高等数学第一章函数与极限单元测试题

合集下载

高等数学习题-第1章-函数与极限(精品文档)

高等数学习题-第1章-函数与极限(精品文档)

高等数学第一章函数与极限一、选择题(共 191 小题)1、A下列函数中为奇函数的是; ;; 答( )()tan(sin )()cos()()cos(arctan )()A y x x B y x x C y x D y x x==+==--22422π2、A[][]下列函数中(其中表示不超过的最大整数),非周期函数的是; ;; 答( )x x A y x x B y x C y a bx D y x x ()sin cos ()sin ()cos ()=+==+=-π223、D关于函数的单调性的正确判断是当时,单调增;当时,单调减;当时,单调减;当时,单调增;当时,单调增;当时,单调增。

答( )y xA x y xB x y xC x y x x y xD x y x x y x=-≠=-≠=-<=->=-<=->=-1010101010101()()()()4、C答( ) ;;; 的是下列函数中为非奇函数 7373)( 1arccos )()1lg()( 1212)(2222+--++=+=++=+-=x x x x y D xxx y C x x y B y A x x5、A函数 是奇函数; 偶函数;非奇非偶函数;奇偶性决定于的值 答( )f x a xa xa A B C D a ()ln()()()()()=-+>06、Bf x x e e A B C D x x ()()()()()()()=+-∞+∞-在其定义域,上是有界函数; 奇函数;偶函数; 周期函数。

答( ) 7、D设,,,则此函数是周期函数; B单调减函数;奇函数 偶函数。

答( ) f x x x x x A C D ()sin sin ()()();()=-≤≤-<≤⎧⎨⎪⎩⎪330ππ8、C设,,,则此函数是奇函数; 偶函数;有界函数; 周期函数。

答( )f x x x x x A B C D ()()()()()=--≤≤<≤⎧⎨⎪⎩⎪3330029、Bf x x A B C D ()(cos )()()()()()=-∞+∞333232在其定义域,上是最小正周期为的周期函数; 最小正周期为的周期函数;最小正周期为的周期函数; 非周期函数。

高等数学(上)第一章练习题

高等数学(上)第一章练习题

一、选择题1.下列函数中,无界函数为( ).(A) sin y x =; (B) tan y x =; (C) arcsin y x =; (D) arctan y x =. 2. 将函数()22f x x =--表示为分段函数时,()f x =( ).(A) 4,0,0x x x x ->⎧⎨<⎩ ; (B) 4,2,2x x x x -≥⎧⎨<⎩ ; (C) 4,04,0x x x x -≥⎧⎨+<⎩ ; (D) 4,24,2x x x x -≥⎧⎨+<⎩.3.函数31()31x x f x -=+为( ).(A) 偶函数; (B) 奇函数; (C) 非奇非偶函数; (D) 既是奇又是偶函数. 4.若()f x 是奇函数,()g x 是偶函数,则[()]f g x 为( ).(A) 偶函数; (B) 奇函数; (C) 非奇非偶函数; (D) 不确定.5.设221,0()1,0x x x f x x x ⎧++≥⎪=⎨+<⎪⎩ ,则当0x <时,[()]f f x =( ).(A) 222(1)(1)1x x ++++; (B) 22(1)1x x +++;(C) 222(1)(1)1x x x +++++; (D) 222(1)(1)1x x x +++++.6. 32lim 1knn e n -→∞⎛⎫+= ⎪⎝⎭,则k =( ).(A)32; (B) 23; (C) 32-; (D) 23-. 7.若0x →时,()f x 为无穷小,且()f x 是比2x 高阶的无穷小,则20()limsin x f x x→=( ).(A) 0; (B) 1; (C) ∞; (D)12.8.函数()f x =( ).(A) 1; (B) 2; (C) 3; (D) 0.9.当0x →时,( ).(A) 2x 与1cos x -是等价的无穷小; (B) 2x 与1cos x -是同阶的无穷小; (C) 2x 是比1cos x -高阶的无穷小; (D) 2x 是比1cos x -低阶的无穷小. 10.当0x →时,与x 等价的无穷小函数是( ).(A) 2x ; (B) 2x ; (C) 3sin x x +; (D) 22x x +.二、填空题 1.设1,||1()0,||1x f x x ≤⎧=⎨>⎩,则[()]f f x = .2.设(),[()]x f x e f g x x ==,则()g x = .3.若0()limx f x a x→=,(a 为常数),则0lim ()x f x →=______________.4.曲线3221x y x =+的渐近线方程为 .5. 极限22lim 1x x x x →∞+⎛⎫=⎪+⎝⎭. 6. 极限0(1)limcos 1x x x e x →-=- . 7.当1x →-时,2ax x b -+与1x +为等价无穷小,则a = ,b = . 8.若()f x 处处连续,且(1)2f =,则01lim [ln(1)]x f x x→+= . 9.设2sin ,0(),0xx f x x x a x ⎧>⎪=⎨⎪+≤⎩,若()f x 在0x =处连,则a = .10.要使1cos ()xf x x-=在0x =处连续,应补充定义(0)f = .三、综合题 1.求极限111lim 1223(1)n n n →∞⎛⎫+++⎪⋅⋅+⎝⎭ . 2.求极限222111lim (1)(2)n n n n →∞⎛⎫+++⎪+⎝⎭. 3.求极限n 4.设11,,1,2,n a a n +=== ,证明数列极限存在并求此极限.5.已知函数142sin ()||1xx e x f x x e ⎛⎫+ ⎪=+ ⎪ ⎪+⎝⎭,问0lim ()x f x →是否存在?6.用夹逼准则求01lim x x x +→⎡⎤⎢⎥⎣⎦. 7.求极限332lim 34sin x x x x →∞++. 8.求极限limx . 9.求极限lim )x x →+∞.10.求极限21lim (1cos)x x x →∞-. 11.求极限20(1cos )lim (1)sin x x x x e x→--. 12.求极限3230ln(1)tan lim1x x x x e -→+- . 13.求极限sin lim2x x xx→∞+. 14.求极限0x →求极限lim x x →∞.16.求极限0lim x +→. 17.求极限123lim 21x x x x +→∞+⎛⎫⎪+⎝⎭.18.求极限2lim ()()xx x x a x b →∞⎛⎫⎪-+⎝⎭. 19.求极限21lim cos x x x →∞⎛⎫ ⎪⎝⎭. 20. 已知21lim ()01x x x ax b x →∞++--=-,求a 与b 的值 .21. 已知20()1sin lim()2x f x xx x→--=,求0lim ()x f x →.22.讨论函数2()lim 1nxnxn x x e f x e →∞+=+ 的连续性.23.已知,0()1,02x x f x ae x <=⎨⎪≥⎪⎩ ,求a 为何值时,()f x 在0x =处连续.24.设(4),0()sin 10,0x x ae be x f x xx -⎧++≠⎪=⎨⎪=⎩,确定,a b 使()f x 在0x =处连续. 25.指出函数()f x =的所有间断点,并判别其类型.26.设函数()f x 在[,]a b 连续,且()a f x b ≤≤,[,]x a b ∈.证明:存在[,]a b ξ∈,使()f ξξ=成立.27.函数()f x 对一切12,x x 满足1212()()()f x x f x f x +=+,且()f x 在0x =处连续. (1)求(0)f ;(2)证明:函数()f x 在(,)-∞+∞连续.28.函数()f x 在[0,1]连续、非负且满足(0)(1)0f f ==,证明:对任意数(0,1)α∈,存 在0[0,1]x ∈使00()()f x f x α=+成立.29.设函数()f x 在[0,2]a 连续,且满足(0)(2)f f a =,证明:至少存在一点[0,]a ξ∈使()()f f a ξξ=+成立.30.设函数()f x 在[,]a b 连续,12a x x b <<<,证明:存在点(,)c a b ∈,使112212()()()()t f x t f x t t f c +=+成立.其中12,0t t >.一、选择题1. B ;2. B ;3. B ;4. A ;5. A ;6. C ;7. A ;8. C ;9. B ; 10. C. 二、填空题1. 1;2. ln x ;3. 0;4. 2y x =;5. 12e ; 6. 2-; 7. 1,0a b =-=; 8. 2; 9. 1a =; 10. 0. 三、综合题 1.解:11111111(1)()()1223(1)2231n n n n +++=-+-++-⋅⋅++ 111n =-+ ∴111lim 11223(1)n n n →∞⎛⎫+++= ⎪⋅⋅+⎝⎭ . 2.解:由于2222211111(2)(1)(2)n n n n n n n ++≤+++≤+ ,又2211lim lim 0(2)4n n n n n n →∞→∞++==,根据夹逼准则 222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. 3.3≤=lim 33n n →∞==,根据夹逼准则3n =.4.解:102a <=,假设对n k = 成立,即02k a <<成立,则当1n k =+ 时,102k a +<=<=,由数学归纳法知02,1,2,n a n <<= ,即数列{}n a 有界;又1n n n a a a +-=2=0=>,即数列{}n a 单调,所以收敛. 设极限为a ,则由1n a +=n →∞得a =2a =.5.解:14002sin lim ()lim 1x x x x e x f x x e ++→→⎛⎫+ ⎪=+ ⎪ ⎪+⎝⎭,01lim x x+→=+∞ ,1400lim ,lim xx x x e e ++→→∴=+∞=+∞,而1144434000442212lim lim lim 011111x xxxxxx x x xx x eee e e e e e e +++→→→+++===+++. 0lim ()1x f x +→∴=,14002sin lim ()lim 1xx x xe xf x x e --→→⎛⎫+ ⎪=- ⎪ ⎪+⎝⎭,01lim x x -→=-∞ ,1400lim lim 0x x x x e e --→→∴==, 0lim ()1x f x -→∴=. 进而知 0lim ()x f x →存在且为1. 6.解:当0x ≠时1111x x x ⎡⎤-<≤⎢⎥⎣⎦ ,所以当0x >时有111x x x ⎡⎤-<≤⎢⎥⎣⎦, 又00lim (1)lim 11x x x ++→→-==,故01lim 1x x x +→⎡⎤=⎢⎥⎣⎦.7.解:3333212lim lim 4sin 34sin 3x x x x x x x x →∞→∞++=++13=. 8.解:limlimx x =02t →=. 9.解:lim )lim x x x →+∞→+∞=lim x →+∞=1arcsin26π==. 10.解:由于x →∞时,221111cos ~22x x x ⎛⎫ ⎪⎝⎭-=,所以 222111lim (1cos)lim 22x x x x x x →∞→∞-=⋅=.11.解:由于0x →时,21cos ~2x x - ,22sin ~x x ,1~xe x -.所以 22200(1cos )12limlim (1)sin ()2x x x x x x x e x x x →→⋅-==---⋅.12.解:由于0x →时,tan ~x x ,22ln(1)~x x +,3331~(3)x e x ---, 所以 3223300ln(1)tan 1limlim 331x x x x x x x x e-→→+⋅==---. 13.解:sin 1sin 1limlim 2222x x x x x x x →∞→∞+⎛⎫=+= ⎪⎝⎭. 14.解:3300011lim lim lim ln(12)ln(12)ln(12)x x x x x e e x x x →→→-=++++00132lim lim 2212x x x xx x →→-=+=.15.解:2lim lim x x x x →∞→∞⎛⎫= ⎪ ⎪⎝⎭2lim 1x x →∞⎛⎫= ⎪⎪⎝⎭2lim 1x x →∞⎛⎫- ⎪ ⎪⎝⎭221lim 3x x x →∞⎛⎫=⎪⎝⎭221lim 3x x x →∞⎛⎫-- ⎪⎝⎭23=. 16.解:0lim lim x x ++→→=01lim 2x +→=201lim2x +→=0=. 17.解:212(1)1221232lim lim 12121x x x x x x x e x x +++⋅+→∞→∞+⎛⎫⎛⎫=+= ⎪ ⎪++⎝⎭⎝⎭.18.解:22ln lim 1()()()()2lim lim ()()x xx x x x x a x b x a x b x x x eex a x b →∞⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞⎛⎫⎪== ⎪-+⎝⎭2()2lim a b x abxa bx ax bx abx ee -+--+-→∞==.19.解:2211(cos 1)cos 111lim coslim 1cos 1x x x xx x x x ⋅-⋅-→∞→∞⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭由于222111lim(cos1)lim()22x x x x x x →∞→∞-⋅=-⋅=-,所以2121lim cos x x ex -→∞⎛⎫==⎪⎝⎭20. 解:2211()(1)11x x x x ax b x ax b x x ++++-+---=-- 2(1)(1)11a x a b x b x -++-++=-∴当且仅当 10a -= 且10a b +-=时,21lim ()01x x x ax b x →∞++--=-, 解得1a =,2b =. 21.解:00sin ()1sin lim[()1]lim x x xf x xx f x x xx→→----=⋅ 20()1sin lim[]x f x x x x x →-=-⋅200()1sin lim[]lim 0x x f x xx x x →→-=-⋅=,sin sin lim ()lim[(()1)1]x x x xf x f x x x→→∴=--++ 00sin sin lim[()1]lim(1)2x x x x f x x x →→=--++=. 22.解:先给出分段表达式2,0(),0x x f x xx ⎧≥=⎨<⎩. 当 (0,)x ∈+∞ 时,2()f x x = 连续,当 (,0)x ∈-∞时,()f x x =连续;又(0)0f =,2lim ()lim 0x x f x x ++→→==,00lim ()lim 0x x f x x --→→==,故在0x =处()f x 也连续,从而在(,)-∞+∞内()f x 连续.23.解:(1)()f x 定义域为(,)-∞+∞;(2)由于(0)2a f =,001lim ()lim 22xx x a f x a e ++→→=⋅=,lim ()lim x x f x --→→=02sin 2lim 1x xx-→-==-,∴2a =-时,()f x 在0x = 处连续.24.解:由于(0)10f =,004lim ()lim sin x x x x ae be f x x-→→++=,要使 ()f x 在0x =处连续,首先0lim ()x f x →存在,故有lim(4)40x xx ae bea b -→++=++=,从而 004lim ()lim sin x x x x ae be f x x -→→++=0lim sin x x x ae be a bx-→+--=0(1)(1)lim x x x a e b e x -→-+-=00(1)(1)lim lim x x x x a e b e a b x x-→→--=+=- 可见要使()f x 在0x =处连续,,a b 应满足410a b a b +=-⎧⎨-=⎩,解得3,7a b ==-.25.解:sin |1|()(1)(3)x x f x x x x ⋅-==--, 间断点有三个,分别为0x =,1,3x x ==,0000s i n |1|s i n |1|11l i m ()l i m l i m l i m l i m (1)(3)133x x xx x x x x x f x x x x x x x →→→→→⋅--==⋅⋅=---- , 11sin (1)sin1lim ()lim (1)(3)2x x x x f x x x x --→→-⋅-==--,11sin (1)sin1lim ()lim (1)(3)2x x x x f x x x x ++→→⋅-==---, 而33sin lim ()lim(3)x x xf x x x →→==∞-,所以0x =是可去间断点,1x =是跳跃间断点,而3x =为无穷间断点.26.证明:构造辅助函数()()g x f x x =-,则()g x 在[,]a b 连续,由已知条件知()()0g a f a a =-≥,()()0g b f b b =-≤. 若()0g a =,则取a ξ=;若()0g b =,则取b ξ=;若()0g a >而()0g b <,则在[,]a b 上函数()g x 满足零点定理条件, 从而存在(,)a b ξ∈,使()0g ξ=即()f ξξ=成立. 27.解:(1)在()()()f x x f x f x +=+中,取0x x ==,得(0)(0)(0f f f =+,故(0)0f =.(2)由()f x 在0x =处连续知:0lim ()(0)0x f x f ∆→∆==.任取0(,)x ∈-∞+∞,由条件知00()()()f x x f x f x +∆=+∆.从而0000lim ()()lim ()()x x f x x f x f x f x ∆→∆→+∆=+∆=,故在0x 处函数()f x 连续,由0x 的任意性知(2)成立. 28.证明:任取(0,1)α∈,若()0f α=,则由条件(0)0f =,可取00x = [0,1]∈,使得(0)(0)f f α=+; 若(1)0f α-=,则由(1)0f =,可取01x α=-[0,1]∈使得(1)(1)f f ααα-=-+;若()0f α≠且(1)0f α-≠,由非负性有()0f α>,(1)0f α->, 令()()()g x f x f x α=+-,则()g x 在[0,1]α-连续, 又(0)(0)g f α=+(0)f -()0f α=>,(1)(1)(1)(1)0g f f f ααααα-=-+--=--<,由零点定理,存在0(0,1)[0,1]x α∈-⊂使0()0g x =,即00()()f x f x α=+成立. 29.解:令()()()F x f x f x a =-+,则()F x 在[,]a b 连续,且(0)(0)()F f f a =-,()()(2)()(0)F a f a f a f a f =-=-.若(0)()f f a =,则取0ξ=或a ξ=均能使()()f f a ξξ=+成立;若(0)()f f a ≠,则(0)()0F F a ⋅<,由零点定理知,至少存在一点(0,)a ξ∈使()0F ξ=,即()()f f a ξξ=+.总之结论成立.30.解:函数()f x 在[,]a b 连续,故在12[,]x x 上连续. 于是在12[,]x x 上()f x 必有最小值m ,最大值M .第一章 函数与极限11 从而有1()m f x M ≤≤,1111()t m t f x t M ≤≤, 2()m f x M ≤≤,2222()t m t f x t M ≤≤, 112212()()t f x t f x m M t t +≤≤+. 由介值定理知,至少存在一点12(,)c x x ∈⊂(,)a b 使得112212()()()t f x t f x f c t t +=+, 即112212()()()()t f x t f x t t f c +=+.。

