 a 1 a x4 3 x2 2
解析 解方程 -8=- ,
x4 3
x2 2
去分母,得2(x-4)-48=-3(x+2),
去括号,得2x-8-48=-3x-6, 移项、合并同类项,得5x=50, 系数化为1,得x=10. 把x=10代入方程4x-(3a+1)=6x+2a-1, 得4×10-(3a+1)=6×10+2a-1, 解得a=-4. 当a=-4时,
新人教版七年级数学上册第3章 一元一次方程《3.2 解一元一次方程(一)——合并同类项与移项》优质课件
三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产 多少台?
3.2 解一元一次方程(2)
学习目标
1、 学会用移项的方法解一元一次方程。 2、掌握“表示同一个量的两个不同的式子相
等”这个基本的相等关系,并能灵活运用它 列方程。
自 研自探
认真看课本P88-90页例4上面的内容: 1、看88页的问题2,问题中的相等关系是什么?如
最大量如何表示? • 4、如何列方程?思考云图中的问题. • 5、本题还有其他列方程的方法吗?
合作交流
• • 1、对子交流 • .自研自探中各问题的答案; • .对子用自己的语言互说:怎样根据题意
寻找数量关系。 • 小组交流:如何列一元一次方程解决实际
问题?
展示提升
• 例4完整的解题过程 • 备注:展示方法:先给学生留1分钟思考时
间,然后老师通过抽签决定展示人员(先 抽组号,再抽成员号),展示完不让本组 其他成员纠错, • 等点评时由其他组纠错点评并给以加分
达标训练
• 一: P91 第6题 第7题 • 二:甲比乙大15岁,5年前甲的年龄是乙的
年龄的2倍,乙现在年龄是多少岁?
日清反馈:
• 必做题: P91 第9题 第10题
3、2解一元一次方程(3)
学习目标
1、会用一元一次方程解决实际问 题。 2、会通过移项、合并同类项解一 元一次方程。
自研自探(10分钟)
• 按以下程序认真看课本P90页内容: • 1、例4属于什么类型的应用题? • 2、这类型的应用题该怎样设未知数? • 3、问题中的相等关系是什么?环保限制的
何表示这批图书的总数,如何列方程?思考云图中 的问题. 2、怎样移项,注意移项时符号的变化. 3、回答P89页的思考:在解方程时,移项起什么作 用? 4、仔细看例3,观察解题格式和步骤;分几步解方 程的?每步分别是什么?移项时应注意什么?
3.2 解一元一次方程(2)
学习目标
1、 学会用移项的方法解一元一次方程。 2、掌握“表示同一个量的两个不同的式子相
等”这个基本的相等关系,并能灵活运用它 列方程。
自 研自探
认真看课本P88-90页例4上面的内容: 1、看88页的问题2,问题中的相等关系是什么?如
最大量如何表示? • 4、如何列方程?思考云图中的问题. • 5、本题还有其他列方程的方法吗?
合作交流
• • 1、对子交流 • .自研自探中各问题的答案; • .对子用自己的语言互说:怎样根据题意
寻找数量关系。 • 小组交流:如何列一元一次方程解决实际
问题?
展示提升
• 例4完整的解题过程 • 备注:展示方法:先给学生留1分钟思考时
间,然后老师通过抽签决定展示人员(先 抽组号,再抽成员号),展示完不让本组 其他成员纠错, • 等点评时由其他组纠错点评并给以加分
达标训练
• 一: P91 第6题 第7题 • 二:甲比乙大15岁,5年前甲的年龄是乙的
年龄的2倍,乙现在年龄是多少岁?
日清反馈:
• 必做题: P91 第9题 第10题
3、2解一元一次方程(3)
学习目标
1、会用一元一次方程解决实际问 题。 2、会通过移项、合并同类项解一 元一次方程。
自研自探(10分钟)
• 按以下程序认真看课本P90页内容: • 1、例4属于什么类型的应用题? • 2、这类型的应用题该怎样设未知数? • 3、问题中的相等关系是什么?环保限制的
何表示这批图书的总数,如何列方程?思考云图中 的问题. 2、怎样移项,注意移项时符号的变化. 3、回答P89页的思考:在解方程时,移项起什么作 用? 4、仔细看例3,观察解题格式和步骤;分几步解方 程的?每步分别是什么?移项时应注意什么?
人教版七年级上册数学作业课件 第三章 一元一次方程 第4课时 电话计费问题
10.某医药公司要把药品运往外地,现有两种运输方式 可供选择: 方式一:使用快递公司的邮车运输,装卸收费 400 元, 另外每千米运输路程再加收 4 元; 方式二:使用铁路运输公司的火车运输,装卸收费 820 元,另外每千米运输路程再加收 2 元. 当运输路程是多少千米时,两种运输方式的费用相同? 当运输路程为 300 千米时,应选择哪种运输方式?
