多目标优化设计方法(PPT39页)

合集下载

多目标优化设计方法讲解共41页文档

多目标优化设计方法讲解共41页文档
ห้องสมุดไป่ตู้

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
多目标优化设计方法讲解

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
41

《多目标优化方法》PPT课件

《多目标优化方法》PPT课件

cij
b1, b2 , b3, b4
解: 设变量 xij ,i 1,2,3; j 1表,2,3示,4 由 运Ai往
总吨公里数为
,总d运ij xi费j 为
求解
i1 j1
的B j货物数,于是
,问题ci优j xij化为
i1 j1
34
min
dij * xij
i1 j1
34
min
cij * xij
点 B1, B2 , B。3, 其B4 需要量分别为
b1, b2 , b3, b4

3
ai
,4 b已j 知

i
j
的A距i 离和B单j 位运价分别为
(km)和 (元di)j ,现要决定如ci何j 调运多少,才能使总的
吨,公里数和总运费都尽量少?
解: 设变量 xij , i 1,2,3; 表j 示1由,2,3,4运往 的货物Ai数,于是总
可以看到:
当P=1时,(VP)就是非线性规划, 称为单目标规划。
对于单目标问题Min f (x,) x1, x2 总D可比较
与 f (x2的) 大小.
f (x1)
对于多目标规划(VP),对于 x1, x2 D, f (x1与) f (都x2 ) 是P 维向量,如何比较两个向量的大小?
多目标优化的非劣解集 Noninferior solution for the model
积为
,它x决1 *定x2重量,而梁的强度取决于截面


1 6
x1
*
x22
因此,容易列出 梁的数学模型:
min
x1 * x2
max
1 6
*
x1
*

多目标优化设计方法

多目标优化设计方法

多目标优化设计方法多目标优化(Multi-Objective Optimization,MOO)是指在考虑多个冲突目标的情况下,通过寻求一组最优解,并找到它们之间的权衡点来解决问题。

多目标优化设计方法是指为了解决多目标优化问题而采取的具体方法和策略。

本文将介绍几种常见的多目标优化设计方法。

1.加权和方法加权和方法是最简单直观的多目标优化设计方法之一、其基本思想是将多个目标函数进行加权求和,将多目标优化问题转化为单目标优化问题。

具体来说,给定目标函数集合f(x)={f1(x),f2(x),...,fn(x)}和权重向量w={w1,w2,...,wn},多目标优化问题可以表示为:minimize Σ(wi * fi(x))其中,wi表示各个目标函数的权重,fi(x)表示第i个目标函数的值。