高数第一章 练习题

高数第一章  练习题

第一章 函数、极限与连续1.下列各极限正确的是( ) A.e xx x =+→)11(lim 0B.e xx x =-→)11(lim 0C.11sin lim =∞→x x x D.11sin lim 0=→xx x 2.下列极限中,正确的是( ) A.cot 0lim(1tan )x x x e →+= B.01lim sin 1x x x→= C.sec 0lim(1cos )xx x e →+= D.1lim(1)nn n e →∞+=3.若1112()1xxe f x e-=+,则0x =是()f x 的( )A.可去间断点B.跳跃间断点C.无穷间断点D. 连续点 4.下列极限中,正确的是( )A.22sin lim =∞→x x xB.1arctan lim =∞→xx x C.∞=--→24lim22x x x D.1lim 0=+→x x x 5.若函数⎪⎪⎩⎪⎪⎨⎧<-=>=0)31ln(1020sin )(x x bx x x x axx f 为连续函数,则,a b 满足( )A.2,a b =为任何实数B.21=+b aC.32,2a b ==- D.1==b a6.当0→x 时,x x sin 2-是关于x 的 ( ) A.高阶无穷小 B.同阶但不是等价无穷小C.低阶无穷小D.等价无穷小7.若21)2(lim 0=→x xf x ,则=→)3(lim0x f xx ( ) A.21B.2C.3D.318.若2)2(lim0=→x x f x ,则=∞→)21(lim xxf x ( ) A.41 B.21C.2D.4 9.0x →时,2(1)x e ax bx -++是比2x 高阶无穷小,则( ) A. 1,12a b == B. 1,1a b == C. 1,12a b =-= D. 1,1a b =-=10.设12a ≠,则21lim ln _______(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦11.若0sin lim(cos )5xx xx b e a→-=-,则_______,______.a b == 12.已知当0x →时,123(1)1ax +-与cos 1x -时等价无穷小,则常数___.a =13.已知0→x 时,)cos 1(x a -与x x sin 是等价无穷小,则=a .14.设3214lim1x x ax x b x →---+=+,则______,______.a b == 15.设2lim()3xx x c x c→∞+=-,则________c =. 16.求下列函数的极限(1)lim x →-∞(2)01cos3limtan x xx x→- (3)201lim 1cos x x →- (4)3lim()1x x x x +→∞+ 17.求极限20lim(13)x xx x -→-18.判断函数21arctan 0()0,00ln(1)x x f x x x x x ⎧⎪<⎪⎪==⎨⎪>+⎪⎪⎩是否在0x =处连续?19.设函数10sin(),0x x x f x x x e αβ⎧>⎪=⎨≤⎪+⎩,根据α和β不同取值,讨论()f x 在0x =处的连续性?20.求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.21.求函数xxx f sin )(=的间断点,并判断其类型. 22.已知02x →=,求0lim ()x f x →. 23.设()f x 在[],a b 上连续,()()f a f b =,证明:至少存在[]0,x a b ∈,使00()()2b af x f x -=+. 24.证明:方程sin x a x b =+(其中0,0a b >>)至少有一个正根,并且它不超过a b +.。

第一章 高等数学(理专)题库函数与极限试题库1

第一章 高等数学(理专)题库函数与极限试题库1

第一章 函数与极限 试题库一1.填空题(1) 复合函数)1sin(2e +=x y 的复合过程为 .(2) 复合函数1lnsine +=x y 的复合过程为 .(3) 函数)1lg(5-+-=x x y 的定义域为 .(4) 设211x x x f +=⎪⎭⎫ ⎝⎛,则=)(x f . (5) =-→xx x πsin lim π . (6) =⎪⎭⎫ ⎝⎛++∞→1221lim x x x .(7) 当∞→x 时,函数)(x f 与x1是等价无穷小,则=∞→)(2lim x xf x . (8) 已知22e 1lim =⎪⎭⎫ ⎝⎛+∞→xx x k ,则=k . (9) 函数331--=x x x y 的间断点为 . (10) 设函数⎩⎨⎧>+≤=,0 ,,0 ,e )(x x a x x f x 在点0=x 处的连续,则=a . 2.选择题(1) 函数43123+-+=x x x y 的间断点为( ). A. 0,1;B.0,2;C.1,2;D.0,1,2.(2) 函数1cos 2++=x x y 的奇偶性为( ).A.奇函数;B. 偶函数;C. 非奇非偶函数;D.不确定.(3) 函数)2ln(92+-=x x y 的定义域为( ). A. )3,2(-; B.]3,1()1,2(--- ;C ]3,3[-.; D. ]3,1()1,2( -.(4)函数)3ln(1x xy +=的定义域为( ).A. ),0()0,(+∞-∞ ;B.),0(+∞;C.),0()0,3(+∞- ;D. ),3(+∞-.(5) 函数3sin x y =的图形( ).A.关于原点对称;B. 关于x 轴对称;C.关于y 轴对称;D.关于直线x y =对称.(6) 函数)(x f y =在点0x 处有定义,是极限)(lim 0x f x x →存在的( ). A.充分条件; B.必要条件;C.充分必要条件 ; D. 无关条件.(7) 极限xx x 1sin lim ∞→等于( ). A.0;B.1;C.∞;D.不确定.(8) 当∞→x 时,下列函数中为无穷小的是( ). A.x 1; B. 11-x;C.12+x ; D.x 2. (9) 下列等式成立的是( ). A. 1sin lim 20=→x x x ;B. 1sin lim 0=→x x x ;C. 1sin lim 20=→x x x ;D. 1sin lim =∞→xx x . (10) 极限xx x x sin lim 20-→等于( ). A.0; B.1;C.1-; D.∞.(11) 已知2e 1lim =⎪⎭⎫ ⎝⎛-∞→x x x a ,则常数a 等于( ). A.2-; B.2;C.21-; D. 21. (12) 设函数⎪⎩⎪⎨⎧=+≠=0,2,0,1sin )(x a x x x x f 在点0=x 处连续,则常数a 等于( ). A.2; B.1;C 1-; D. 2-.(13) 设函数⎪⎩⎪⎨⎧≥<<+≤+=1,,10 ,0,2)(2x bx x a x x x x f 在点),(+∞-∞内连续,则常数b a ,分别等于( ).A.0,0;B.1,1;C 2,3; D.3,2.(14) 设函数11)(+-=x x x f ,则点1=x 是函数)(x f 的( ). A.零点; B.连续点;C 可去间断点; D. 不可去间断点.(15) 设函数)0(sin )(≠=x x kx x f 在点0=x 处连续,且21)0(-=f ,则常数k 等于( ). A.21-; B. 21;C.2-; D.2. (16) 如果函数21u y -=与x u lg =构成复合函数,则x 的取值区间为( ).A. ),0(+∞;B.⎪⎭⎫ ⎝⎛∞+101;C.)10,0(;D. ⎥⎦⎤⎢⎣⎡10,101.(17) 设函数 ,, ,⎪⎩⎪⎨⎧-=-≠+--=11132)(2x a x x x x x f 在1-=x 处连续,则=a (). A. 0;B. 2-;C. 4-;D .2.(18) 函数)1ln()1(1)(2+-=x x x f 的不连续点( ).A. 仅有一点1=x ;B. 仅有一点0=x ;C. 仅有一点1-=x ;D. 有两点0=x 和1=x .(19) 函数)1ln(1)(-=x x f 的连续区间是( ).[][)[)∞+∞+∞+∞+, ,,,, ,,,1 .D );1( .C ; )2()21( .B ;221 .A .(20) 设 0,0,1arctan )(22⎪⎩⎪⎨⎧=≠=x a x xx x f ,在0=x 处连续,则=a ( ).A. 0;B. ∞;C. 1;D. 2π.3.解答题(1) 设1)1(42+=+x x f ,求)(x f .(2) 设53)1(2+++=+x x x f ,求)(x f .(3) 求函数x xy -=12的反函数.(4) 求函数x xy -+=11的反函数.(5) 求45143lim 223+++-→x x x x x .(6) 求x x xx x cos 2sin lim 22-+∞→.(7) 求1231lim +∞→⎪⎭⎫ ⎝⎛+x x x .(8) 求x x x x ⎪⎭⎫ ⎝⎛++∞→23lim . (9) 求112lim 2423-+-+-∞→x x x x x x . (10) 求ααα--→x x x tan tan lim. (11) 求2411lim 0-+-+→x x x . (12) 设⎪⎩⎪⎨⎧≥+<=,0 ,2,0 ,tan )(x x x x kx x f 在点0=x 处连续,求k . (13) 证明方程033=++x x 在区间)2,2(-内至少有一个实根.(14) 证明方程033=-+x x 至少有一个正根.(15).证明方程12=⋅x x 在区间)1 ,0(内至少有一个根.。

高等数学测试题第一章 函数与极限 单元测试题

高等数学测试题第一章 函数与极限  单元测试题

第一章 函数与极限满分:100分 考试时间:150分钟一、选择题(每小题2分,共40分)1.设当0x →时,2(1cos )ln(1)x x -+是比sin n x x 高阶的无穷小,而sin n x x 是比21x e -()高阶的无穷小,则正整数n 为( )A .1B .2C .3D .42.设函数21()lim 1nn x f x x →∞+=+,则下列结论成立的是( ) A .()f x 无间断点 B .()f x 有间断点1x =C .()f x 有间断点0x =D .()f x 有间断点1x =-3.1(23x n n ==,,)是函数1()f x x x ⎡⎤=⎢⎥⎣⎦的([]为取正整数)( ) A .无穷间断点 B .跳跃间断点 C .可去间断点 D .连续点4.设()232x xf x =+-,则当0x →时( )A .()f x 与x 是等价无穷小量B .()f x 与x 是同阶但非等价无穷小量C .()f x 与比x 较高阶的无穷小量 D.()f x 与比x 较低阶的无穷小量5.设数列的通项为2(/1/n n n n x n n ⎧+ ⎪=⎨ ⎪⎩为奇数为偶数, 则当n →∞时,n x 是( ) A .无穷大量 B .无穷小量 C .有界变量 D .无界变量6.设220()0x x f x x x x ⎧ ≤⎪=⎨+ >⎪⎩, 则( ) A .220()()0x x f x x x x ⎧ - ≤⎪-=⎨-+ >⎪⎩ B .22()0()0x x x f x x x ⎧-+ <⎪-=⎨ - ≥⎪⎩ C .220()0x x f x x x x ⎧ ≤⎪-=⎨- >⎪⎩ D .220()0x x x f x x x ⎧- <⎪-=⎨ ≥⎪⎩ 7.设sin 2340()=sin d ()xf x t tg x x x =+⎰,,则当0x →时,()f x 是()g x 的( )A .等价无穷小B .同阶但非等价的无穷小C .高阶无穷小D .低阶无穷小8.当0x →时,变量211sin x x是( ) A .无穷小量 B .无穷大量C .有界的但不是无穷小D .无界的但不是无穷大9.设220ln(1)()lim 2x x ax bx x →+-+=,则( ) A .1a b ==-,5/2 B .0a b ==-,2C .0a b ==-,5/2D .1a b ==-,210.cos ()sin ()x f x x x e x =-∞<<+∞是( )A .有界函数B .单调函数C .周期函数D .偶函数11.函数()sin f x x x =( )A .当x →∞时为无穷大量B .在()-∞+∞,内有界C .在()-∞+∞,内无界D .当x →∞时有有限极限12.对于函数sin(tan )tan(sin )(0)/2y x x x x ππ=- ≤≤=,是( )A .连续点B .第一类间断点C .可去间断点D .第二类间断点13.单调有界函数若有间断点,则其类型为( )A .必有第一类间断点B .必有第二类间断点C .第一类或第二类间断点D .不能确定14.已知()f x 和()g x 在0x =点的某领域内连续,且0x →时()f x 是()g x 的高阶无穷小,则当0x →时,0()sin d xf t t t ⎰是0()d xtg t t ⎰的( ) A .低阶无穷小 B .高阶无穷小C .同阶但不等价无穷小D .等价无穷小15.下列极限存在的是( )A .0sin 1lim arctan x x x x →B .0sin 1lim arctan x x x x→ C .0sin 1lim arctan x x x x → D .0sin 1lim arctan x x x x→ 16.下列命题中正确的是( )A .()f x 为有界函数,且lim ()()0x f x α=,则lim ()0x α=B .()x α为无穷小量,且()lim 0()x a x αβ=≠,则lim ()x β=∞ C .()x α为无穷大量,且lim ()()x x a αβ=,则lim ()0x β=D .()x α为无界函数,且lim ()()0f x x α=,则lim ()0f x =17.设{}{}{}n n n a b c ,,均为非负数列,且lim 0lim 1lim n n n n n n a b c →∞→∞→∞===∞,,,则必有( ) A .n n a b <对任意n 成立 B .n n b c <对任意n 成立C .极限lim n n n a c →∞不存在D .极限lim n n n b c →∞不存在 18.设()f x 在()-∞+∞,内有定义,且1()0lim ()()00x f x f x a g x x x →∞⎧ ≠⎪==≤⎨⎪ =⎩,,则( ) A .0x =必是()g x 的第一类间断点B .0x =必是()g x 的第二类间断点C .0x =必是()g x 的连续点D .()g x 在0x =处的连续性与a 的取值有关19.函数2sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间有界( ) A .(10)-, B .(01), C .(12), D .(23),20.设函数/(1)1()1x x f x e -=-,则( )A .01x x ==,都是()f x 的第一类间断点B .01x x ==,都是()f x 的第二类间断点C .0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点D .0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点二、填空题(每小题3分,共60分)1.已知函数f (x )的定义域为[0,4],则函数ψ(x )=f (x+1)+f (x -1)的定义域为__________。

高等数学(上)复习题

高等数学(上)复习题

高等数学〔上〕复习题第一章 函数与极限一、单项选择题1.函数y=5-x +ln(x -1)的定义域是( )A. (0,5)B. (1,5)C. (1,5)D. (1,+∞) 2.函数f(x)=21xx -的定义域是〔 〕A.〔-∞,+∞〕B.〔0,1〕C.〔-1,0〕D.〔-1,1〕3.函数45)(2+-=x x x f 的定义域为 〔 〕A. (]1,∞-B. [)+∞,4C. (][)+∞⋃∞-,41,D. ()()+∞⋃∞-,41, 4.函数y=x 1-+arccos21x +的定义域是( ) A. x<1 B.-3≤x ≤1C. (-3,1)D.{x|x<1}∩{x|-3≤x ≤1}5.函数y=2x xln -的定义域是〔 〕A. (-∞,0)B. (2,+∞)C. (0,2)D. (-∞,0) ∪ (2,+∞)6.以下函数中为奇函数的是〔 〕A.y=cos 3xB.y=x 2+sinxC.y=ln(x 2+x 4) D.y=1e 1e x x +-7.函数f(x)=1+xsin2x 是〔 〕 A.奇函数B.偶函数C.有界函数D.非奇非偶函数8.函数y=2a a xx -+(a>0,a ≠1)是〔 〕A.奇函数 B.非奇非偶函数 C.偶函数 D.奇偶性取决于a 的取值9.当x →0时,以下无穷小量与x 为等价无穷小的是〔 〕A. sin 2xB. ln(1+2x)C. xsin x 1D.x 1x 1--+10.当0x →时,2x+x 2sinx1是x 的〔 〕 A.等价无穷小 C.高阶无穷小11.设函数)(x f y =在0x 处可导,)()(00x f h x f y -+=∆,则当0→h 时,必有 A.dy 是h 的等价无穷小; B.dy 是h 的高阶无穷小;C.dy y -∆是比h 高阶的无穷小;D.)(x f dy y -∆是h 的同阶无穷小;12.设2)(,1)(2x x g ex f x =-=-,则当0→x 时〔 〕A.)(x f 是)(x g 的高阶无穷小 B.)(x f 是)(x g 的低阶无穷小C.)(x f 是)(x g 的等价无穷小 D.)(x f 与)(x g 是同阶但非等价无穷小 13.以下极限正确的选项是( )A.11sinlim =∞→x x x B.11sin lim 0=→x x x ;C.1sin lim =∞→x x x ;D.12sin lim 0=→xx x ; 14.=⎪⎭⎫ ⎝⎛-+∞→2xx x 11lim 〔 〕 2B.21e -2 D.21e-15.nn 211(lim +∞→〕=〔 〕 A. 0 B. 1 C.不存在 D. 2 16.=+∞→xx x)21(lim 〔 〕 A. e -2 B. e -1 C. e 2 D.e 17.xx x 21sin3lim ⋅∞→=( ) A.∞ B. 0 C. 23 D.32 18.=→2xtan3xlim 0x 〔 〕A.∞B.23C.019.=-ππ→xxsin lim x ( ).B.∞C.-1D.-∞20.=-+-→xx x x x 32112lim 〔 〕 A.21B. 0C. 1D. ∞21.limsin2xxx →∞等于( )A. 0B. 1C.12D. 223.xmxx sin lim0→ (m 为常数) 等于 ( )A.0B. 1C.m1D. m 24. hx )h x (lim 320h -+→ =( )。