A.1 000 元 B.1 500 元 C.1 625 元 D.2 000 元
6.某种出租车的收费标准:起步价为 9 元,即行驶不 超过 2 km,需付 9 元车费;超过 2 km 后,按 2.5 元/km 收费(不足 1 km 按 1 km 计).若小亮乘坐该出租车从甲 地到乙地共付费 39 元,设他从甲地到乙地经过的路程 为 x km(x 为整数),则 x 的值是 14 .
ቤተ መጻሕፍቲ ባይዱ
解:设运输路程为 x 千米,则方式一的运输费用为 (4x+400)元,方式二的运输费用为(2x+820)元. 由 4x+400=2x+820,解得 x=210.所以当运输路程是 210 千米时,两种运输方式的费用相同. 当运输路程为 300 千米时, 方式一的运输费用为 4×300+400=1600(元), 方式二的运输费用为 2×300+820=1420(元). 因为 1600>1420,所以应选方式二.
第4课时 电话计费问题
知识点一 方案决策问题 1.某电信公司的一种计费标准如下:通话时间不超过
3 分钟,收话费 0.2 元,以后每分钟收话费 0.1 元.若 小张的话费仅有 2.4 元,则他能持续通话的最长时间 为( C ) A.23 分钟 B.24 分钟 C.25 分钟 D.26 分钟
2.下表是某地移动公司推出的两种话费收费方式:
人教部编版七年级数学上册《第三章 一元一次方程【全章】》精品PPT优质课件
解:设正方形的边长为x cm. 列方程 4x = 24.
(2)一台计算机已使用1700 h,预计每月 再使用150 h,经过多少月这台计算机的使用时 间达到规定的检修时间2450 h?
解: 设x月后这台计算机的使用时间达到2450 h, 那么在x月里这台计算机使用了150x h.
列方程
1700 + 150x = 2450
5. 列方程:
(1)某校七年级(1)班共有学生48人,
其中女生人数比男生人数的
4 5
多3人,这个班
有男生多少人?
解:设这个班有男生x人 x+( 4 x+3)=48 5
(2)把1400元奖学金按照两种奖项奖给22名 学生,其中一等奖每人200元,二等奖每人50 元,获得一等奖的学生有多少人? 解:设获得一等奖的学生有x人
(4)x的三分之一减y的差等于6
x y6
____3______________
(5)比a的3倍大5的数等于a的4倍
___3_a_+__5_=__4_a_______
(6)比b的一半小7的数等于a与b的和
1
___2__b_-_7_=__a_+__b_____
4. x=3,x=0,x=-2,各是下列哪个方程的解? (1)5x+7=7-2x; (2)6x-8=8x-4; (3)3x-2=4+x.
解:设甲种铅笔买了x支,乙种铅笔买了(20x)支,
0.3x+0.6(20-x)= 9
3.一个梯形的下底比上底多2 cm,高是5 cm, 面积是40 cm2,求上底.
解:设上底为x cm,
1(x+x+2)×5 = 40 2
4.用买10个大水杯的钱,可以买15个小水杯, 大水杯比小水杯的单价多5元,两种水杯的 单价各是多少元?
(2)一台计算机已使用1700 h,预计每月 再使用150 h,经过多少月这台计算机的使用时 间达到规定的检修时间2450 h?
解: 设x月后这台计算机的使用时间达到2450 h, 那么在x月里这台计算机使用了150x h.
列方程
1700 + 150x = 2450
5. 列方程:
(1)某校七年级(1)班共有学生48人,
其中女生人数比男生人数的
4 5
多3人,这个班
有男生多少人?
解:设这个班有男生x人 x+( 4 x+3)=48 5
(2)把1400元奖学金按照两种奖项奖给22名 学生,其中一等奖每人200元,二等奖每人50 元,获得一等奖的学生有多少人? 解:设获得一等奖的学生有x人
(4)x的三分之一减y的差等于6
x y6
____3______________
(5)比a的3倍大5的数等于a的4倍
___3_a_+__5_=__4_a_______
(6)比b的一半小7的数等于a与b的和
1
___2__b_-_7_=__a_+__b_____
4. x=3,x=0,x=-2,各是下列哪个方程的解? (1)5x+7=7-2x; (2)6x-8=8x-4; (3)3x-2=4+x.
解:设甲种铅笔买了x支,乙种铅笔买了(20x)支,
0.3x+0.6(20-x)= 9
3.一个梯形的下底比上底多2 cm,高是5 cm, 面积是40 cm2,求上底.
解:设上底为x cm,
1(x+x+2)×5 = 40 2
4.用买10个大水杯的钱,可以买15个小水杯, 大水杯比小水杯的单价多5元,两种水杯的 单价各是多少元?
相关主题