通过调整权重向量w的取值可以改变优化问题的偏好方向,从而得到不同的最优解。

2. Pareto最优解法Pareto最优解法是一种基于Pareto最优原理的多目标优化设计方法。

Pareto最优解指的是在多个目标函数下,不存在一种改进解使得所有目标函数都得到改进。

换句话说,一个解x是Pareto最优解,当且仅当它不被其他解严格支配。

基于Pareto最优原理,可以通过比较各个解之间的支配关系,找到Pareto最优解集合。

3.遗传算法遗传算法是一种模仿自然界中遗传机制的优化算法。

在多目标优化问题中,遗传算法能够通过遗传操作(如选择、交叉和变异)进行,寻找较优的解集合。

遗传算法的基本流程包括:初始化种群、评估种群、选择操作、交叉操作、变异操作和更新种群。

通过不断迭代,遗传算法可以逐渐收敛到Pareto最优解。

4.支持向量机支持向量机(Support Vector Machine,SVM)是一种常用的机器学习方法。

在多目标优化问题中,SVM可以通过构建一个多目标分类模型,将多个目标函数转化为二进制分类问题。

具体来说,可以将目标函数的取值分为正例和负例,然后使用SVM算法进行分类训练,得到一个最优的分类器。

多目标优化问题的求解算法PPT课件

多目标优化问题的求解算法PPT课件
2021
本文中,为每个目标设定一个目标阀值,各种群都在该工程的施工网络 可靠性框图上进行搜索,把每个种群每搜索得到的新解(一个实施方案的工序 组合)依次代入目标函数中,所得值和预先设定阀值进行比较分析。
产生以下几种情况: ①若四个种群搜索的解对应的函数值都优于目标值的,就把把该解加到入 解集中,再按照公式(4-15)进行更新。若搜索出的解和非支配解集中的某个解相 同,就对这条路径上的信息素进行一定比例减少,防止陷入局部最优。 ②若有三个目标函数值优于设定的目标值,就将这三个目标种群在其对应 的路径上选取其中某段路径,对此路径上的信息素进行变异处理。
2021
(5)路径对蚂蚁的吸引程度
2021
(6)非支配解集的构造
在求解多目标优化问题时,在向Pareto前沿逼近 的过程中往往需要构造非支配解集,即利用多目标 优化算法不断寻找最优和收敛的过程。群体进化过 程中形成的最优个体集合就构成了非支配解集。因 此,求解多目标优化问题的Pareto最优解,可理解成 是构造非支配解集的过程。
2021
4.多目标优化问题的基本方法
现有的研究多目标优化问题的基本方法往往是把各个目标通过带权重系数 的 方式转化为单目标优化问题,如线性加权法、约束法、目标规划法、分层序列 法 等。
这几种方法存在一些局限性,如有些方法计算效率较低,无法逐一与所有 可 行解的目标值进行比较,有些方法需要进行多次优化,加权值法带有较强的主
本文把协同进化的思想引入到多种群蚁群算法中,从而解决基于多种种群的 蚁群算法的多目标优化问题。
2021
本文采用的是多种群蚁群算法,考虑到每个种群存在不同的搜索目标, 彼此之间相互影响,例如在起初寻找最低成本的路径和最高质量的路径的进 化方向就是相反的,为了避免各目标向目标的反方向进行,从协同进化的角 度考虑,把各种群搜索求得的解,分别代入四个目标函数中求解出对应的函 数值,并与目标值进行比较,当存在种群的目标函数值不满足目标值时,对 满足的路径上的信息素可以进行交叉或者变异操作,防止已经满足要求的种 群“背道而驰”,使得后续迭代的种群能够朝着有利路径逼近最优解。

多目标优化方法及实例解析ppt课件

多目标优化方法及实例解析ppt课件
mZ a x(X ) (1)
s.t. (X )G(2)
是与各目标函数相关的效用函数的和函数。
在用效用函数作为规划目标时,需要确定一组权值 i
来反映原问题中各目标函数在总体目标中的权重,即:
k
maxii
i1
i ( x 1 , x 2 , x n ) g i ( i 1 , 2 , , m )
1(X)
g1
s .t.
( X)
2(X)
G
g2
m(X)
gm
式中: X [x 1 ,x 2 , ,x n ] T为决策变量向量。
缩写形式:
max(Zm Fi(n X)) (1) s.t. (X )G (2)
有n个决策变量,k个目标函数, m个约束方程, 则:
Z=F(X) 是k维函数向量, (X)是m维函数向量; G是m维常数向量;
在图1中,max(f1, f2) .就 方案①和②来说,①的 f2 目标值比②大,但其目 标值 f1 比②小,因此无 法确定这两个方案的优 与劣。
在各个方案之间, 显然:④比①好,⑤比 ④好, ⑥比②好, ⑦比 ③好……。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
8
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
✓ 效用最优化模型 ✓ 罚款模型 ✓ 约束模型 ✓ 目标达到法 ✓ 目标规划模型
方法一 效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效用 函数建立相关关系,各目标之间通过效用函数协调, 使多目标规划问题转化为传统的单目标规划问题:

多目标优化设计方法PPT39页

多目标优化设计方法PPT39页
目的是将多目标优化问题转化为单目标 优化问题
7.4 功效系数法
一、功效系数 极小值
多目标优化设 计中,各子目 标的要求不同
极大值 一个合适的数值
每个子目标都用一个功效函数di表示 ——其值为功效系数
功效函数的范围[0,1]
fi(X)的值满意时,di=1 fi(X)的值不满意时,di=0
7.4 功效系数法(续)
1、基本思想
这种方法是对各目标函数的最优值放宽要求, 可以对各目标函数的最优值取给定的宽容值,即 ε1>0, ε2>0,…。这样,在求后一个目标函数的 最优值时,对前一目标函数不严格限制在最优解 内,而是在前一目标函数最优值附近的某一范围 内进行优化,因而避免了计算过程的中断。
若干个最优解组成的集合称为绝对最优解集,用 Da*b 表示。
只有当F(X)的各个子目标fi(X)的最优点都存在,并且 全部重叠于同一点时,才存在有绝对最优解。
7.1 概述(续)
2、有效解(非劣解) 设 X* D (D为可行域), 若不存在 X D ,使
fi ( X ) fi ( X*)(i 1, 2,..., m)
hj ( X ) 0, ( j 1, 2,..., k)
向量形式的目标函数
设计变量应满足的所 有约束条件
7.1 概述(续)
二、几个基本概念
1、最优解 设 X* D (D为可行域), 若对于任意 X D ,恒使
fi ( X*) fi ( X )(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的绝对最优解,简称最优解。
评价函数:
7.2 统一目标函数法(续)
二、统一目标函数的构造方法(续) 3、平方和加权法 基本思想:在理想点法的基础上引入权数