高等数学第一章练习题

高等数学第一章练习题

第一章函数、极限、连续一、单项选择题1.区间[a,+∞),表示不等式()2.若3.函数是()。

(A)偶函数(B)奇函数(C)非奇非偶函数(D)既是奇函数又是偶函数4.函数y=f(x)与其反函数 y=f-1(x)的图形对称于直线()。

5.函数6.函数7.若数列{x n}有极限a,则在a的ε邻域之外,数列中的点()(A)必不存在(B)至多只有有限多个(C)必定有无穷多个(D)可以有有限个,也可以有无限多个8.若数列{ x n }在(a-ε, a+ε)邻域内有无穷多个数列的点,则(),(其中为某一取定的正数)(A)数列{ x n }必有极限,但不一定等于a(B)数列{ x n }极限存在且一定等于a(C)数列{ x n }的极限不一定存在(D)数列{ x n }一定不存在极限9.数列(A)以0为极限(B)以1为极限(C)以(n-2)/n为极限(D)不存在极限10.极限定义中ε与δ的关系是()(A)先给定ε后唯一确定δ(B)先确定ε后确定δ,但δ的值不唯一(C)先确定δ后给定ε(D)ε与δ无关11.任意给定12.若函数f(x)在某点x0极限存在,则()(A) f(x)在 x0的函数值必存在且等于极限值(B) f(x)在x0的函数值必存在,但不一定等于极限值(C) f(x)在x0的函数值可以不存在(D)如果f(x0)存在则必等于极限值13.如果14.无穷小量是()(A)比0稍大一点的一个数(B)一个很小很小的数(C)以0为极限的一个变量(D)0数15.无穷大量与有界量的关系是()(A)无穷大量可能是有界量(B)无穷大量一定不是有界量(C)有界量可能是无穷大量(D)不是有界量就一定是无穷大量16.指出下列函数中当X→0+ 时,()为无穷大量。

17.若18.设19.求20.求21.求22.求23.求24.无穷多个无穷小量之和()(A)必是无穷小量(B)必是无穷大量(C)必是有界量(D)是无穷小,或是无穷大,或有可能是有界量25.两个无穷小量α与β之积αβ仍是无穷小量,且与α或β相比()。

高等数学题库第01章(函数,极限,连续).

高等数学题库第01章(函数,极限,连续).

第一章函数、极限、连续习题一一.选择题1.下列各组中的函数f(x)与g(x)表示同一个函数的是() A.f(x)=x,g(x)=x2B.f(x)=2lgx,g(x)=lgx2 x,g(x)=x2C.f(x)=xD.f(x)=x,g(x)=-x2.函数y=4-x+sinx的定义域是( )A.[0,1]B.[0,1)(1,4]C.[0,+∞)D.[0,4]3.下列函数中,定义域为(-∞,+∞)的有( ) A.y=x-1323 B.y=x2 C. y=x3 D.y=x-24.函数y=x2-1单调增且有界的区间是( )A. [-1,1]B. [0,+∞)C. [1,+∞)D. [1,2]5.设y=f(x)=1+logx+32,则y=f-(x)=( )A.2x+3B. 2x-1-3C. 2x+1-3D. 2x-1+36.设f(x)=ax7+bx3+cx-1,其中a,b,c是常数,若f(-2)=2,则f(2)=(A.-4B.-2C.-3D.6二.填空题1.f(x)=3-xx+2的定义域是2.设f(x)的定义域是[0,3],则f(lnx)的定义域是。

3.设f(2x)=x+1,且f(a)=4,则a= 。

4.设f(x+11x)=x2+x2,则f(x)5.y=arcsin1-x2的反函数是。

6.函数y=cos2πx-sin2πx的周期T。

)⎧π⎪sinx,x<17.设f(x)=⎨则f(-)=。

4⎪⎩0,x≥12⎧⎧1,x≤12-x,x≤1⎪⎪8.设f(x)=⎨,g(x)=⎨,当x>1时,g[f(x)]= 。

x>1x>1⎪⎪⎩0⎩29.设f(x)=ax3-bsinx,若f(-3)=3,则f(3)=。

10.设f(x)=2x,g(x)=x2,则f[g(x)]=。

三.求下列极限 x3-1x2-91.lim2 2.lim x→1x-1x→3x-33.limx→52x-1-3+2x2-14. lim x→0xx-5x2-3x+2x+2-35.lim 6. lim3x→1x→1x-xx+1-27.limx→1x+4-2-x-+x 8. lim2x→0sin3xx-1sinx2-49. lim2 x→2x+x-6()习题二1.下列数列中,发散的是( ) 1π2n-11+(-1)n(-1)nA.xn=sinB.xn=5+C.xn=D.xn= nn3n+22n22设limf(x)=A(A为常数),则在点x0处f(x)( ) x→x0A. 一定有定义且f(x0)=AB.有定义但f(x0)可为不等于A的值B. 不能有定义 D.可以有定义,也可以没有定义f(x)=limf(x)是limf(x)存在的( ) 3.lim+-x→x0x→0x→x0A.充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件4.limh→0x+h-x=() hA.0 B.12x C.2x D.不存在x3(1+a)+1+bx2=-1则a,b的值为( ) 5.若limx→∞x2+1A.a=-1,b=-1B. a=1,b=-1C. a=-1,b=1D. a=1,b=16.设limf(x)=A,limg(x)=B,且A>B,则当x充分接近xo时,必有( ) x→x0x→x0A.f(x)≥g(x)B. f(x)>g(x)C. f(x)≤g(x)D. f(x)<g(x)7.数列{xn}有界是收敛的( )A.充分必要条件B. 必要而非充分条件C.充分而非必要条件D.既非充分也非必要条件8.设f(x)=1-x,g(x)=1-x,当x→1时,( )A.f(x)是比g(x)较高阶的无穷小量B. f(x)是比g(x)较低阶的无穷小量C.f(x)与g(x)同阶无穷小量D. f(x)与g(x)等价无穷小量9.当x→0时,为无穷小量的是()-1A.lnsinx B.sin C.cotx D.ex x1⎧n,n为奇数⎪10.设数列xn=⎨1,则{xn}是( ) ,n为偶数⎪⎩nA.无穷大量B. 无穷小量C.有界变量D. 无界变量二.填空题lnx= 。

函数与极限练习题

函数与极限练习题

函数与极限练习题————————————————————————————————作者:————————————————————————————————日期:第一章 函数与极限§1 函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。

[ ]2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有B x f A ≤≤)([ ]3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。

[ ]4、定义在(∞+∞-,)上的常函数是周期函数。

[ ]5、任一周期函数必有最小正周期。

[ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。

[ ]7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。

[ ]8、f(x)=1+x+2x 是初等函数。

[ ] 二.单项选择题1、下面四个函数中,与y=|x|不同的是 (A )||ln xey = (B )2x y = (C )44x y =(D )x x y sgn =2、下列函数中 既是奇函数,又是单调增加的。

(A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ϕϕ则函数==是(A )x 2log (B )x 2 (C )22log x (D )2x4、若)(x f 为奇函数,则 也为奇函数。

(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C));()(x f x f + (D) )].([x f f -三.下列函数是由那些简单初等函数复合而成。

1、 y=)1arctan(+x e2、 y=x x x ++3、y=xln ln ln四.设f(x)的定义域D=[0,1],求下列函数的定义域。

高等数学-——函数与极限.pdf

高等数学-——函数与极限.pdf

《高等数学》第一章-——函数与极限练习题(A)一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)(1){}{}{}(,)0U a x x a x a x a x a x a δδδδ=<−<=−<<∪<<+()(2)关系式221x y −=表示y 是x 的函数()(3)关系式{}{}max ,1min ,1y x x =+−表示y 是x 的函数()(4)关系式2arccos ,2y u u x ==+表示y 是x 的函数()(5)若()sgn f x x =,则21,0,()0,0.x f x x ≠⎧=⎨=⎩()(6)若2()ln ,()2ln ,f x x g x x ==则()()f x g x =.()(7)2sin y x =是周期为π的函数.()(8)()00000lim ()()lim ()()0x x f x x f x f x x f x Δ→Δ→+Δ=⇔+Δ−=.()(9)0y =是曲线21y x =的水平渐近线.()(10)()y f x =在0x 连续的充要条件是000()()()f x f x f x −+==.()(11)收敛数列的极限不唯一.()(12)lim ()().f x A f x A α=⇔=+(其中lim 0α=).()(13)212limn nn →+∞++⋅⋅⋅+=()(14)设()f x ,()g x 在(,)−∞+∞内有定义.若()f x 连续且()0f x ≠,()g x 有间断点,则()()g x f x 必有间断点()二、填空题(将正确答案填写在横线上)1.若(),(())1,xf x e f x x ϕ==−则()x ϕ=2.2arctan limn nn →+∞=3.212lim 10n n n →+∞⎛⎞+=⎜⎟⎝⎠4.0lim x x →=5.()()220lim 11sin x x x x x →⎡⎤++−+=⎣⎦6.221lim sin n n n →+∞⎛⎞=⎜⎟⎝⎠7.2lim 31nn n →+∞⎛⎞−=⎜⎟⎝⎠8.()3sin 2limtan x x x→=9.若lim ,n n x a →∞=则lim n n x →∞=10.若lim ,n n x a →∞=则2lim n n x →∞=11.()22limh x h x h→+−=12.231lim 1x x x →∞−=+13.331lim 1x x x →∞+=−三、选择题(将正确答案的序号填写在括号内)(1)设函数()f x 的定义域为D ,数集X D ⊂,则下列命题错误的是()A :若()f x 在X 上有界,则()f x 在X 上既有上界也有下界B :若()f x 在X 上有界,则()f x 在X 上也有界C :若()f x 在X 上有界,则1()f x 在X 上必无界D :若()f x 在X 上无界,则()f x 在X 上也无界(2)下列结论错误的是()A :sin y x =在定义域上有界B :tan y x =在定义域上有界C :arctan y x =在定义域上有界D :arccos y x =在定义域上有界(3)下列结论正确的是()A :arcsin y x =的定义域是(,)−∞+∞B :arctan y x =的值域是(,)−∞+∞C :cos y x =的定义域是(,)−∞+∞D :cot y arc x =的值域是(,22ππ−(4)若lim n n x a →+∞=,则下列结论错误的是()A :{}n x 必有界B :必有11limn nx a →∞=C :必有221lim lim n n n n x x a−→∞→∞==D :必有1000lim n n x a+→∞=(5)下列结论正确的是()A :若函数()f x 在点0x 处的左右极限存在,则0lim ()x x f x →一定存在B :若函数()f x 在点0x 处无定义,则0lim ()x x f x →一定不存在C :若0lim ()x x f x →不存在,则必有0lim ()x x f x →=∞D :0lim ()x x f x →存在的充要条件是函数()f x 在点0x 处的左右极限存在且相等E :若函数()f x 在点0x 处的左右极限存在但不相等,则01lim()x x f x →一定存在(6)若lim ()0,lim ()x x f x g x →∞→∞==∞,则下列结论错误的是()A :()lim ()()x f x g x →∞±不存在B :()lim ()()x f x g x →∞不一定存在C :lim[2()]x f x →∞一定存在D :()lim()x f x g x →∞不存在(7)下列结论正确的是()A:绝对值很小的数一定是无穷小B:至少有两个常数是无穷小C:常数不可能是无穷小D:在自变量的某一变化过程中,趋向0的函数是无穷小(8)下列结论正确的是()A :有界函数与无穷大的积不一定为无穷大B :无限个无穷小的和仍为无穷小C :两个无穷大的和(积及商)仍为无穷大D :无界函数一定是无穷大(9)下列等式不成立的是()A :1lim2n n n →+∞=B :1limln(1)n n →+∞=+C :lim 2n n →+∞=+∞D:lim1n →+∞−=(10)下列结论错误的是()A :单调有界数列必收敛B :单增有上界的数列必收敛C :单调数列必收敛D :单减有下界的数列必收敛(11)下列结论正确的是()A :当0x →时,1xe −是比2x 高阶的无穷小B :当1x →时,1x −与21x −是同阶的无穷小C :当n →+∞时,21n 是比1n低阶的无穷小D :当0x →时,若sin tan ax x ∼,则2a =(12)下列结论不正确的是()A :0x =是()xf x x=的跳跃间断点B :2x π=是()tan xf x x =的可去间断点C :()cot f x x =只有一个间断点D :0x =是1()sin f x x=的第二类间断点(13)下列结论不正确的是()A :若lim ,n n x a →+∞=则10lim n n x a+→+∞=B :01lim 1tan x x e x →−=C :若10n x n<≤,则lim 0n n x →+∞=D :123lim 121x x x x +→∞+⎛⎞=⎜⎟+⎝⎠(14)下列数列收敛的是()A :11,1,1,,(1),n +−− B :2,4,8,,2,nC :123,,,,,2341n n + D :233333,,,,,2222n⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠(15)下列数列发散的是()A :1sin2n n x n π=B :1(1)nn x n=−C :215n x n=+D :(1)nn x n =−(16)下列变量在给定变化过程中,不是无穷大量的是()A :lg ,(0)x x +→B :lg ,()x x →+∞C :21,(0)x x +→D :1,(0)xe x −−→(17)下列结论错误的是()A :0(,)x ∀∈−∞+∞,00lim sin sin x x x x →=B :2lim ln sin 0x x π→=C :0(1,1)x ∀∈−,0lim arccos arccos x x x x →=D :0lim sgn sgn x x x x →=四、计算题1.)lim arcsinx x →+∞−.2.2121lim()11x x x→−−−.3.3tan sin lim1x x x x e →−−. 4.()22lim 13tan cot xx x →+.5.1lim 1x x →−.五、证明题1.证明函数,()1sin ,x f x x x ⎧⎪=⎨⎪⎩>≤x x 在点0=x 处连续.2.证明2sin ,0(),0xx xf x a x x ⎧>⎪=⎨⎪+≤⎩在定义域内连续的充要条件是1a =.3.设()f x 在[0,1]上连续,且(0)0f =,(1)1f =,证明存在(0,1)ξ∈,使得()1f ξξ=−.4.证明222111lim 012n n n n n →∞⎛⎞++⋅⋅⋅+=⎜⎟+++⎝⎠.5.设()f x 在[0,2]上连续,且(0)(1)(2)3f f f ++=,求证:存在[0,2]ξ∈,使()1f ξ=.6.证明方程531x x −=在1与2之间至少存在一个实根.《高等数学》第一章---函数与极限练习题(B)一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)(1)2322(1,0)(3,4)x x x −−<⇔∈−∪()(2)以1为中心,2为半径的去心邻域为{}{}(1,2)1113U x x x x =−<<∪<<()(3)关系式2arcsin(3)y x =+表示y 是x 的函数()(4)关系式{}max ,1min{,5}y x x =+表示y 是x 的函数()(5)若函数()f x 的定义域为[1,4],则函数2()f x 的定义域为[1,2]()(6)若2(1)(1)f x x x −=−,则2()(1)f x x x =−()(7)函数1,0()0,01,0x x f x x x x −<⎧⎪==⎨⎪+>⎩是偶函数()(8)函数()cos 4f x x =的反函数1()arccos 4f x x−=()(9)若()()sgn ,f x g x x ==则()()f x g x =.()(10)sin 2tan 2xy x =+是周期为π的函数.()(11)函数lg y u x ==能构成复合函数y =的充分必要条件是[1,10]x ∈()(12)曲线211x y e−−=的水平渐近线是1y =()(13)若0lim ()x x f x →不存在,则必有00()()f x f x −+≠()(14)),0()0,0,0x a x f x x x a x +>⎧⎪==⎨⎪−<⎩在0x =连续的充要条件是0a =()(15)设()f x ,()g x 在(,)−∞+∞内有定义,()f x 为连续,且()0f x ≠,若()g x 有间断点,则222()()g x f x 必有间断点()(16)1x =是函数()2sgn(1)1y x =−+的可去间断点()(17)4x π=是2tan 21y x =−的无穷间断点()(18)lim ()1()1.f x f x α=⇔=+(其中lim 0α=)()(19)2080100(1)(100)lim 1(1)n n n n →∞−+=+()(20)222212lim 0n n n →+∞++⋅⋅⋅+=()二、填空题(将正确答案填写在横线上)1.若(),(())1,xf x e f x x ϕ==−则()x ϕ=2.24arctan(1)(sin 1)lim100n n n n →+∞−+=−3.417lim 100n n n →+∞⎛⎞+=⎜⎟⎝⎠4.()1lim 1sgn(1)x x x →−−=5.22301lim (3cos )2x x x x →⎡⎤++=⎢⎥+⎣⎦6.242lim sin n n n →+∞⎛⎞=⎜⎟⎝⎠7.24lim 101nn n →+∞⎛⎞−=⎜⎟⎝⎠8.()10050sin 4lim(tan 2)x x x →=9.若lim ,n n x a →+∞=则221lim n n n x x −→+∞⎡+⎤=⎣⎦10.225lim 2x x x →−=−11.()33limh x h x h→+−=12.20010001lim1x x x →∞−=+13.2lim ln sin x x π→=14.0x →=三、选择题(将正确答案的序号填写在括号内)(1)下列结论错误的是()A :由于函数()sin f x x =在[,]22ππ−上单调递增,因此()f x 的反函数1()f x −必存在且1()fx −的定义域为[1,1]−,值域为[,]22ππ−B :在同一平面坐标系中,函数()y f x =与其反函数1()y f x −=的图形关于直线y x =对称C :由于函数()tan f x x =在,22ππ⎛⎞−⎜⎟⎝⎠上单调递增且连续,因此()f x 的反函数1()f x −在(),−∞+∞上也是单调递增且连续.D :函数()cot f x arc x =的定义域为(,)−∞+∞,值域为,22ππ⎛⎞−⎜⎟⎝⎠(2)下列数列收敛的是()A ::1,1,1,1,1,1,n x −−−B ::0,1,2,3,4,5,n xC ::0,ln 2,ln 3,ln 4,ln 5,n xD :111:0,,0,,0,,248n x(3)下列数列发散的是()A :(1)1n n ⎧⎫−+⎨⎬⎩⎭B :3110n⎧⎫+⎨⎬⎩⎭C :{}(2)n−D :1ln(1)n n ⎧⎫⎨⎬+⎩⎭(4)下列结论错误的是()A :单调有界数列必收敛B :发散的数列必无界C :数列收敛的充要条件是任意子列都收敛于同一个数D :收敛的数列必有界(5)若lim ()f x 与lim ()g x 都不存在,则()A :[]lim ()()f x g x +与[]lim ()()f x g x 都不存在B :[]lim ()()f x g x +与[]lim ()()f x g x 一定都存在C :[]lim ()()f x g x −与()lim ()f x g x ⎡⎤⎢⎥⎣⎦都不存在.D :[]lim ()()f x g x ±、[]lim ()()f x g x 与()lim ()f x g x ⎡⎤⎢⎥⎣⎦可能存在,也可能不存在(6)下列结论正确的是()A :若0lim ()lim ()x x x x f x g x →→>,则必有()()f x g x >B :若()()f x g x >,则必有0lim ()lim ()x x x x f x g x →→>C :若0lim (),x x f x A →=则()f x 必有界D :0lim ()x x f x A →=的充要条件是对任意数列00,,n n x x y x →→有lim ()lim ()n n n n x x y x f x f y A→→==(7)下列结论正确的是()A :若数列n x 无界,则数列n x 一定发散B :若lim 0,lim 1,n n n n a b →∞→∞==则lim n n nba →∞一定存在C :若lim n n x a →+∞=,则必有lim n n x a→+∞=D :若221lim lim n n n n x x a −→+∞→+∞==,则lim n n x →+∞一定不存在(8)当x →∞时,下列变量中不是无穷小量的是()A :3211x x x −++BC :221(1)sin1x x x−−D :2211sin1xx x −−(9)下列变量在给定的变化过程中为无穷大量的是()A :41sin(0)x x x→B :21sin (0)x x x →C :cos ()x x x →∞D :1cos (0)x x x→(10)当0x →时,下列变量中与2tan x 为等价无穷小量的是()AB :xC :2xD :3x(11)设当x →0时,tan sin x x −是比sin narc x 高阶的无穷小,则正整数n 等于()A :1或2B :4C :5D :3.(12)设()1,()ln(1),,mx n x ex x m n N αβ+=−=+∈,则当x →0时,下列结论正确的是()A :当m n >时,()x α必是()x β等价的无穷小B :当m n =时,()x α必是()x β高阶的无穷小C :当m n <时,()x α是()x β的低阶无穷小D :当m n <时,()x α是()x β的同阶无穷小(13)设若,,ααββ′′∼∼则下列结论可能不正确的是()A :αβαβ′′∼B :αβαβ′′±±∼C :αβαβ′′∼D :(0)C C C αα′≠∼(14)()xf x x=在0x =有()A :跳跃间断点B :可去间断点C :震荡间断点.D :无穷间断点(15)函数1(3)ln y x x=−的间断点有()A :1个;B :2个C :3个D :4个(16)当x →∞时,若2111ax bx c x ∼++−,则,,a b c 的值一定为()A :0,1,1a b c ===−B :0,1,a b c ==为任意常数C :0,,a b c =为任意常数D :,,a b c 为任意常数(17)下列极限中结果等于e 的是()A :sin 0sin 2lim 1xxx x x →⎛⎞+⎜⎟⎝⎠B :sin sin lim 1xxx x x →∞⎛⎞−⎜⎟⎝⎠C :sin sin lim 1x xx x x −→∞⎛⎞−⎜⎟⎝⎠D :()2cot 0lim 1tan xx x →+(18)函数111()01x e x f x x −−⎧⎪≠=⎨⎪=⎩在点1x =处()A :连续B :不连续,但右连续或有右极限C :不连续,但左连续或有左极限D :左、右都不连续(19)下列结论正确的是()A :若函数()f x 在(,)a b 内连续,则()f x 在(,)a b 内一定有界B :若函数()f x 在[,]a b 内有间断点,则()f x 在[,]a b 上一定没有最值C :若函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,而函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处也是连续的D :一切初等函数在其定义域内都是连续的四、计算题1.设()0.10x e x f x x ⎧≤=⎨>⎩求)(x f 在0x =的极限2.求lim x →+∞3.求3211lim()11x x x x →−−−4.求)21sin limtan x arc xx →− 5.求lim ln(1)ln(1)n n nn n →∞⎛⎞−⎜⎟−+⎝⎠五、讨论题1.讨论2sin ,0;()1,0.xx x f x x x ⎧≠⎪=⎨⎪+=⎩在定义域内的连续性2.讨论a 取何值可使1sin arccos ,0;()0,0;ln(1),0.x x x f x x x a x ⎧>⎪⎪==⎨⎪−+<⎪⎩在定义域内连续.六、证明题1.设()f x 在[0,1]上连续,且(1)0f >,证明存在(0,1)ξ∈,使()1f ξξξ=−2.证明lim 1n →∞⎛⎞+⋅⋅⋅+=3.设()f x 在[0,2]上连续,且(0)(1)(2)3f f f ++=,求证:存在[0,2]ξ∈,使()1f ξ=4.证明曲线423710y x x x =−+−在1x =与2x =之间至少存在与x 轴有一个交点5.证明0p >时,函数1sin ,0()0,px x f x xx ⎧≠⎪=⎨⎪=⎩0>≤x x 在点0=x 处连续.6.证明:0lim ()()x x f x A f x A α→=⇔=+,其中0lim 0x x α→=.《高等数学》第一章-——函数与极限自测题(A)题号一二三四五六总分得分一.判断题(判断下列各题是否正确,正确的划√,错误的划×。

