人教版七年级数学《消元——解二元一次方程组》教学设计教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消元——二元一次方程组的解法(代入消元法)教学设计思路
在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
知识目标
通过探索,领会并总结解二元一次方程组的方法。根据方程组的情况,能恰当地应用“代入消元法”解方程组;
会借助二元一次方程组解简单的实际问题;
提高逻辑思维能力、计算能力、解决实际问题的能力。
能力目标
通过大量练习来学习和巩固这种解二元一次方程组的方法。
情感目标
体会解二元一次方程组中的“消元”思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。由此感受“划归”思想的广泛应用。
教学重点难点疑点及解决办法
重点是用代入法解二元一次方程组。
难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。
疑点是如何“消元”,把“二元”转化为“一元”。
解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。
教学方法:引导发现法,谈话讨论法,练习法,尝试指导法
课时安排:1课时。
教具学具准备:电脑或投影仪。
教学过程
教师活动学生活动设计意图
(一)创设情境,激趣导入
在8.1中我们已经看到,直接设两个未知数(设胜x场,负y
场),可以列方程组
x y22
2x y40
+=
⎧
⎨
+=
⎩表示本章引言中
问题的数量关系。如果只设一个未知数(设胜x场),
这个问题也可以用一元一次方程
________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察
上面的二元一次方程组和一元一次方程有什么关系?[2]
[2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。这正是下面要讨论的内容。看图,分
析已知条
件
思考
师生互动
列式解答
思考,同
桌交流
总结
从生活中的实
际问题引入,激
发了学生的学
习兴趣,对新课
起着过渡作用。
培养学生的合
作交流能力,分
析能力及表达。
设计意图
(二)概念教学
可以发现,二元一次方程组中第1个方程x+y=22说明y =22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。解这个方程,得x=18。把x=18代入y=22-x,得y=4。从而得到这个方程组的解。(教师在课件中一步步导出过程)
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。[3]
[3]通过对上面具体方程组的讨论,归纳出“将未知数的个数由多化少、逐一解决”的消元思想,这是从具体到抽象,从特殊到一般的认识过程。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解它。
归纳
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法[4]
[4]这是对代入法的基本步骤的概括,代入法通过“把一个方程(必要时先做适当变形)代入另一个方程”进行等量替换,用倾听,理
解,师生
互动,学
生边听边
练
倾听,理
解全班齐
读
记忆
同桌交流
学习
学生归纳
展示交流
成果
其他同学
倾听,理
解
教师总结
学生倾听
为概念的引出
做好铺垫
理解消元思想
是本节课的重
难点,要分析透
彻。
由浅入深,精辟
总结消元思想。
对概念进行深
入的了解
及时强调让学
生对新知识掌
含一个未知数的式子表示另一个未知数,从而实现消元。和理解概
念
握得更加完整。
(三)例题教学
例1 用代入法解方程组
分析:方程①中x的系数是1,用含y的式子表示x,比
较简便。
解:由①,得x=y+3。③
把③代入②,得 ([5]把③代入①可以吗?试试看。)
3(y十3)一8y=14。
解这个方程,得y=一1。
把y=-l代入③,得 ([6]把y=-1代入①或②可以吗?)
x=2
所以这个方程组的解是
[5]由于方程③是由方程①得到的,所以它只能代入方程
②,而不能代入①。为使学生认识到这一点,可以让其试试把
③代入①会出现什么结果。
[6]得到一个未知数的值后,把它代入方程①②③都能得
到另一个未知数的值。其中代入方程③最简捷。为使学生认识到这一点,可以让其试试各种代入法。
例2 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为2:5。[7]某厂每
天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装
两种产品各多少瓶?
[7]两种产品的销售数量比为2:5,即销售的大瓶数目与小瓶数目的比为2:5。这里的数目以瓶为单位。
分析:问题中包含两个条件:
大瓶数:小瓶数=2:5,
大瓶所装消毒液+小瓶所装消毒液=总生产量。
解:设这些消毒液应分装x大瓶和y小瓶。
根据大、小瓶数的比以及消毒液分装量与总生产量的相等思考
独立完成
老师与个
别学生互
动适时指
导
同桌交流
选同学分
析和回答
解题过程
同学回答
正确适当
表扬后提
问[5]
[6]学生
尝试并给
出回答
学生自由
读题,分
析条件,
列出方程
组并解答
用展台展
示几个具
培养学生思考
及解决问题的
能力
检验学生对知
识的掌握程度。
通过总结,再次
加深学生对知
识的掌握程度,
给学生充分发
挥的空间。
在学生形成解
题思维之后,放
手让学生完成,
给学生自我展
示的空间。
揭露学生可能
出现的问题和