多目标优化设计方法PPT39页

多目标优化设计方法PPT39页

间接法
线性加权和法、主要目标函数法、理想点法、 平方和加权法、子目标乘除法、功效系数法
将多目标优化问题转化为一系列单目标优化问题
分层序列法、宽容分层序列法
7.2 统一目标函数法(综合目标法)
一、基本思想 统一目标函数法就是设法将各分目标函数
f1(X),f2(X),…,fl(X)统一到一个新构成的总的目标函数 f(X), 这样就把原来的多目标问题转化为一个具有统— 目标函数的单目标问题来求解.
7.1 概述
一、多目标优化及数学模型 单目标最优化方法 多目标最优化方法
多目标优化的实例: 物美价廉
7.1 概述(续)
设计车床齿轮变速箱时,要求: 各齿轮体积总和 f1(X ) 尽可能小
降低成本
各传动轴间的中心距总和 f2 (X ) 尽可能小 使变速箱结构紧凑。
合理选用材料
使总成本 f3 (X ) 尽可能小。
hj ( X ) 0, ( j 1, 2,..., k)
向量形式的目标函数
设计变量应满足的所 有约束条件
7.1 概述(续)
二、几个基本概念
1、最优解 设 X* D (D为可行域), 若对于任意 X D ,恒使
fi ( X*) fi ( X )(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的绝对最优解,简称最优解。
对于多目标优化问题,任何两个解不一定能比较其 优劣;
多目标优化问题得到的可能只是非劣解(有效解), 而非劣解往往不止一个,需要在多个非劣解中找出一个最 优解。
7.1 概述(续)
三、多目标优化问题的特点及解法(续) 2、解法:
直接法: 直接求出非劣解,然后再选择较好的解
将多目标优化问题转化为单目标优化问题

第七章多目标函数的优化设计方法

第七章多目标函数的优化设计方法

第9章 多目标函数的优化设计方法Chapter 9 Multi-object Optimal Design在实际的机械设计中,往往期望在某些限制条件下,多项设计指标同时达到最优,这类问题称为多目标优化设计问题。

与前面单目标优化设计不同的是,多目标优化设计有着多种提法和模式,即数学模型。

因此,解决起来要比单目标问题复杂的多。

9.1 多目标最优化模型9.1.1 问题举例例9-1 生产计划问题 某工厂生产n (2≥n )种产品:1号品、2号品、...、n 号品。

已知:该厂生产)...,,2,1(n i i =号品的生产能力是i a 吨/小时; 生产一吨)...,,2,1(n i i =号品可获利润i α元;根据市场预测,下月i 号品的最大销售量为)...,,2(n i b i =吨; 工厂下月的开工能力为T 小时; 下月市场需要尽可能多的1号品。

问题:应如何安排下月的生产计划,在避免开工不足的条件下,使 工人加班时间尽可能的地少;工厂获得最大利润;满足市场对1号品尽可能多地要求。

为制定下月的生产计划,设该厂下月生产i 号品的时间为)...,,1(n i x i =小时。

9.1.2 基本概念如图9.1所示,两个目标函数f 1,f 2中的若干个设计中,3,4称为非劣解,若)(min{)(*x f x f j j ≤S.t .0)(≤x g u u=1,2,………….m成立,则称*x 为非劣解。

若不存在一个方向,同时满足:0)(*≤*∇s x f (目标函数值下降0)(*≤*∇s x g (不破坏约束)图9.1则称*x 为约束多目标优化设计问题的K-T 非劣解。

这样,多目标优化设计问题的求解过程为:先求出满足K-T 条件的非劣解,再从众多的非劣解确定一个选好解。

多目标优化的数学模型:T r x f x f x f X F V )](),........(),([)(min 21=--S.t .0)(≤x g u u=1,2,………….m0)(=x h v v=1,2,……….p式中:)(X F 是向量目标函数。