高等数学_第1章_函数与极限_计算题_204_答

高等数学_第1章_函数与极限_计算题_204_答

高等数学院系_______学号_______班级_______姓名_________得分_______题 号 计算题 总 分 题 分 200 核分人 得 分复查人一、计算题(共 200 小题,100 分)1、f x x x xx x x x x ()sin sin sin sin cos sin sin (cos )=+-=-=--523232232312 =-⋅432sin sin x x4分而lim()limsin sin x x f x xx xx→→=-⋅=-03234312 7分所以取,,即A n g x x =-==-123123() 则当时,x f x g x →0()~()10分2、f x x xx()ln()ln(=++++111222=++++12111222l n ()l n ()x xx3分而lim()limln()limln()x x x f x xx xx xx→→→=++++02222221211=+=121328分所以取,,即A n g x x ===322322()则当时,x f x g x →0()~() 10分3、[][]原式=-+-++--→lim()()x x x x 313121231335分=+--------→→lim()lim()x x x x x x 3331313123138分=--+⋅--→→lim ()lim ()x x x x x x 33123313233=-=-12231610分4、原式=⋅→lim x nax x17分 =a n10分5、原式=---+-→→lim()lim ()x x x xx x12131411615分=⨯--⨯→→lim ()lim x x x xx x124136 8分=--=-()22410分6、原式=+-+---+→→limlimx x x x xx x x2215121312 5分=⋅+-⋅-+→→lim ()lim ()()x x xx x x x x 0012521232 8分=+++=+=→→limlim x x x x 005223225434210分7、证,则当时,αβαβ=+=-→-→arctan()arctan()1100x x x)1)(1(1)1()1(arctantan tan 1tan tan arctan)(x x x x -++--+=βα+β-α=β-α 且 3分)1)(1(1)1()1(~)1arctan()1arctan(x x x x x x -++--+--+[]因此,原式=+--++-→lim()()()()x x x x x x 011111 7分=+-=-=→→lim()limx x x x x x2221122110分8、原式=+→∞lim (tan)n nn1222π4分=+→∞⋅⋅lim (tan)tantan()n nn nn12122222πππππ 7分=e π2210分9、limlim()!()!n n nn n n nnx x an n na n →∞+→∞++=⋅++⋅⋅11111 4分=+→∞lim()n na n 11 7分=a e10分10、原式=-------+--→limx mn mn xx x x x x x x 1111111117分=-+m n m n10分11、原式=⋅+++→+∞lim x xx x xx11 8分=⨯=01010分12、)431ln(ln )751ln(ln lim22636xx x xx x x +-++++=∞→原式8分=++++-+→∞lim ln()ln ln()ln x x x x x x x3157113436222=310分13、原式=++→+∞limln ()ln ()x xxxxee ee22333223=++++→+∞--limln()ln()x x xx e x e23232323 5分=++++→+∞--lim ln()ln()x xxx e xe21323123238分=2310分14、证 s n n n s nnnn s n n n nn n n =+++++<+++=>+++=111212111112121214222222222()()()()()()ns n n 141<<即有6分)2(1)2(1)1(1lim 01lim 041lim222=⎥⎦⎤⎢⎣⎡+++++==∞→∞→∞→ 因此,而n n n n nn n n 10分15、0111111232333233≤+≤+<-<+<n n n nn nnn n n nsin !sin !即 7分而,lim ()limn n nn→∞→∞-==101033因此limsin !n n n n →∞+=231010分16、证有又有s n n n ns n n n ns n nn nn nn n nn n n =++++++<++++=>++++++=+11121111111112222222即:n n ns n 21+<<6分而,所以limlim lim lim ()n n n n n n n ns n n n n→∞→∞→∞→∞+===++++++222211111121=1 10分17、因为02212224<=⋅≤nn n n!6分而所以limlim!n n nnn →∞→∞==40210分18、原式=+--→limtan (tan )(tan )sin()x x x x x ππ33334分=+⋅--→→lim tan (tan )limtan sin()x x x x x x πππ33333=-⋅⋅-→63333limsin()cos cossin()x x x x ππππ 8分=⋅-⋅611212()=-2410分19、01000110011011110100lim3232=+++++=∞→xx x x x x x 原式20、当原式n n nx xn ≥=-++→∞21112lim(cos)(cos)(cos)πππ5分=+⋅→∞limcossin()n nn nππππ22217分=π2210分21、原式=⋅→∞--lim sinn n n 22211πππ7分=2π10分22、原式=⋅→∞limsinn e n e ne7分=e10分23、证:,则于是αααπαα=+=+-=-+=+-++=+arctantan tan()tan tan n nn nn n n nn 114111111121所以 απ-=+4121arctan n 5分故原式 =+⋅+=++⋅++→∞→∞lim (arctan)limarctann n n n n n n n 121112112112122 =1210分24、原式=+→lim ln()x x x 01133分 =+→⋅lim ln()x x x 0133138分==ln e 3310分注:直接用也可!limln()ααα→+=01125、)cos sin 1(tan cos sin 1limx x x x x x x x ++-+=→原式 5分)t a n c o s 1t a n s i n (21limxx x x x x x x -+=→ 8分=+=1211234()10分26、xx x xx x 2sin2lim2sin4lim2→→==原式 3分12sin2lim-=-→x x x 而12sin 2lim=+→xx x 8分不存在-因此xxx cos 22lim→10分27、原式=+-+-→limsin cos sin cos x xx x x px xpxx11 7分=++=1001p p10分28、原式=--→limsin cos sin cos ()cos cos x x x x x xαααα 4分=--⋅→limsin()cos cos x x x x xααα1 7分 ==122c o s s e c αα10分29、原式=+-++++→lim(tan )(sin )(tan sin )x x x x x x 031111 5分=-→12103limsin (cos )x x x x=⋅-→12102lim sin cos x x x xx7分 =1410分30、原式=⋅+→limsin ()cos x ax ax aax2221 7分=a2210分31、原式=-→lim cos sin x x x x1 4分 =⋅⋅→lim sin sin sin cos x x x x x x17分 =1210分32、f x ax x ax x a ()()()()()=+-+-12113分()lim ()lim1121111当时,a f x x x x x ==--=∞→→ 5分()lim ()lim2211112111x x f x x x aaa →→=--=-==-得7分()lim ()()lim ()lim ()31210012121212x x x ax x f x x a a →→→+-=>-=-=故欲使,必须即a =129分lim ()lim ()()()()x x f x x x x x →→=+-+-=121212121121122 10分33、原式 =⨯=→lim x x x431210(()~)x x x →+-⨯0131434,34、原式=+--+→→lim ()lim()x x x xx x53121145分 =⨯-⨯→→lim limx x x xx x52347分=-=-1012210分35、原式=+-⎡⎣⎢⎤⎦⎥-⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪-⎡⎣⎢⎤⎦⎥→lim ()()x a mmn na x a a a x a 12115分=⋅-+---→am x a xx a a m nx anlim()()211=⋅⋅-⋅--→am x aa n x a am nx alim2 8分=-2m anm n10分36、2422321)1(lim1)1(limxx xx x x ----+=→→原式 5分=⨯-⨯-→→lim lim()x x x xx x222234 8分=+=34710分37、原式=---------+-⋅+---⋅-→lim ()()()()()()()()x x x x xx xx x 03523121221111414413133 7分=-⨯--⨯⨯+-⨯=()()()231542331 10分38、原式=+++-→lim()()x x x x 0255556分=++=→lim ()x x 02554510分39、)5215)(2)(2()52()15(lim2++-+-+--=→x x x x x x x 原式5分=--+-++→lim()()()()x x x x x x 232225125 8分=+-++=→lim()()x x x x 23251251810分40、原式=+--++++→lim()(())x x x x x 22333282322324 5分=++++→lim()x x x 223333223248分=1410分41、原式=---+→lim()()()()x x x x x 22322 6分=-1410分42、原式=-+--++-→lim()()()()x x x x x x x x 12321213 4分=-+-++→lim()()()()x x x x x x 1212123 7分=1210分43、因 故即lim ()lim()lim ()x x x f x f x xx x xa a →-∞→-∞→-∞==-+-=--=0045102故a =14分由得lim ()lim ()x x x x x b b x x x →-∞→-∞-++-==-++2245045 =-+-+-=--++→-∞→-∞limlimx x x x x xx xx4545451451228分=+=4112 10分44、原式=-⋅-+→limtan tan tan tan x xx xxπ422111 5分=+→limtan (tan )x x x π4221 8分=1210分21)4(2)4(lim)4(2cot )22cot(2tan 4=-π-π=-π=-π=π→x x x x x x 原式或解:45、当时:010<<=→+∞a ax xlimlimx x xaa→+∞+=1025分当时,a ax x>=→+∞-10lim limlimx x xx xxaaa a→+∞→+∞-+=-+=11022 9分综上述得: ,lim()x x xaaa a →+∞+=>≠1001210分46、原式=--+→∞lim ()()()x xxx433267234258分=⋅436345=2310分47、原式=+++++-⋅→∞lim ()()()()()()x x xxxxx1121314151532222222223357分=⋅⋅⋅⋅=23455218522223510分48、原式=-----++→∞lim()()()()()()()x xxxxx xx 11213141512332328分=⨯=5235332!10分49、limlimx x xxxx xxee eee e→+∞--→+∞---+=-+=23423412323255 4分31432lim432lim552323-=+-=+--∞→--∞→xx x xxxx x ee eee e-而 7分.432lim2323不存在因此xxxx x eee e--∞→+-50、原式=-+-+-+-+→-∞lim()()x x x x x x x 48521485212225分=-+-+--→-∞limx x x x x 124485212=--+++→-∞limx xxxx1244852128分==124310分51、[]原式=++---++++→+∞lim()()x x x x x x x x x 22225212515分=++++→+∞limx x xx41251128分=210分52、原式=++++++++--→∞lim()()()()()()x xxxxxx 11213110110111122226分=++++⨯12310101122228分=⨯⨯⨯⨯=101121610117210分53、原式=+⋅-→∞limcos sin x x xxx2131 6分=2310分54、)1121(lim --+=+∞→x x x 原式 5分=⋅-→+∞lim ()x x x 12218分=-=→+∞limx x111110分解:原式2111111=⋅+--+-+→+∞lim x x x x x x 5分=-⋅+-+→+∞limx x x x x 2111118分=+=2111 10分55、[]由lim ()x x x ax b →+∞++-+3472=-+-+-++++=→+∞lim()()()()x a x ab x b x x ax b 3227347022224分有 得 3002032332-=>-=⎧⎨⎪⎩⎪==a a ab a b 6分而lim lim()x x x x x x x x x x →+∞→+∞++--⎡⎣⎢⎤⎦⎥=-++++3473233743347323322=-++++→+∞lim()x x xxx743347323328分==173231718310分[]解法:由得234703473022lim ()limx x x x ax b x x xa b xa →+∞→+∞++-+=++--=-=a =3 4分即b x x x x =++-→+∞lim ()34732=++++==→+∞limx x x x x4734732323326分⎥⎦⎤⎢⎣⎡+-+++∞→)32(3743lim 2x x x xx 而 )32(3743)347(lim2++++-=+∞→x x x x x 8分==173231718310分56、原式=-+=-→∞+limn nn 210331021015157、原式=-+--+++-++→∞lim()()n n n n n n n n 121121212335分=⋅-+→∞1332lim()n n n 8分 =-110分58、原式=--+-→∞lim()n n n n n n12121212 5分=-++-→∞lim()n n n n n n22121112 8分==→∞12214limn n n10分59、原式=++++-++-→∞lim()()()()n a n b n b n a n 122221 5分=+-+++++-→∞a b b n n a n nn 12112221lim 8分=+-a b 122()10分60、n nn n 1)32()31(3lim ++=∞→原式 7分 =3 10分61、原式=+-++++→∞lim()()()n n n n n n n 111 5分=++=→∞limn n n11010分62、原式.=++-+=→∞limn n n nn143351132263、原式=+==→∞limn n n10000110164、由()11112-=-⋅+kk k k k 5分原式=⋅⋅-⋅+→∞lim ()()()n n n n n1232234311=+→∞lim n n n 1218分 =1210分65、当时,因为a an n<=→∞10lim所以limn nnaa→∞+=20 5分当时,因为a an n>=→∞11lim ()11)1(21lim2lim=+=+∞→∞→n n nn n aaa所以 10分66、[]原式=+--+-+-+-+→∞lim()()n n n n n nn n n n 43424336213611 5分=+-+-++-+→∞lim()()n nnnnnn3271361111348分=3210分67、原式=++--+++-→∞lim ()()n n n n n n n 222451451=++++-→∞lim()n n n n n 6445125分=++++-→∞limn nnnn641451128分==62310分68、原式=+--+++→∞lim()n n n n n n 21215分=+++→∞limn n n11211 8分=1210分69、原式=+--⎡⎣⎢⎤⎦⎥→∞lim ()n n n n n 121222 5分=-+→∞lim()n n n 22 8分=-1210分70、原式=--→∞lim()()n a n n n n 231216 5分=--→∞lim()()n a n n2112168分=a2310分71、原式=-+-++-+⎡⎣⎢⎤⎦⎥→∞lim ()()()n n n 11212131114分⎥⎦⎤⎢⎣⎡+-=∞→111lim n n8分 =1 10分72、原式=-+-++--+⎡⎣⎢⎤⎦⎥→∞lim()()()n n n 121131315121121 6分=-+⎡⎣⎢⎤⎦⎥→∞limn n 121121 8分=1210分73、因为1111121111()()()()a n a n a n a n a n a n +-+++=+⋅+--++=+-+-+++⎡⎣⎢⎤⎦⎥121111()()()()a n a n a n a n5分故原式=+-+++⎡⎣⎢⎤⎦⎥→∞121111lim ()()()n a a a n a n 8分=+121()a a10分74、证则 S q q nqq S q q q nqS qS q S q q q nqn n n nn n n n n=++++⋅=++++-=-=++++---1232311212321()S q qq nqqn nn=-----111122()()5分因为,lim lim n n n nqnq→∞→∞==00 8分故原式==-→∞lim ()n n S q 11210分75、因为2122122321n n n nn n-=+-+- 2分故原式 =-+-+-+++-+⎡⎣⎢⎤⎦⎥→∞-lim ()()()()n n nn n 3525274749162122321 5分=-+⎡⎣⎢⎤⎦⎥*→∞lim ()n n n 3232 8分 =3 10分注:当, 当 故.这段不推证不扣分n n n n n n n n n n nn n n>≤++-<-→∞-==→∞→∞121122121020()lim lim76、原式=+⋅-⎡⎣⎢⎤⎦⎥→∞lim ()n n 53237分 =510分77、原式=+---→∞lim()()n nnb a a b b a3232 7分=1a10分因为 -<b a178、当时,有x x >+>011f x x x x x x n nn ()lim()()=+++++=→∞11115分当时,x f ==0012() 8分⎪⎩⎪⎨⎧=>=0210)( x x x x f ,当,当因此10分79、令,解得:x x x ()12112-<-<< 3分当时,-<<-<12121x x x ()f x xx x x x x n n n n ()lim()()=----=-+→∞+++1121122211126分当时,极限不存在x x ()121-≥9分因此,f x x x x ()=-+-<<2212210分80、)!1(1!1)!1(11+-=+-+=k k k k b k k 因为4分于是 S n n n n n =+++++=-+-++-+12233411121213111!!!()!(!)(!!)(!()!)=-+111()!n 8分1)!1(11lim =⎥⎦⎤⎢⎣⎡+-=∞→n n 故原式 10分81、当时,x x n n<=→∞10limf x xxn n n()lim=+=→∞10 3分当时,x xn n<=→∞110limf x xxxn n nn n()limlim=+=+-→∞→∞11111 6分当时,x f x ==112() 8分因此,当,当,当f x x x x ()=<=>⎧⎨⎪⎪⎩⎪⎪011211110分82、当时,+x xf x x x x x x xx n n ≠<=+++++++⎡⎣⎢⎤⎦⎥→∞-0111111222221()lim ()() =-+-+→∞lim()n nx x xx11111225分=-+xx11128分=+==x xx f 1000当,()⎪⎩⎪⎨⎧=≠+=0 001)(x x x x x f ,,因此: 10分83、令,即ϕ()x x x <-<-+<113312解得:12<<x4分f x f x x x n n n n ()lim ()lim()()==--→∞→∞+111ϕϕ =--+<<132122x x x 8分 当或时,不存在x x f x ≤≥12()10分84、当时,无意义当时,当=时,x f x x f f ===--=0111110()()()当时,011<<=x f x x() 5分 当时,x f x x >=12()8分综上所述,,当,当,当,当,当f x x x x x x x x x x ()=-∞<<-=--<<<<≤<+∞⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪22101110101110分85、21)(1ln )(02==±==x f x e x x f x ,,当无意义,当 当,,无意义x e ex f x =±=-ln ()21 3分)(1ln 0)(1ln 022=>>=><<x f x e x x f xee x ,,当,,当1)(1ln 2=<<<x f xe x ee ,,当9分⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>=<<=e ex e x e x e x e ex f 00211)(;,当,当,当因此:10分86、()()sin cos()cos()cos()11211121121 当 当当当f x x x x a bx x a b x a b x =>+<++=+-=-⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪π6分()()()cos()lim ()()cos()lim ()()cos()210110111111 , ,当且仅当 同量,当且仅当f f a b f x f a b f x f a b x x +=-=+=+==--=→+→- 解:a b m a b k a +=-=<<⎧⎨⎪⎩⎪2202πππ9分得:, 为任意整数a b m m ==-ππ()()2110分87、当时,x f x xx xx xn n n<=-+=-+=-→∞+11001212()lim4分当时,x f x xx xx xxxn n nn n n>=-+=-+=→∞+→∞-11111212212()limlim8分当时,因此 ,当,当,当x f x f x x x x x x ===-<>=⎛⎝101101()()10分88、因为:sin sin sin cosn n n nn n+-=+-++1212123分而2122cosn n ++≤5分lim sinlim sin()n n n nn n →∞→∞+-=++=121210 8分21cos221sinlim =++⋅-+=∞→ 故原式nn nn n 10分 89、lim ()x x→-=02103分又+1221221211xx=+<6分因此limx xx→-+=0121220 10分90、因为arctan x <π23分 而lim arcsinx x→∞=106分故lim arctan arcsinx x x →∞⋅=1010分91、因为111+<e x3分而limx x→∞=106分故lim()x xx e →∞+=11010分92、因为21222x xx x+≤= 3分而lim arctanx x→∞=10 6分故limarctan x x xx→∞+⋅=2110210分93、因为0112≤+≤sinx3分 而lim x x →=06分故lim sinx x x→+=0110 10分94、原式=-+++⎡⎣⎢⎤⎦⎥→+∞lim sinln ln()sinln ln()x x x x x 21212 4分=+⋅+→+∞lim sin lnsin ln x x x x x 2125分因为lim sin lnx x x→+∞+=10 而sin ln x x 21+≤8分 []所以lim cos ln()cos ln x x x →+∞+-=1010分95、原式 =⋅=⋅⋅→→→limsin sinlimsin lim sinx x x x x x xx xx x11 5分而limsin limsin x x x xx x→→==01又lim sinx x x→⋅=010 8分 因此:原式=010分96、原式=+--+---→lim()()()x x xx xx x5721311211217分=⨯-⨯-⨯=-3527221410分97、原式=-⎡⎣⎢⎤⎦⎥→∞+-lim ln x x x x x e 211114分=+-⎡⎣⎢⎤⎦⎥→∞lim ln x x x x x 2111 6分=+--→∞limln()ln()x xx x11111 8分 =--=112() 10分98、原式=-→+limln(sin )x x x x ex1314分=+→lim ln(sin )x x x x x31 7分 ==→limsin x x x x2110分99、原式=-→limsin ln cos x x xe x314分=→limsin ln cos x x xx36分 =⋅-→lim sin cos x x x x x218分 =-1210分100、[]由知lim (lim ()x x x x a b x b a b →→+-+=++=+=11313020得:a b =-24分原式 =--+-+=--+++-→→lim()lim()()()x x b x x x b x x x x 111313131321=-=24b8分 因此 b a =-=2410分101、由,知,lim ()x f x a b →∞===1014分由知lim ()limlim ()x x x f x x cx d x x x cx d c d →→→=+++-=++=++=112212210即c d =--1 5分于是 得 而有limlimlim ()()()()x x x x cx dx x x x dx dx x x x d x x dd c d →→→+++-=--++-=---+=-===--=-12212212211213112因此:,,,a b c d ===-=0121 10分102、0)(lim )1()1()1(3)( 1224=------+=→x f x x c x B A x x f x 则记得,即lim()()limx x x f x A x →→-==+=121410323分又由得lim ()()limlim()()(x x x x f x B x x x x x →→→-==+--=--++114144103211132 =+++=→1411132lim ()x x x x7分再由得 lim ()lim()()lim()()lim()()x x x x f x C x x x x x x x x x x x x →→→→==+----=+-+-=--+-+++114214214224321131122131=+--=++====→→1412114225421541212lim()()lim ()x x x x x x x A B C 因此,,, 10分103、原式=++→∞lim()()x x x x x62363232238分=27410分104、原式=+→∞lim()x nn x x82122 6分=+→∞41112limx nx8分=410分 105、()101 ,p q ==3分 ()20 p q ==6分()lim ()lim ()limlimlim ()35045255501555555151155252525 由知得:而 x x x x x x px x p q q p px qx x px px x x px p →→→→→-=++=++==--++-=--+-=-=-=于是:,p q ==--=-25123 10分106、原式=++-++-→limx xx xx0223112424分=++++++→limx x xx x223112428分=3210分107、原式=+⋅+-+---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→→lim lim ()()x x x x x x x00131415161121 7分=⋅⨯+⨯=1561321412() 10分108、原式=-+-+→lim()()()()x x x x x 1221211 6分=++=→limx x x 1213210分109、()lim()lim111112112u u f u u u u →→--=--= 2分()lim ()lim (sin)21110x x u x x x →→=+=4分[]()()()(sin )sin()31111111101102而在点的任意小的去心邻域内都存在点,属该邻域而使分母f u x u x x x x xx x n u x n n --=+-+-==-=π[]从而导致无定义f u x u x ()()--118分[]故无意义lim()()x f u x u x →--01110分110、原式=+-+-→lim(()cos )sin x xx x x x221211 4分=-+→+lim sin ln()x x x ex1221126分=++→lim sin ln()x x x x 0212128分 =+=2125210分111、12121111121121111211x x x x x x x y x x x x n n n n n nn n n n nn ++++++++=+=+=-=-()(), 2分y x x ba y xx x x b a1212322111111112111211=-=-=-=--=--()()y x x n n n n =-=-+-()()1112114分lim ()lim ()n n n n y ba→∞→∞-=--=1112015分又y y y x x ban n n 12112111111121412+++=-=--+-+-+- ()(()7分lim()n n x ababaa b ab→∞+=+-⋅+=+=+1111111223132319分∴=+→∞lim n n x ab a b32 10分112、解答要点原式=+⋅+→∞limln()n n nnn12111 7分=13分 113、解:原式=+-→+∞lim sin ()n n n n π223分=⋅⋅++⎡⎣⎢⎤⎦⎥→+∞lim sin n n n n π2225分=++→+∞limn n n n222π 8分=++→+∞limn n21212π 9分=π 10分114、原式=⋅+-→∞lim lnn n n n 2121 3分 =+-→∞lim ln()n n n 12215分=+--⋅-→∞limln()n n n n n 12212212218分=⨯=11110分115、解法一:若是的可去间断点,则存在x f x f x x =→00()lim ()2分从而lim ()sin lim(sin sin sin )x x f x x x x a b x →→⋅=++--=020210故a x x b x x =++-=→lim(sin sin sin )02115分再由得lim ()sin lim (sin sin sin )x x f x x x x xb →→⋅=++--=02011即b x x x x =++++=→limsin sin sin 02111129分故当,时,是的可去间断点a b x f x ===1120() 10分解法二:若是的可去断点,则必极限存在x f x f x x =→00()lim () 2分而 所以必须lim sin lim(sin sin (sin ))x x x x x a b x →→=++-+=0220105分[]求得:,此时 a f x x x b x xb b xxx x b x x x x ==++-+=-+-++++→→→1111211102222lim ()limsin sin (sin )sin lim()()sin sin sin sin (sin )仅当,即时,上面极限存在12012-==b b9分 综上述,,时,是的可去断点a b x f x ===1120()10分116、f x x x x x x x f x ()()()()()=+--==11101,与是的间断点 4分因为:lim()()()x x x x x →+--=∞0111所以是的无穷间断点x f x =0() 7分而lim()()()x x x x x →+--=11112所以是的可去间断点x f x =1() 10分 117、(]f x ()()的定义域为,,-∞1123分 x f x =1是的间断点()5分lim ()lim()()x x f x x x x →→=---=∞11214所以是的无穷断点x f x =1() 10分注:将作为间断点者,扣分x =43118、x x f x ==01及是的间断点() 4分由于lim ()limcos()x x f x xx x →→=-=∞021π 所以是的无穷间断点x f x =0() 7分而令limcos()limcos()()limsin ()x t t xx x t x t ttt t →→→-=-++=-+=-100211221212πππππ所以是的可去间断点x f x =1() 10分 119、x f x =±±012,,,时,没有定义 ()3分)sin()2(lim 1sin 1lim )(lim 0211t t t x t x x x f t x x π+π+-=π-=→→→令由于=+-⋅=-→lim()sin t t ntt 02212πππ5分lim ()limsin lim()sin()x x t f x x xt x t t t →-→-→=-=+--112112πππ令 =--⋅=→lim()sin t t t t212ππππ7分 所以是的可去间断点x f x =±1()8分的无穷间断点均为,,,)(320x f x ±±=10分 120、x f x =±±012,,,没定义 ()1分由于 lim ()limtan limtan x x x f x x xxx →→→==⋅=11πππππ所以是的可去间断点x f x =0()4分 x f x =±±12,,均为的无穷间断点 ()6分x k f x =±±±-1232212,,也是的间断点 () 7分且故,,是的可去间断点limtan ()x k x x x k f x →-==±±±-3121232212π10分121、x f x =0时,没定义()2分 因为f ()0032-=5分f e ee e x x xx x x()limlim002332233200110011+=++=++→+→+ =238分 所以是的跳跃间断点x f x =0()10分 122、x f x =0是的间断点()2分 因为,f f ()()000000-=+=6分 即lim ()x f x →=08分 所以是的可去间断点x f x =0()10分 123、x x x f x ===012,及是的间断点() 3分因为 限:lim ()limln limln()()x x x f x x x x x x x →→→=-=-=-<<011101所以是的可去间断点x f x =0()5分lim ()limln ()x x f x x x x f x →→=-==1111所以是的可去间断点 8分因limln x x x →-=∞21所以是的无穷间断点x f x =2() 10分124、x f x x f x >==<=-=-012012时,时()arcsin ()arcsin()ππ所以的连续区间为,及, 时没定义f x x f x ()()()()-∞+∞=0005分而 f f x f f x x x ()lim ()()lim ()0020020000+==-==-→+→+ππ所以是的跳跃间断点x f x =0() 10分 125、x f x =±01,是的间断点()3分因为lim ()lim arctanx x f x x x→→=-=0110所以是可去间断点x =05分而 f x x f x x x x ()lim arctan()lim arctan10112101121010+=-=-=-=-→+→-ππ所以是跳跃间断点x =18分f x x f x x x x ()lim arctan()lim arctan-+=-=--=-=-→-+→--10112101121010ππ所以也是跳跃间断点x =-1 10分 126、x x x f x ===-011,,是的三个间断点()3分f x x x x xx x x x ()()()()=+-=-+≠≠11111101 ,lim ()x f x x →=-=010,是可去间断点6分 lim ()x f x x →==101,是可去间断点8分 lim ()x f x x →-=∞=-11,是无穷间断点10分 127、) , 2 , 1 , 0(n ±±=π=n x 是)(x f 的间断点。