第十章 多目标优化方法简介 ppt课件

第十章 多目标优化方法简介  ppt课件
q * 2
hv ( X ) 0(v 1, 2, , p)
求解上述问题得到的设计方案既考虑了目标函 数的重要性,又最接近完全最优解,因此,它是原
多目标优化问题的一个更加理想、更加切合实际的
相对最优解。
ppt课件 16
(3)功效系数法
每个分目标函数 f k ( X ) 都可以用一个对应的功效系
ppt课件
9
主要目标法
主要目标法的思想是抓住主要目标,兼顾其它 要求。求解时从多目标中选择一个目标作为主要目 标,而其它目标只需满足一定要求即可。为此,可 将这些目标转化成约束条件。也就是用约束条件的 形式来保证其他目标不致太差,这样处理后,就成 为单目标优化问题。 设有l个目标函数f1(x),f2(x),…、fi(x),其 中 x D ,求解时可从上述多目标函数中选择一个 f(x)作为主要目标,则问题变为
q 1 2 q max
这样,当 1 时表示取得最理想的设计方案,反
之, 0 表示这种设计方案不可行,也表明必有 某项分目标系数的 k 0 。
ppt课件 18
功效系数法计算比较繁琐,但较为有效,比较 直观,且调整容易不论各分目标的量级及量纲如何, 最终都转化为0~1间的数值,且一旦有一分目标函



i 1,2 i 1,2,, l 1
其中, f k ( X * ) 是以第k个分目标函数构成的单目标 优化问题的最优值。
ppt课件 13
对实际问题来说,还应注意目标函数值量纲的 影响,建议首先对目标函数进行无量纲化:
f k min ( X )、f k max X 是f k ( X )在约束条件下的极小值 和极大值。
f k ( X ) f k min ( X ) f k X f k max ( X ) f k min ( X )

《多目标优化》课件

《多目标优化》课件

多目标优化算法分类
01
基于排序的方法
通过将多目标问题转化为单目标问题,寻求一个排序方案,以解决多目
标优化问题。常见的算法包括非支配排序遗传算法(NSGA-II)和快速
非支配排序遗传算法(FAST-NSGA-II)等。
02
基于分解的方法
将多目标问题分解为多个单目标子问题,分别求解子问题,再通过聚合
子问题的解得到原问题的解。常见的算法包括优先级规则法、权重和法
降温系数
降温系数决定了算法的降温速度,较 大的降温系数可能导致算法早熟,而 较小的降温系数则可能导致算法收敛 速度慢。
随机游走策略
随机游走策略决定了新解的产生方式 ,对于多目标优化问题,需要采用合 适的Pareto占优关系和支配关系来指 导新解的产生。
05
多目标优化应用案例
案例一:电力系统的多目标优化
多目标优化
同时考虑多个目标函数,寻求在各目标之间取得 平衡的最优解。
算法流程
非支配排序
对种群中的个体进行非支配排 序,形成一系列的层级。
交叉和变异操作
通过交叉和变异产生新的个体 ,丰富种群的多样性。
初始化种群
随机生成一定数量的初始解作 为种群。
选择操作
根据个体的非支配层级和拥挤 度等信息,选择优秀的个体进 行交叉和变异操作。
等。
03
基于群智能的方法
利用群智能算法的并行性和全局搜索能力,寻找多目标优化问题的满意
解集。常见的算法包括粒子群优化算法、蚁群优化算法等。
02
非支配排序遗传算法(NSGA-II)
算法原理
遗传算法
基于生物进化原理,通过选择、交叉、变异等操 作,不断优化解的适应度。
非支配排序