高等数学:函数 、极限与连续习题含答案

高等数学:函数 、极限与连续习题含答案

1第一章函数、极限与连续一、选择题1.函数)(x f 的定义域为[]10,,则函数51()51(-++x f x f 的定义域是().A.⎥⎦⎤⎢⎣⎡-54,51B.⎥⎦⎤⎢⎣⎡56,51C.⎦⎤⎢⎣⎡54,51D.[]1,02.已知函数()62+x f 的定义域为[)4,3-,则函数)(x f 的定义域是().A.[)4,3-B.[)14,0C.[]14,0D.⎪⎭⎫⎢⎣⎡--1,293.函数211ln ++-=x xy 的定义域是().A.1≠x B.2-≥x C.2-≥x 且1≠x D.[)1,2-4.下列函数)(x f 与)(x g 是相同函数的是().A.11)(+⋅-=x x x f ,1)(2-=x x g B.2)(π=x f ,x x x g arccos arcsin )(+=C.x x x f 22tan sec )(-=,1)(=x g D.1)(=x f ,x x x g 22cos sin )(+=5.下列函数)(x f 与)(x g 是相同函数的是().A.x x g x x f lg 2)(,lg )(2==B.2)(,)(x x g x x f ==C.33341)(,)(-=-=x x x g x x x f D.xx x g x f 22tan sec )(,1)(-==6.若1)1(2-=-x x f ,则)(x f =().A.2)1(+x x B.2)1(-x x C.)2(+x x D.)1(2-x x 7.设xx f cos 2)(=,xx g sin 21)(⎪⎭⎫⎝⎛=,在区间⎪⎭⎫ ⎝⎛20π,内成立().A.)(x f 是增函数,)(x g 是减函数B.)(x f 是减函数,)(x g 是增函数C.)(x f 和)(x g 都是减函数D.)(x f 和)(x g 都是增函数28.函数)1lg()1lg(22x x x x y -++++=().A.是奇函数B.是偶函数C.是非奇非偶函数D.既是偶函数,也是奇函数9.下列函数中()是奇函数.A.1cos sin +-=x x y B.2xx a a y -+=C.2211x x y +-=D.)1)(1(+-=x x x y 10.函数x x x f sin )(2=的图形().A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x y =对称11.下列函数中,()是奇函数.A.2ln(1)x +B.)x C.sin x x D.x xe e-+12.若()f x 是奇函数,且对任意实数x ,有(2)()f x f x +=,则必有(1)f =().A.1-B.0C.1D.213.偶函数的定义域一定是().A.包含原点的区间B.关于原点对称 C.),(+∞-∞D.以上三种说法都不对14.若)(x f 是奇函数,)(x ϕ是偶函数,且)]([x f ϕ有意义,则)]([x f ϕ是().A.偶函数B.奇函数C.非奇非偶函数D.奇函数或偶函数15.函数xx f 1sin )(=是其定义域内的什么函数().A.周期函数B.单调函数C.有界函数D.无界函数16.若()f x 在(,)-∞+∞内单调增加,()x ϕ是单调减少,则[()]f x ϕ在(,)-∞+∞内().A.单调增加B.单调减少C.不是单调函数D.无法判定单调性17.函数xxe e y -+=的图形对称于直线().A.y x=B.y x=-C.0x =D.0y =318.下列函数中周期为π的是().A.xy 2sin =B.xy 4cos = C.xy πsin 1+= D.()2cos -=x y 19.下列函数是周期函数的是().A.)sin()(2x x f =B.xx f 1cos)(=C.xx f πcos )(=D.xx f 1sin)(=20.设1cos )(-=x x f 的定义域和周期分别为().A.πππ2,,22=∈+=T Z k k x B.ππ2,,2=∈=T Z k k x C.ππ=∈=T Z k k x ,,D.πππ=∈+=T Z k k x ,,221.下列结论不正确的是().A.基本初等函数在其定义域内是连续的B.基本初等函数在其定义区间内是连续的C.初等函数在其定义域内是连续的D.初等函数在其定义区间内是连续的22.下列说法正确的是().A.无穷小的和仍为无穷小B.无穷大的和仍为无穷大C.有界函数与无穷大的乘积仍为无穷大D.收敛数列必有界23.下列说法不正确的是().A.两个无穷小的积仍为无穷小B.两个无穷小的商仍为无穷小C.有界函数与无穷小的乘积仍为无穷小D.在同一变化过程中,无穷大的倒数为无穷小24.若无穷小量α与β是等价的无穷小,则αβ-是()无穷小.A.与β同阶不等价的B.与β等价的C.比β低阶的D.比β高阶的25.当0→x 时,4x x +是32x x +的().A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小26.当0→x 时,x x sin 2-是x 的().A.高阶无穷小B.低阶无穷小C.同阶无穷小但不等价D.等价无穷小27.设232)(-+=xxx f ,则当0=x 时,有().4A.)(x f 与x 是等价无穷小B.)(x f 是x 同阶但非等价无穷小C.)(x f 是比x 高阶的无穷小D.)(x f 是比x 低阶的无穷小28.设x x f -=1)(,31)(x x g -=,则当1→x 时().A.)(x f 是比)(x g 高阶的无穷小B.)(x f 是比)(x g 低阶的无穷小C.)(x f 与)(x g 是同阶但不等价的无穷小D.)(x f 与)(x g 是等价无穷小29.当0→x 时,与x 不是等价无穷小量的是().A.2sin xx -B.xx 2sin -C.3tan x x -D.xx -sin 30.当0→x 时,下列函数为无穷小量的是().A.x x sin B.xx sin 2+C.)1ln(1x x+D.12-x 31.当0→x 时,是无穷大量的有().A.xx 1sin 1B.xx sin C.2xD.xx 21-32.当0→x 时,下列函数不是无穷小量的是().A.x x x x tan cos 2-B.21sin xx C.x x x sin 3+D.xx )1ln(2+33.下列等式正确的是().A.1sin lim=∞→x xx B.11sinlim =∞→xx C.11sinlim =∞→xx x D.11sin lim=∞→xx x 34.设函数()f x 在闭区间[1,1]-上连续,则下列说法正确的是().A.1lim ()x f x →+必存在B.1lim ()x f x →必存在C.1lim ()x f x →-必存在D.1lim ()x f x →-必存在35.=→xx 102lim ().A.0B.∞+C.∞D.不存在36.下列各式中正确的是().A.0cos lim0=→xxx B.1cos lim0=→xxx C.0cos lim=∞→xxx D.1cos lim=∞→xxx537.若(sin )3cos 2f x x =-,则(cos )f x =().A.3sin 2x+B.32sin 2x-C.3cos 2x+D.3cos 2x -38.设21()arcsin 3lim ()1x x f x f x x x→∞=++,则lim ()x f x →∞等于().A.2B.21C.2-D.21-39.设x xx f )31()2(-=-,则=∞→)(lim x f x ().A.1e-B.2e-C.3e-D.3e40.极限lim sinx x xπ→∞=().A.1B.πC.2eD.不存在41.当0x →时,1xe 的极限是().A.0B.+∞C.-∞D.不存在42.当5x →时,5()5x f x x -=-的极限是().A.0B.∞C.1D.不存在43.设x x x f 21)(-=,则=→)(lim 0x f x ().A.1B.不存在C.2eD.2e-44.若0→x 时,kx x x ~2sin sin 2-,则=k ().A.1B.2C.3D.445.若52lim22=-++→x bax x x ,则().A.1=a ,6=b B.1-=a ,6-=b C.1=a ,6-=b D.1-=a ,6=b 46.=+-∞→x x xx arctan 1lim ().A.2πB.2π-C.1D.不存在647.=+→xx x )1ln(lim0().A.1-B.1C.∞D.不存在但非∞48.已知22lim 222=--++→x x bax x x ,则b a ,的值是().A.8,2-==b a B.b a ,2=为任意值C.2,8=-=b a D.b a ,均为任意值49.=-+-+++∞→11)2(3)2(3lim n n nn n ().A.31B.31-C.∞D.050.xx x x 1011lim ⎪⎭⎫⎝⎛+-→的值等于().A.2eB.2e-C.1D.∞51.设xx g x3e 1)(2-=,当0≠x 时,)()(x g x f =,若)(x f 在0=x 处连续,则)0(f 的值是().A.0B.32-C.1D.3152.设函数⎪⎪⎩⎪⎪⎨⎧<+=>-=0,1sin 0,10,1e )(2x a x x x x x x f x 在点0=x 处连续,则常数=a ().A.1-B.1C.2-D.253.若)(x f 在点0x 点连续,则=+→)2(sin lim 00h x f h ().A.)2(sin 0h x f +B.)(sin 0x f C.)(sin 0x f D.不存在54.函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点有().7A.3个B.1个C.0个D.2个55.设0=x 是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0,1sin 0,00,11)(1x x x x x ex f x 的().A.跳跃间断点B.可去间断点C.第二类间断点D.连续点56.11)(11+-=xxe e xf ,则0=x 是)(x f 的().A.可去间断点B.跳跃间断点C.第二类间断点D.连续点二、填空题57.函数xxx f -+=11ln21)(的定义域是_________.58.函数2ln arcsin +=x xy 的定义域为_________.59.函数xx y 1arctan3+-=的定义域是_________.60.设)(x f 的定义域[]1,0=D ,则)(sin x f 的定义域_________.61.若函数()f x 的定义域为[1,0]-,则函数(cos )f x 的定义域为_________.62.若函数()f x 的定义域为[0,1],则函数(arctan 2)f x 的定义域为_________.63.设2(1)32f x x x +=-+,则f =_________.64.函数nn x a y 12)(-=的反函数是_________.65.函数)0(≠-++=bc ad dcx bax y 的反函数是_________.66.函数x y 3sin 2=⎪⎭⎫ ⎝⎛≤≤-66ππx 的反函数是_________.867.函数3arccos2xy =的反函数是_________.68.______28153lim 233=+-++∞→n n n n n n .69._______43867lim 22=+-+∞→n n n n .70.⎪⎭⎫⎝⎛++++∞→n n 21...41211lim =_________.71.2)1(...321limnn n -++++∞→=_________.72.35)3)(2)(1(limn n n n n +++∞→=_________.73._______lim 2210=+→x x x e.74._______1lim432=-+++∞→nn n n n n .75._______43...21lim 2=++++∞→nn nn .76._______1!!sin lim=+∞→n n n .77.=⎪⎭⎫⎝⎛++++++∞→πππn n n n n n 222...221lim _________.78.设012lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x x ,则=a _________,=b _________.79._______4421lim 22=⎪⎭⎫ ⎝⎛---→x x x .80._______2)2sin(lim22=---→x x x x .81._______63sin lim=∞→xxx .982.m n x x x )(sin )sin(lim 0→(m n ,为正整数,且m n >)=.83._______1cos 1lim 20=--→x e x x .84._______4tan 8arcsin lim0=→xxx .85._______81221lim 32=⎪⎭⎫ ⎝⎛---→x x x .86.xxx x 30sin sin tan lim-→=.87.)1(lim 2x x x x -++∞→=.88.)1sin 1)(11(tan sin lim32-+-+-→x x xx x =.89.若2)1sin(1lim 21=--+→x ax x x ,则_________=a .90.若0x →时函数tan sin x x -与nmx 是等价无穷小,则=m ,n =.91.当∞→x 时,函数)(x f 与21x是等价无穷小,则_______)(3lim 2=∞→x f x x .92.当0→x 时,函数112-+ax 与x 2sin 是等价无穷小,则_______=a .93.当∞→x 时,函数)(x f 与x4是等价无穷小,则_______)(2lim =∞→x xf x .94.若1x →时,2(1)1mx x --是比1x -高阶的无穷小,则m 的取值范围是.95.11232lim +∞→⎪⎭⎫⎝⎛++x x x x =_________.96.40)21(lim -→=-e x x kx ,则_________=k .1097.nn n x x f ⎪⎭⎫⎝⎛+=∞→sin 1lim )(,则=')(x f .98.4lim e a x a x xx =⎪⎭⎫ ⎝⎛+-+∞→,则_______=a .99._______1lim 23=⎪⎭⎫ ⎝⎛++∞→x x x x .100.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.101.设函数⎪⎩⎪⎨⎧≥<<+≤+=1,10,0,2)(2x bx x a x x x x f 在),(+∞-∞内连续,则___________,==b a .102.)(lim 2)sin 21()(031x f x x f x x→++=,求()=x f .103.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.104.设2211xx x x f +=⎪⎭⎫ ⎝⎛-,则=)(x f .105.函数⎪⎩⎪⎨⎧=≠+=010,1sin 1)(x x xx x f 的连续区间是.106.若函数()⎪⎩⎪⎨⎧>+≤+=0,21ln 0,)(12x x x x a x f x 在0=x 处连续,则=a .107.极限02sin 3lim[sin]x x x x x→+=.108.极限3sin 2lim[sin ]x xx x x→∞+=.109.若⎪⎩⎪⎨⎧=≠-+=-0,0,316sin )(3x a x x e x x f ax 在0=x 连续,则_______=a .110.函数⎪⎩⎪⎨⎧><<-±===2,420,42,0,2)(2x x x x x x f 的间断点有_________个.111.函数653)(2+--=x x x x f 的第二类间断点是_________.112.函数)5)(32(86)(22-----=x x x x x x f 的间断点是.113.设⎪⎩⎪⎨⎧≤+>=,0,,0,1sin )(2x x a x x x x f 要使)(x f 在),(+∞-∞内连续,则=a .114.设⎪⎩⎪⎨⎧<+=>+=0,20,0,)(2x b x x a x e x x f 在点0=x 处连续,则=a ,=b .115.设⎪⎩⎪⎨⎧≤>=0,0,3sin )(x x x x x x f ,则点0=x 是)(x f 的第类间断点.116.设⎪⎩⎪⎨⎧≤<-+>=-,01),1ln(,0,)(11x x x e x f x 则点0=x 是)(x f 的第类间断点;点1=x 是)(x f 的第类间断点.117.若函数=)(x ϕ,则函数)(x f 为奇函数这里⎪⎪⎩⎪⎪⎨⎧<=>++=0, )( 0, 0 0 ),1ln()(2x x x x x x x f ϕ118.⎩⎨⎧<-≥=00 )(22x x x x x f ,则)(x f 是(奇/偶)函数.119.⎩⎨⎧>+≤-=0 10 1)(x x x x x f ,则)(x f 是(奇/偶)函数.三、计算题120.设函数1)1(2++=x x x f 0>x ,求)(x f .121.设函数2211xx x x f +=⎪⎭⎫ ⎝⎛+,求)(x f .122.设xx f -=11)(,求))((x f f .123.设23)1(2+-=+x x x f ,求)(x f .124.已知x x g xx f -==1)(,1)(,求))((x g f .125.设x x x f 2)1(2-=-,求)1(+x f .126.求函数321)(2-+=x x x f 的连续区间.127.设函数)(x f 的定义域为)0,1(-,求函数)1(2-x f 的定义域.128.设x xx f +=12arccos )(,求其定义域.129.设)(x f 的定义域为[]1,0,求)(cos x f 的定义域.130.已知⎩⎨⎧≤<≤≤=+21,210,)1(2x x x x x ϕ,求)(x ϕ.131.设⎩⎨⎧<+≥+=0,40,12)(2x x x x x f ,求)1(-x f .132.判断函数x x x f 32(32()(-++=的奇偶性.133.判断11-+=x x a a x y 的奇偶性.134.设)21121)(()(-+=x x f x F ,已知)(x f 为奇函数,判断)(x F 的奇偶性.135.求函数x x y 44sin cos -=的周期.136.求函数2cos sin x x y +=的周期.137.求函数x y 3sin 2=)66(ππ<<-x 的反函数.138.求函数)1ln(2-+=x x y 的反函数.139.xx x 3113sin lim +-∞→.140.633lim 6--+→x x x .141.2203)1ln(lim x x x +→.142.x xx 4cos 12sin 1lim 4-+→π.143.2321lim 4--+→x x x .144.123lim 221-+-→x x x x .145.25273lim 33+-++∞→x x x x x .146.)cos 3(11lim 32x x x x +++∞→.147.2021cos lim x x x -→.148.2021lim x ex x -→.149.3222......21lim nn n +++∞→.150.)3(lim 2x x x x -++∞→.151.xx x ln 1lim 21-→.152.20cos 1lim x x x -→.153.38231lim x x x +---→.154.⎪⎪⎭⎫ ⎝⎛+-++⨯+⨯∞→)12)(12(1...531311lim n n n .155.n n 11lim +∞→.156.114sin lim 0-+→x xx .157.)(lim 22x x x x x --++∞→.158.156223lim 22+-++∞→n n n n n .159.nx mxx sin sin lim 0→.160.⎪⎭⎫ ⎝⎛-→x x x x ln ln 1lim 1.161.145lim 1---→x xx x .162.⎪⎪⎭⎫ ⎝⎛--→11lim 31x x x .163.xx x --→πππ1cos )(lim .164.20cos 1lim x mx x -→.165.11sinlim -+∞→x x x x x .166.)15(lim 323x x x x -+-∞→.167.)cos 1(cos 1lim 0x x x x --+→.168.28lim 38--→x x x .169.n n n 31...9131121...41211lim ++++++++∞→.170.xx x x x 6sin 4cos lim ++∞→.171.)1(lim 2x x x x -+∞→.172.⎪⎪⎭⎫⎝⎛-+→114sin lim 0x x x .173.174lim 22++→x x x .174.2220)1()41ln(lim x x e x -+→.175.115)2(5)2(lim ++∞→+-+-n n nn n .176.xx e 1011lim +→.177.若123lim 22=-+-→x ax x x ,求a .178.已知01lim 2=⎪⎪⎭⎫ ⎝⎛--+∞→b ax x x x ,其中a ,b 是常数,求a ,b .179.已知),0()1(lim 2017∞≠≠=--∞→A n n n k k n ,求k 的值.180.计算⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim .181.已知5312)(22+++-=bx x ax x f ,当∞→x 时,求a 和b 的值使)(x f 为无穷小量.182.当0→x ,比较函数22)(-+=x x e x f 与x 是否为同阶无穷小.183.已知82lim 3=⎪⎭⎫ ⎝⎛-+∞→x x a x a x ,求a .184.()xx x sec 32cos 1lim +→π.185.11212lim +∞→⎪⎭⎫⎝⎛-+x x x x .186.26311lim -∞→⎪⎭⎫ ⎝⎛+x x x 187.xx x x 311lim ⎪⎭⎫ ⎝⎛+-∞→.188.21232lim +∞→⎪⎭⎫ ⎝⎛++x x x x .189.xx x tan 2)(sin lim π→.190.已知⎪⎪⎩⎪⎪⎨⎧<=>+=0,sin 10,0,1sin )(x x x x p x q x x x f 在点0=x 处极限存在,求p 和q 的值.191.求函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点的个数.192.判断函数111)(--=x x ex f 的间断点及其类型.193.判断函数xx x f 1cos)(=的间断点及其类型.194.设)(x f 在点0=x 处连续,且⎪⎩⎪⎨⎧=≠-=0,0,cos 1)(2x a x x x x f ,求a .195.求函数xxy sin =的间断点及类型.196.求函数)1()(22--=x x xx x f 的间断点.197.证明方程019323=+--x x x 至少有一个小于1的正根.198.判断函数122+=x y 的单调性.199.已知⎪⎪⎪⎩⎪⎪⎪⎨⎧<⎪⎭⎫ ⎝⎛-=>+--=0,110,0,1)1(2sin )(2x x x b x a e e x f x x x 在点0=x 处连续,求a 和b 的值.200.设函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在),(+∞-∞内连续,求a .201.设⎪⎪⎩⎪⎪⎨⎧<≤---+=>+=01,110,00,)1ln()(x x xx x x x x x f ,判断其间断点及类型.202.设xe xf x 1)(-=,判断其间断点及类型.203.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0)(,11x x x e x f x ,判断)(x f 的间断点及其类型.204.求曲线65222+-=x x x y 的渐近线.205.求xex f -+=1111)(的间断点并判断其类型.206.设⎪⎪⎪⎩⎪⎪⎪⎨⎧>++=<=0,)21ln(0,0,sin 1sin )(2x a xx x b x x x x x f ,求b a ,的值使其在),(+∞-∞内连续.207.设⎪⎪⎩⎪⎪⎨⎧≤<=<<-=-21,1,210,1ln )(1x e x x x xx f x ,(1)求)(x f 的定义域(2)判断间断点1=x 的类型,如何改变定义使)(x f 在这点连续?208.判断函数x x y ln +=在区间),0(+∞内的单调性.第一章函数、极限与连续1..54,51:15101510⎥⎦⎤⎢⎣⎡⇒⎪⎪⎩⎪⎪⎨⎧≤-≤≤+≤D x x 选C2.43<≤-x ,826<≤-x ,14620<+≤x 。