最优化-第7章-多目标及离散变量优化方法PPT课件

最优化-第7章-多目标及离散变量优化方法PPT课件

0.7 满
意 区
0.3 间
较 满 意 区
可 接 受
0.7
满 意

0.3
可间



区 间
0 fi
fi(0) fi(1) fi(2) fi(3) fi

0

fi(3) fi(2) fi(1) fi(0)fiʹ(0)fiʹ(1) fiʹ(2) fiʹ(3)
fi
目标函数越大越好
目标函数越小越好
目标函数值在某个范围内最好
评价函数: Ufm 1iax q fiX
对该式求优化解就是进行如下形式的极小化
m X iD n U fX m X iD n m 1 a i x l fiX
.
12
f
max {f1(X), f2(X)}
f1(X)
f2(X)
x
.
13
3)理想点法 使各个目标尽可能接近各自的理想值
评价函数:
.
28
宽容分层序列法:
1)
m
in X
f1( X D
)
2)XminXf2(fX1()X)f1*1
3)Xm Xinfi(fX 3()X)fi*ii1,2 4) X m X infif(l(X X )) fi* ii 1 ,2 ,l1
.
29
设计人员原本的意图是优化结束后,f1的取值尽量靠近10,f2的取
值可以稍微劣一些,例如可在2000左右。
第k次迭代时, f1的取值为15, f2的取值为1800,则
F (X k ) 0 .8 1 5 0 .2 1 8 0 0 3 7 2
第k+1次迭代时,为了让整体评价函数F(X)取值更优,无论采用 哪种优化方法,优化程序会拼命的降低 f2的取值,升高 f1的取值

《多目标优化》ppt课件

《多目标优化》ppt课件

2
运筹学
3 运筹学,计算机
先修课程号
1,2 7 1,2 7
5 1,2
模型建立
设 x i 表示选修课表i中按1,2编,.号.9.顺, 序的9门课程x〔i 0
表示不选这门课程, 〕
那么问题的目的为选

课程为最少, 即
9
min z xi. No i1 Image
约束条件x有1 x2 x3 x4 x5 2,
❖ ③每种投资能否收益是相互独立的。
❖ ④在投资过程中,无论盈利与否必需先付买卖费。
❖ 〔2〕符号阐明 M〔元〕:公司现有投资总金额; Si〔i=0~n〕:欲购买的第i种资产种类〔其中 i=0表示存入银行〕; xi〔i=0~n〕:公司购买Si金额; ri〔i=0~n〕:公司购买Si的平均收益率; qi〔i=0~n〕:公司购买Si的平均损失率; pi〔i=0~n〕:公司购买Si超越ui时所付买卖费 率。
❖ 对Si投资的净收益 〔3〕
R i(x i) r ix i c i(x i) (r i p i)x i
❖ 对Si投资的风险
Qi(xi)qixi
〔4〕
❖ 对Si投资所需资金〔投资金额xi与所需的手续费ci〔xi〕
之和〕即 No fi( Im x ia )g e x i c i(x i) (1 p i)x i〔5〕
Si ri(%) qi(%) pi(%) ui(元)
S1
28
2.5
1
103
S2
21
1.5
2
198
S3 23 5.5 4.5
52
S4 25 2.6 6.5
40
❖ 试给该公司设计一种投资组合方案,即用给定的资金 M,有选择地购买假设干种资产或存银行生息,使净 收益尽能够大,而总体风险尽能够小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
还应满足的约束条件是: 进给量小于毛坯所留最大加工余量 刀具强度等
7.1 概述(续)
对于一个具有L个目标函数和若干个约束条件的多 目标优化问题,其数学模型的表达式可写为:
求:
X [x1, x2 ,..., xn )T
n维欧氏空间的一个向量
min F ( X ) [ f1( X ), f2 ( X ),..., fL ( X )]T s.t. gi ( X ) 0, (i 1, 2,..., m)
hj ( X ) 0, ( j 1, 2,..., k)
向量形式的目标函数
设计变量应满足的所 有约束条件
7.1 概述(续)
二、几个基本概念
1、最优解 设 X* D (D为可行域), 若对于任意 X D ,恒使
fi ( X*) fi ( X )(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的绝对最优解,简称最优解。
所有弱有效解组成的集合称为弱有效解集,用 Dw*p 表示。
三者之间关系: Da*b D*pa Dw*p D
在多目标优化设计中,如果一个解使每个分目标函数 值都比另一个解为劣,则这个解称为劣解。
7.1 概述(续)
三、多目标优化问题的特点及解法 1、特点
多目标优化是向量函数的优化(单目标函数是标 量函数的优化);
则称
fi ( X )
i
i
2
(i
1, 2,...,
L)
为该目标函数的容限
这时权数可取为:i 1 fi ( X )2 ,i 1, 2,..., L
目的:在评价函数中使各子目标在数量级上达到 统一平衡。
(3)加权因子分解法 i 1*i2i (i 1, 2,..., L)
本征权因子,反应第i个目标的相对重 要程度。 校正权因子,用于调整各目标在量级 方面差异的影响。
fi
( min fi' ( X
)
X D
是多目标问题中某个带量纲的子目标;
是作了无量纲处理后的第i个子目标函数
(1) 专家评判法(老手法)
凭经验评估,并结合统计处理来确定权数的方法。 特点:方法实用,但要求专家人数不能太少。
(2)容限法
若已知子目标函数fi(X)的变动范围为:
i fi ( X ) i , i 1, 2,..., L
即:
D为可行域,f1(X),f2(X),…,fl(X)为各个子目 标函数。
7.2 统一目标函数法(续)
二、统一目标函数的构造方法 1、线性加权和法(线性加权组合法)
根据各子目标的重要程度给予相应的权数,然后 用各子目标分别乘以他们各自的权数,再相加即构成 统一目标函数。
即评价函数为:
——各子目标函数
对于多目标优化问题,任何两个解不一定能比较其 优劣;
多目标优化问题得到的可能只是非劣解(有效解), 而非劣解往往不止一个,需要在多个非劣解中找出一个最 优解。
7.1 概述(续)
三、多目标优化问题的特点及解法(续) 2、解法:
直接法: 直接求出非劣解,然后再选择较好的解
将多目标优化问题转化为单目标优化问题
——权数
L
应满足归一性和非负性条件
i 1
i 1
i 0 (i 1, 2,..., L)
优化的数学模型为
注意: 1、建立这样的评价函数时,各子目标的单位已经脱 离了通常的概念。 2、权数(加权因子)的大小代表相应目标函数在优 化模型中的重要程度,目标越重要,权数越大。
权因子的确定方法:
在确定权因子前,应先将各子目标函数进行 无量纲化,处理的方法是:
评价函数:
7.2 统一目标函数法(续)
二、统一目标函数的构造方法(续) 3、平方和加权法 基本思想:在理想点法的基础上引入权数
构造评价函数。
评价函数:
i 满足归一性和非负性条件
L
i 1
i 1
i 0 (i 1, 2,..., L)
传动效率尽可能高
机械耗损率 f4 (X ) 尽可能小。
在优化设计中同时要求几项指标达到最优值的 问题称为多目标优化设计问题。
7.1 概述(续)
例如,在机械加工时,对于用单刀在一次走刀中将 零件车削成形,为选择合适的切削速度和每转给进量, 提出以下目标:
机械加工成本最低; 生产率最高; 刀具寿命最长。
若干个最优解组成的集合称为绝对最优解集,用 Da*b 表示。
只有当F(X)的各个子目标fi(X)的最优点都存在,并且 全部重叠于同一点时,才存在有绝对最优解。
7.1 概述(续)
2、有效解(非劣解) 设 X* D (D为可行域), 若不存在 X D ,使
fi ( X ) fi ( X*)(i 1, 2,..., m)
间接法
线性加权和法、主要目标函数法、理想点法、 平方和加权法、子目标乘除法、功效系数法
将多目标优化问题转化为一系列单目标优化问题
分层序列法、宽容分层序列法
7.2 统一目标函数法(综合目标法)
一、基本思想 统一目标函数法就是设法将各分目标函数
f1(X),f2(X),…,fl(X)统一到一个新构成的总的目标函数 f(X), 这样就把原来的多目标问题转化为一个具有统— 目标函数的单目标问题来求解.
2i 1 fi ( X ) 2 , (i 1, 2,..., L)
目的:使目标变化快慢不一致的趋于一致。
7.2 统一目标函数法(续)
二、统一目标函数的构造方法(续) 2、理想点法 基本思想:使各个目标尽可能接近各自的最优值, 从而求出多目标函数的较好的非劣解。
步骤:先用单目标优化方法求得各子目标的约束最 优值和相应的最优点,然后构造评价函数。
成立,则称X*为多目标优 化问题的非劣解或有效解。
若干个有效解组成的集合称为有效解集,用 D*pa 表示。
7.1 概述(续)
3、弱有效解(弱非劣解)
设 X* D 若不存在 X D ,使
fi ( X ) fi ( X*)(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的弱非劣解或弱有 效解。
7.1 概述
一、多目标优化及数学模型 单目标最优化方法 多目标最优化方法
多目标优化的实例: 物美价廉
7.1 概述(续)
设计车床齿轮变速箱时,要求: 各齿轮体积总和 f1(X ) 尽可能小
降低成本
各传动轴间的中心距总和 f2 (X ) 尽可能小 使变速箱结构紧凑。
合理选用材料
使总成本 f3 (X ) 尽可能小。
相关文档
最新文档