高等数学第一章综合测试卷含答案

高等数学第一章综合测试卷含答案

第一章 函数与极限综合测试题A 卷一、填空题(每小题4分,共20分) 1、21lim(1)xx x→∞-= .2、当0x →+时,无穷小ln(1)Ax α=+与无穷小sin 3x β=等价,则常数A= .3、已知函数()f x 在点0x =处连续,且当0x ≠时,函数1()2x f x -=,则函数值 (0)f = . 4、111lim[]1223(1)n n n →∞+++⋅⋅+ = .5、若lim ()x f x π→存在,且sin ()2lim ()x xf x f x x ππ→=+-,则lim ()x f x π→= .二、选择题(每小题4分,共20分)1、当0x →+时, 无穷小量是 [ ].(A ) 1sin x x (B ) 1x e (C ) ln x (D) 1sin x x2、点1x =是函数311()1131x x f x x x x -<⎧⎪==⎨⎪->⎩的 [ ]. (A ) 连续点 (B ) 第一类非可去间断点 (C ) 可去间断点 (D) 第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的 [ ]. (A ) 充分非必要条件 (B ) 必要非充分条件 (C ) 充要条件 (D) 无关条件4、已知极限22lim()0x x ax x→∞++=,则常数a 等于 [ ]. (A )1- (B )0 (C )1 (D) 2 5、极限201limcos 1x x e x →--等于 [ ].(A ) ∞ (B )2 (C )0 (D) 2- 三、解答题(共60分)1、(7分)计算极限 222111lim(1)(1)(1)23n n →∞--- . 2、(7分)求极限 3tan sin limx x xx →-. 3、(7分)求极限 123lim()21x x x x +→∞++. 4、(7分)求极限1x e →-5、(7分)设3214lim 1x x ax x x →---++ 具有极限l ,求,a l 的值.6、(8分)设3()32,()(1)n x x x x c x αβ=-+=-,试确定常数,c n ,使得()()x x αβ .7、(7分)试确定常数a ,使得函数21sin 0()0x x f x xa x x ⎧>⎪=⎨⎪+≤⎩在(,)-∞+∞内连续.8、(10分)设函数()f x 在开区间(,)a b 内连续,12a x x b <<<,试证:在开区间(,)a b 内至少存在一点c ,使得11221212()()()()(0,0)t f x t f x t t f c t t +=+>>.综合测试题A 卷答案一、填空题1、2e - 2、3 3、0 4、1 5、1 二、选择题1、(A )2、(C )3、(D )4、(A )5、(D ) 三、解答题1、原式=132411111lim()()()lim 223322n n n n n n n n →∞→∞-++⋅⋅⋅=⋅= .2、 原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x xx x x x x x x →→→--===.3、原式= 232lim (1)(1)lim(1)2121x x x x x x x eee →∞→∞+-++++===.4、原式=201sin 12lim 2x x xx →=.5、 因为1lim(1)0x x →-+=,所以 321lim(4)0x x ax x →---+=,因此 4a =,代入原式得321144(1)(1)(4)limlim 1011x x x x x x x x l x x →-→---++--===++. 6、 此时,()()x x αβ7、 当0x >时,()f x 连续,当0x <时,()f x 连续.20001lim ()lim sin 0,lim ()lim()x x x x f x x f x a x a x+-→→→→===+= 所以,当0a =时,()f x 在0x =连续,因此,当0a =时,()f x 在(,)-∞+∞内连续. 8、 因为()f x 在(,)a b 内连续,12a x x b <<<,所以 ()f x 在12[,]x x 上连续,由连续函数的最大值、最小值定理知,()f x 在12[,]x x 上存在最大值M 和最小值m,即在12[,]x x 上,()m f x M ≤≤,所以12112212()()()()t t m t f x t f x t t M +≤+≤+,又因为 120t t +>,所以32221()32(1)(2)(1)(2)3lim ,3,2(1)α→=-+=-+-+=∴==- x x x x x x x x c n c x c112212()()t f x t f x m M t t +≤≤+,由连续函数的介值定理知:存在12(,)(,)c x x a b ∈⊂,使得112212()()()t f x t f x f c t t +=+.第一章 函数与极限综合测试题B 卷一、填空题(每小题5分,共30分) 1、若()2110x x f x x x ++⎛⎫=≠ ⎪⎝⎭,则()f x =2、ln 12sin x x →+=3、102lim arccos xx x π→⎛⎫= ⎪⎝⎭4、limn →∞⋅=5、121limn n n n n n ββαααβ→∞⎡-⎤⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 6、()lim 1txtxt x e f x e →+∞+=+,()f x 的间断点是二、选择题(每小题5分,共30分)1、(),012,12,12x x f x x x x <<⎧⎪==⎨⎪-<≤⎩的连续区间为 [ ] .(A )[]0,2; (B )()0,2; (C )[)(]0,11,2 ; (D )()(]0,11,2 .2、01sinlimsin x x x x→的值为 [ ]. (A )1 (B )∞ (C )不存在 (D )0.3、若222lim 22x x ax bx x →++=--,则必有 [ ]. (A )2,8a b == (B )2,5a b == (C )0,8a b ==- (D )2,8a b ==-. 4、若0x →时,()f x 为无穷小,且()f x 是2x 的高阶无穷小, 则()20limsin x f x x→= [ ].(A )0 (B )1 (C )∞ (D )12. 5、()11121arccot1xxe f x xe-=+,则0x =是()f x 的 [ ]. (A )可去间断点 (B )跳跃间断点 (C )无穷间断点 (D )振荡间断点.6、(),0,0x e x f x a x x ⎧<=⎨+≥⎩,要使()f x 在0x =处连续,则a = [ ].(A )2 (B )1 (C )0 (D )1-. 三、计算题(每小题6分,共30分) 1、求13521lim 2482n n n →∞-⎛⎫++++⎪⎝⎭ .2、讨论函数()221lim1nn n x f x x x →∞-=+的连续性,若有间断点,判别其类型. 3、设()()()4,1,2122,1x ax bx x x x f x x ⎧++≠≠-⎪-+=⎨⎪=⎩在1x =处连续,求,a b 的值.4、求22212lim 12n n n n n n n n n →∞⎛⎫+++⎪++++++⎝⎭ . 5、求()()222ln sin limln 2x xx x e x e x x→+---.四、证明题(共10分)1、若()f x 在[],a b 上连续,12n a x x x b <<<<< ,证明:在[]1,n x x 上必有ξ,使()()()()121n f f x f x f x nξ=+++⎡⎤⎣⎦ .综合测试B 卷答案一、填空题1、()20x x x -≠; 2、2; 3、2e π-; 4、2; 5、2βα+; 6、0x =二、选择题1、(D)2、(C)3、(D)4、(A)5、(B)6、(B) 三、计算题 1、()12121231,2,222n n n n n n n --++=-= ,13521lim 3.2482n n n →∞-⎛⎫++++= ⎪⎝⎭2、()22,11lim0,11,1nnn x x x f x x x x x x →∞⎧->⎪-===⎨+⎪<⎩,1x =±也是第一类(跳跃)间断点.3、,2,3a b ==-.4、()()221111221n n n n n x n n n n n ++≤≤++++,由夹逼准则1lim 2n n x →∞=. 5、 原式()()222222002sin ln 1ln sin ln lim lim ln ln ln 1x x x x x x x x x x e e e x e x e e →→⎛⎫+ ⎪+-⎝⎭==⎛⎫--- ⎪⎝⎭2222222000sin sin lim lim lim 1x x xx x x x x e x x e e x e xx --→→→==-=-=-- . 四、证明题因为()f x 在[],a b 上连续,[][]1,,n x x a b ⊂,故()f x 在[]1,n x x 上连续,因而在[]1,n x x 上()f x 必有最大值M 和最小值m .于是()(),1,2,i m f x Mi n ≤≤= ,作和,有()1ni i nm f x nM =≤≤∑,于是()11ni i m f x M n =≤≤∑.由介值定理的推论,[]1,n x x 上连续的函数()f x 必取得介于最大值M 与最小值m 之间的任何值,即存在[]1,n x x ξ∈,使()()11ni i f f x n ξ==∑.。

高等数学第一章测试题(第7版)

高等数学第一章测试题(第7版)

高等数学(上)第一章函数与极限测试题一、填空(20分)1.设)(x f y =的定义域是]1,0(,x x ln 1)(-=ϕ,则复合函数)]([x f y ϕ=的定义域为 ;2.函数)21ln(12arcsin 2x x x xy --++=的定义域 ;3.下列哪些函数相同 ;(1) x ln 2与2ln x ; (2) 2x 与x ; (3) x 与x x sgn .4.函数)1ln(2x x y ++=的奇偶性为 ;函数x e x y 2=的奇偶性为 ;5. (1) 设2)1(2+=+x x f ,则=)(cos x f ;(2) 设x e f x =+)1(,则=)(x f .6.如果,21)74)(1(132lim 23=+-+-∞→n x x x x x 则=n ; 7. =+∞→)(x xx x x 2sin 2sin lim ;8.当=α 时,αx x 21~1s i n 1-+;9. 1x =-为2()1f x x =+的第____类间断点;10.若⎪⎩⎪⎨⎧=≠-+=0,0,1sin )(2x a x x e x x f ax 在0=x 处连续,则=a 。

二、计算数列极限(50分):1. )2141211(lim n n +++∞→ ; 2. )1(lim n n n -++∞→; 3. n n nn n 3232lim +-+∞→ 4.15865lim 223+-+-→x x x x x ;5.)1113(lim 31x x x ---→ 6. 121l i m 22---∞→x x x x ; 7. 30sin tan lim x x x x -→; 8. xx x sin 20)31(lim +→; 9. x e e xx x cos 1lim 0---→; 10. 11sin 1lim 20--+→x x e x x ;五(6分)、设⎪⎩⎪⎨⎧=≠+=-001)(2x k x x x f x )(,试确定k 的值,使)(x f 在0=x 处连续。

函数与极限练习题

函数与极限练习题

函数与极限练习题第一章函数与极限§1 函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。

[ ]2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有B x f A ≤≤)( [ ]3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。

[ ]4、定义在(∞+∞-,)上的常函数是周期函数。

[ ]5、任一周期函数必有最小正周期。

[ ]6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。

[ ]7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。

[ ] 8、f(x)=1+x+2x 是初等函数。

[ ]二.单项选择题1、下面四个函数中,与y=|x|不同的是(A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中既是奇函数,又是单调增加的。

(A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是(A )x 2log (B )x 2 (C )22log x (D )2x 4、若)(x f 为奇函数,则也为奇函数。

(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D))].([x f f -三.下列函数是由那些简单初等函数复合而成。

1、 y=)1arctan(+x e2、 y=x x x ++3、 y=xln ln ln四.设f(x)的定义域D=[0,1],求下列函数的定义域。

(1) f()2x(2) f(sinx)(3) f(x+a) (a>0)(3) f(x+a)+f(x-a) (a>0)五.设??=,,2)(x x x f 00≥<="">-=,3,5)(x x x g 00≥<="" 及)]([x="" ,求)]([x="">六.利用x x f sin )(=的图形作出下列函数的图形:1.|)(|x f y = 2。

高等数学(同济第五版)第一章(函数与极限)练习题册

高等数学(同济第五版)第一章(函数与极限)练习题册

第一章 函 数 与 极 限第 一 二 节 作 业一、填空题:1. 函数f(x)=x -3+arctanx1的定义域是 。

2. 设f(x)的定义域是[0,3],则f(lnx)的定义域是 。

二、选择题(单选):1. 设f(x)=⎪⎩⎪⎨⎧≤<≤≤--ππx x x x 0,sin 0,sin 33,则此函数是:(A )周期函数; (B )单调增函数; (C )奇函数; (D )偶函数。

答:( )2. 设f(x)=x e ,g(x)=sin 2x, 则f[g(x)]等于:(A )xe2sin ; (B ))(sin 2x e ; (C )x e x 2sin ; (D )2)(sin 2xe x答:( )三、试解下列各题: 1. 设{1,21,1)(22>-≤--=x x x x x x x f ,求f (1+a)-(1-a), 其中a>0.2. 设f (x+1)=232+-x x , 求f (x).3. 设f (x)=xx+-11 , 求f[f(x)].4. 设y=1+ln(x+2),求其反函数。

四、证明:定义在[-l ,l]上的任何函数f (x)都可表示为一个偶函数与一个奇函数之和。

第 三 节 作 业一、填空题:设数列{n u }的一般项公式是1213++=n n u n ,n 从 开始,才能使23-n u 〈0.01成立。

二、选择题(单选):1. 下列数列{n x }中,收敛的是: (A )n n x nn 1)1(--= ; (B )1+=n n x n ; (C )2sin πn x n =; (D )nn n x )1(--=。

答:( ) 2. 下列数列{n x }中,发散的是:(A )n n x 21=; (B )2)1(5n x n n -+=; (C )2312+-=n n x n ; (D )2)1(1n n x -+=。

答:( ) 三、试利用数列极限定义证明:321312lim=++∞→n n n 。

(完整word版)高等数学第一章函数与极限试题

(完整word版)高等数学第一章函数与极限试题

高等数学第一章函数与极限试题一. 选择题1.设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A ) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C ) F(x)是周期函数⇔f(x)是周期函数. (D ) F(x)是单调函数⇔f(x)是单调函数 2.设函数,11)(1-=-x xe xf 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.3.设f (x)=xx 1-,x ≠0,1,则f [)(1x f ]= ( )A ) 1-xB ) x-11 C ) X1 D ) x4.下列各式正确的是 ( ) A )lim0+→x )x1+1(x=1 B ) lim 0+→x )x1+1(x=e C ) lim ∞→x )x 11-(x=-e D ) lim ∞→x )x1 +1(x-=e 5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。

A.1; B.∞; C.3ln ; D.3ln 2。

6.极限:=+-∞→xx x x )11(lim ( ) A.1; B.∞; C.2-e ; D.2e7.极限:∞→x lim 332x x +=( )A.1;B.∞;C.0;D.2.8.极限:xx x 11lim-+→=( ) A.0; B.∞; C 21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( )A.0;B.∞;C.2;D.21.10.极限: xxx x 2sin sin tan lim 30-→=( ) A.0; B.∞; C.161; D.16.二. 填空题11.极限12sin lim 2+∞→x xx x = . 12. lim→x xarctanx =_______________.13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x =_______________;14.=→x xx x 5sin lim0___________; 15. =-∞→n n n)21(lim _________________; 16. 若函数23122+--=x x x y ,则它的间断点是___________________17. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x xx 其定义域是 ,值域是18. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合()()x x x x f 25lg 12-+-+=19. 无穷小量是 20. 函数)(x f y =在点x0 连续,要求函数yf (x) 满足的三个条件是三. 计算题21.求).111(lim 0x ex xx --+-→ 22.设f(e 1-x )=3x-2,求f(x)(其中x>0); 23.求lim 2 x →(3-x)25--x x ;24.求lim ∞→ x (11-+x x )x; 25.求lim x →)3(2tan sin 22x x x x +26. 已知9)(lim =-+∞→xx ax a x ,求a 的值; 27. 计算极限nnnn 1)321(lim ++∞→28.求它的定义域。

医用高等数学第一单元 函数与极限-答案

医用高等数学第一单元  函数与极限-答案

第一单元 函数与极限一、填空题1、当→x ∞ 时,()21ln xy +=为无穷大。

2、=-+→∞)1()34(lim22x x x x 0 。

解:分子的次数 < 分母的次数,结果为0 3、0→x 时,x x sin tan -是x 的 高 阶无穷小。

解:0tan sin lim 0x x xx→-=4、01sinlim 0=→xx kx 成立的k 为 0k > 解: 0,(0,0)sin k x k x x →>→当时,有界5、=-∞→x e xx arctan lim 0 。

解: 0,arctan ()2xex x π-→→→∞当时,6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 2。

解:b b x x f x x =+=--→→)(lim )(lim 0Θ,2)1(lim )(lim 0=+=++→→xx x e x f Θ,,)0(b f = 2=∴b 。

7、+→xx x 6)13ln(lim0 1/2 。

解:ln(13)~3(0)x xx +→8、若105lim(1)kx x e x--→∞+=,则k=2 解:551055lim (1)2kxk x e e k x ---→∞⎡⎤+==⇒=⎢⎥⎢⎥⎣⎦9、知222lim 22x x ax bx x →++=--,则a =_____2___,b =_____-8___.解:10、设a 是非零常数,则2lim()________xa x x a e x a→∞+=-。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数3____2a =-。

12、函数)(x f =1ln -x x的间断点是_______2,1,0______13、lim_0_n =14、设8)2(lim =-+∞→xx ax a x ,则=a _____2ln ___。

高数第一章函数与极限自测题 答案与提示

高数第一章函数与极限自测题 答案与提示

函数与极限自测题 A 答案与提示一 选择题1. 答案:B 2. 答案:A 提示:令()1,t g x x ==+则().2tf t t =+ 3答案: B 提示:考虑数列(1).n n u =- 4. 答案:D 5. 答案:D 提示:考虑数列(1).n n x =- 6. 答案:C 提示:令00,x =121()().f x f x x==7答案:A 提示:(1)(1)(7)7.f f f -=== 8答案:D 提示:0lim ()lim cos ,22x x f x x ππ++→→==1lim ()lim arctan .2x x f x x π--→→==- 二、填空题1. 答案:[]a a ,- 2. 答案:⎩⎨⎧-≥-<+2224x x x提示:()2(), ()02+(2+), 2+004,2=.2, ()02, 2+002, 2f x f x x x x x x f f x f x x x x +<<<+<-⎧⎧⎧==⎡⎤⎨⎨⎨⎣⎦≥≥≥≥-⎩⎩⎩且且3. 答案:1cos x -提示:22(sin )1(12sin)2(1sin ),222x x x f =+-=-故2()2(1),[1,1].f x x x =-∈-从而,22(cos )2(1cos )2sin 1cos .222x x x f x =-==- 4. 答案:6 5.答案:20log (1)x y x x ⎧≥⎪=⎨-<⎪⎩ 6. 答案:2 提示:当x →∞时,31x 是21x 的高阶无穷小,21x与3211+x x 等价. 7. 答案:27提示:多项式23(1)(31)x x +-与4(2)x x +的最高次项分别为527x 和5x ,其系数之比为27.8. 答案:2提示:22001212limlim 12x x x x e e kx k x k→→--===. 函数与极限自测题 B 答案与提示一 选择题1. 答案:C 2. 答案:C 3. 答案:C 提示:令1t x=,0t →,则223111cos 222t t t t -+. 4. 答案:C 提示:当()0f x ≡时,0lim ()x g x →可能存在,也可能不存在. 5. 答案:C提示:注意()0f x ≡的情形. 6. 答案:C7. 答案:D提示:01111111111lim , lim , lim 0, lim 1.1111xxxxx x x x x x x x eeee+-+-→→→→----=-∞=+∞==----- 8. 答案:C 提示:0lim ()lim=0=(0)11arccotx x x f x f x→→=+,则()f x 在[5,5]-上连续,从而有界.二、填空题1. 答案:22x - 提示:2211()f x x xx +=+21()2x x=+-. 2. 答案:1,4m n =-=提示:由2224121000(1)1cos(1)lim lim lim 1222x x m n m n m n x x x e e xx x x+→→→---===,得1,4m n =-=. 3. 答案:1e -提示:1331lim()2x x x -→=-33111lim 1lim 1322.x x x x x e e e →→⎛⎫-⎪---⎝⎭-==4.答案:12提示:设22212,12n n x n n n n n n n =++⋅⋅⋅+++++++则112222(1)(1).21n n n n n x n n n n ++<<+++ 5. 答案:-4提示:2212200tan (1cos )lim lim 222ln(12)(1)x x x ax b x a x b x a x cx x c e -→→++-===-+--+-.6. 答案:1提示:[]1lim ln(1)ln ln(lim (1))ln 1xx x x x x e x→+∞→+∞+-=+==.7. 答案:1,00,01,0x x x -<⎧⎪=⎨⎪>⎩提示:0lim 20;0lim 2=+.nxnx x x x x --→∞→∞>=<∞当时,当时,8. 答案:),1()1,(+∞-⋃--∞提示:11lim ()2(1).lim ()0(1) 2.x x f x f f x f -→→-===≠-=-函数与极限自测题 C 答案与提示一 选择题1. 答案:A提示:12lim (),lim ()x x f x f x →→=∞=∞,()f x 在0点的左右极限存在.2. 答案:D提示:考察()()()f x g x x x ϕ===. 3. 答案:A提示:1111011lim 1, lim 111xxx x xxe e e e +-→→--==-++.4. 答案:D提示:当0a =时,()g x 在0x =处连续,否则不连续. 5. 答案:B 提示:[]2lim sin()x x xππ→+∞+22lim (sin []coscos []sin)x x x xxππππ→+∞=+2[]0lim (1)sin0x x xπ→+∞=+-=.6. 答案:A提示:A 错误.当lim(()())0x af xg x →-=时,lim ()x af x →,lim ()x ag x →可能不存在,例如:1()()g x f x x a==-. 由极限的定义可以证明,B ,C ,D 正确. 7. 答案:C提示:当0x ≠时,f x nx nx n ()lim=-→∞3113lim 3n xx→∞==--. 当0x =时,()0f x =.8. 答案:C二、填空题1. 答案:11x-提示:1()f x 单调,可逆,其逆函数111()2xf x x -+=-.则有111()(())n n f x f f x -+=.可推知311()()f x f x =. 13011()(())f x f f x x -==. 12911()()2x f x f x x -+==-.1281291()()1f x f f x-==-. 2. 答案:16提示:令1x t =,则原式2301(1)2lim t t t t e t +→-+= ()22333011111()226lim t t t t t t o t t +→⎛⎫-+++++- ⎪⎝⎭=)33301()16lim t t o t t +→⎛⎫+- ⎪⎝⎭=363011162lim 6t t t t +→-==. 3. 答案:32提示:()()2200113sin cos3cos3limlim 1cos ln 122x x x x x x x x x x x →→++==++. 4. 答案:12e-提示:()220021111limln(1cos 1)lim(cos 1)2lim ()lim cos x x x x x x x x x a f x x eee →→+---→→=====.5. 答案:34提示:2221111222422000(cos 1)31lim lim 4x x x x x x kx kx k→→→--+====. 6.提示:++22011lim ()lim ln()lim (1)1t x x x xf x x x x x x x →+∞→→==-=-++,lim ()lim lim x x x f x x---→→→===-. 7. 答案:35提示:2222224422222225272527312=lim tan(arc tan arctan )lim 2527125112x x x x x x x x x xx x x x x x →∞→∞++-++++-==+++++⋅++原式. 8. 答案:2ln 21-提示:设123ln 1ln 1ln 1ln 1n n n n n n x n n n n n n n n n⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=++++++++,则 111111ln 1ln 11n n n k k k k x n n n n n ==⎛⎫⎛⎫⎛⎫-+<<+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭∑∑. 而1011lim ln 1ln(1)2ln 21n n k k x dx n n →∞=⎛⎫+=+=- ⎪⎝⎭∑⎰. 由夹逼准则,知lim 2ln 21n n x →∞=-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、设函数 F x 的定义域为
D x x R, x 0且x 1 ,且满足
F ( x) F (
则 F x
x 1 ) 1 x x
专业课辅导 全日制辅导 公共课定制 周末辅导 四、六级辅导
7、设函数 f ( x) a
A 0,1
B 0, e 1
C 1, e

D
1 e , e
x 2 , x 0 2 x, x 0 8、设 g ( x) , f ( x) ,则 g[ f ( x)] ( ) x 2, x 0 x, x 0
D
x 1 x
3、下列命题正确的是( )
A
若 lim U n a ,则 lim U n a
n
n
yn 0 ,则 lim xn yn 0 B 设 xn 为任意数列, lim n n xn yn 0 ,则必有 lim xn 0 或 lim yn 0 C 若 lim n n n
D
9、设函数 f ( x) ln
1 ,那么 x 2 是 f ( x) 的( ) x2
A A
可去间断点
B 跳跃间断点 B
x2
C 第二类间断点 C
4
D 连续点 D
5
10、当 x 0 时,无穷小量 sin 2 x 2sin x 是 x 的( )阶无穷小量。 2 3
D 数列 xn 收敛于 a 的充分必要条件是:它的任一子数列都收敛于 a
2 x 1,x 0 4、设 f ( x) 0, x 0 ,则 lim f ( x) 为( ) x 0 1 x 2 , x 0
A
不存在
B
2, xn 2 xn1 n 2 ,求 lim xn 。
n
专业课辅导 全日制辅导 公共课定制 周末辅导 四、六级辅导
x
南京考研网
a 0, a 1 ,则 lim n
1 ln f (1) f (2) n2
f (n)
8、已知 y f ( x) 是最小正周期为 5 的偶函数。当 f (1) 1 时, f (4) 9、如果 f (ln x) x, 则 f (3) 的值是 10、已知数列 a1 2, a2 2
3、设 f ( x) lim
n
ln en x n n
x 0 ,求 f ( x) 。
a 2
4、若 f ( x) 在 0, a a 0 上连续,且 f (0) f (a) ,则方程 f ( x) f ( x ) 在 0, a 内 至少有一个实根。 5、设 x1
1 1 , a3 2 , 的极限存在,则极限为 1 2 2
2
三、简答题(每小题 8 分,共 40 分)
1、已知 f ( x) 为二次函数,且 f ( x 1) f ( x 1) 2x 4x ,求 f ( x) 。
2
2、设实数 a b ,函数 f ( x) 对任意实数 x ,有 f (a x) f (a x), f (b x) f (b x) 。 证明: f ( x) 是以 2b 2a 为周期的周期函数。
f ( x) x,g ( x) x 2 f ( x) 3 x 4 x3 ,g ( x) x 3 x 1
f ( x) x 1,g ( x) x2 1 x 1
2、已知函数 f ( x 1)
A

1 x
x 1 ,则 f ( x 1) 等于( ) x 1 x x 1 B C 1 x x
A C
2 x 2 ,x 0 2 x,x 0 2 x 2 ,x 0 2 x,x 0
B
2 x 2 ,x 0 2 x,x 0 2 x 2 ,x 0 2 x,x 0
4、 lim
ln cos x ( 0) x 0 ln cos x
5 、 设 函 数 f ( x) 在 , 内 有 定 义 , 且 f ( x) 0 , 对 任 意 的 实 数 x 和 y 均 有
f ( x y)
f( x ) f( 成立 y) ,则 f (2008)
B ( x)2 必有间断点
D

( x)
f ( x)
必有间断点
6、设函数 f ( x)
上连续,则 a ( )
专业课辅导 全日制辅导 公共课定制 周末辅导 四、六级辅导

南京考研网
A
0
B
2
C
1
D
1
7、已知 f ( x) 的连续区间是 0,1 ,则函数 f ln( x 1) 的连续区间是( )

南京考研网
第一章 函数与极限 单元测试题
满分: 100 分 考试时间: 120 分钟 日期____________ 姓名: ____________
一、选择题(每小题 3 分,共 30 分)
1、下列函数对中,函数相同的是( )
A B C
D
f ( x) lg x 2 ,g ( x) 2lg x
1
C
0
D
1
5、设 f ( x) 和 ( x) 在 , 内有定义, f ( x) 为连续函数,且 f ( x) 0 , ( x) 有间断 点。则( )
A f ( x) 必有间断点
C
f ( x) 必有间断点
e x x 0 a x 2,x 0
二、填空题(每小题 3 分,共 30 分)
1、已知 f ( x) e , f 2、 lim(1
n
( x) 1 x ,且 ( x) 0 ,则 ( x)
2 2 n ) n n2 sin x sin a 3、 lim x a xa
相关文档
最新文档