人教版七年级下册数学第六章 实数

合集下载

人教版数学七年级下册 6.3 .1实数 课件(共21张PPT)

人教版数学七年级下册 6.3 .1实数 课件(共21张PPT)

9,

0.6,
64, 0, 3
0.13
(5)正实数数集合:
9 , 3 5,
64,
,
0.

6,
3,
0.13
(6)负实数集合: 3 ,
4
(7) 实数集合: 9 , 3 5, 64,
,

0.6,
3, 4
0,
3, 0.13
解:
课堂小结
1. 无理数及实数的概念 无限不循环小数叫做无理数;有理数与无理数统称实数. 2. 实数的分类
5 , 3 , 27 ,11, 9 2 5 4 9 11
它们都可以化 成有限小数或 无限循环小数 的形式
思考1:(1)整数能写成小数的形式吗?3可以看成是3.0吗?
可以 (2)由此你可以得到什么结论?
任何一个有理数都可以写成有限小数或无限循环小数; 反过来,任何有限小数或无限循环小数也都是有理数. 思考2:除了有限小数和无限循环小数,还有什么其他类 型的小数吗?
无限不循环小数 叫做无理数
它们都是无限 不循环小数, 是无理数
π
练一练
把下列各数分别填入相应的集合内:
17 , 4
π
3,
4,
0.101,
, 3
2, 5
64, 2.121, 0.3737737773(相邻两个3之间7的个数逐渐加1)
...
有理数集合
...
无理数集合
有理数和无理数统称实数,实数的分类如下:
(1)按定义分
整数
有理数:
有限小数或无限循环小数

分数

无理数: 无限不循环小数
含开方开不尽的数
π 含有 的数

人教版七年级下册第六章实数平方根、立方根(教案)

人教版七年级下册第六章实数平方根、立方根(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根和立方根的基本概念。平方根是一个数的平方等于给定数的非负数解,立方根则是一个数的立方等于给定数的解。它们在解决实际问题,如面积、体积计算中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算一个边长为2的正方形的面积,这时我们就需要用到平方根的概念,即√(2^2)=2。
2.探索与问题解决:引导学生自主探究平方根、立方根的性质和求法,培养他们发现、分析和解决问题的能力。
3.空间观念与几何直观:将平方根、立方根与图形结合,培养学生的空间观念,提高几何直观能力。
4.数据观念与推理能力:通过实际问题的解决,让学生掌握数据处理方法,培养合情推理和演绎推理的能力。
5.数学交流与反思:鼓励学生在学习过程中积极与他人交流,分享解题思路,培养反思和总结的学习习惯。
五、教学反思
今天我们在课堂上探讨了实数平方根和立方根的概念及其应用。整体来看,学生们对这两个概念的理解有了明显的提升,但在教学过程中我也注意到了一些需要改进的地方。
首先,我发现部分学生在理解平方根和立方根的定义时存在困难。在今后的教学中,我需要更加注重从直观和生活实例出发,让学生们更好地感受到这两个概念的实际意义。例如,可以多举一些与面积、体积相关的例子,让学生在实际问题中体会平方根和立方根的应用。
-立方根的求法:学会计算简单实数的立方根。
举例:讲解平方根时,强调正数平方根的互为相反数性质,如√9=3和√9=-3,但通常情况下我们默认平方根为正数。在立方根方面,举例计算∛8,得出∛8=2,强调立方根的结果唯一性。
2.教学难点
-平方根的理解:学生容易混淆平方根与算术平方根的概念,难以理解负数没有平方根。
3.重点难点解析:在讲授过程中,我会特别强调平方根和立方根的概念及其求法这两个重点。对于难点部分,我会通过具体例子和图形来帮助大家理解。

人教版七年级数学下册精品教学课件 第六章 实数 立方根

人教版七年级数学下册精品教学课件 第六章 实数 立方根
第六章 实数 6.2 立方根 七年级数学·人教版
学习目标:
1.了解立方根的概念,会用开立方运算求一个数的立方根. 2.了解立方根的性质,并学会用计算器计算一个数的立方根或立 方根的近似值.
重点难点:
1.掌握立方根的概念. 2.了解立方根与平方根的区别与联系.
情景导入
某化工厂使用半径为1米的一种球形储气罐储藏气体,现 在要造一个新的球形储气罐,如果要求它的体积必须是原来 体积的8倍,那么它的半径应是原来储气罐半径的多少倍?
(2)因为 ( 3 3)3 = 3
( 3)3 27 28
所以 3 < 27
8
所以 3 3
<
3 2
5.若 3 x =2,y2 =4,求 x 2y 的值.
解:∵ 3 x =2, y2 =4. ∴x = 23,y2 = 16, ∴x = 8,y = ±4. ∴x + 2y = 8 + 2×4 = 16 或 x + 2y = 8 – 2×4 = 0. ∴ x 2 y = 16 = 4 或 x 2 y = 0 = 0.
课堂小结
定义 正数的立方根是正数,

负数的立方根是负数;

性质 0的立方根是0.

3 -a 3 a
用计算 被开方数的小数点向左或向右移动 器计算
3n位时立方根的小数点就相应的向
左或向右移动n位(n为正整数).
知识精讲
知识点一 立方根的概念及性质 问题:要制作一种容积为 27 m³的正方体形状的包装箱, 这种包装箱的棱长应该是多少? 设这种包装箱的棱长为 x m,则 x³= 27. 这就是要求一个数,使它的立方等于 27. 因为 3³= 27,所以 x = 3. 因此这种包装箱的棱长应为 3 m.

第六章 实数(复习课件)七年级数学下册(人教版)

第六章 实数(复习课件)七年级数学下册(人教版)

举一反三
【7-2】如图,用两个边长为 18cm的小正方形纸片拼成一个大的正方形纸
片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长
方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.
解:不能.理由如下:因为大正方形纸片的面
积为( 18)2+( 18)2=36(cm2) ,
高频考点
高频考点七 实数的综合运用
(3)如果2+ 5的整数部分是a,小数部分是b,求出a-b的值.
(3)因为 4< 5< 9,即2< 5<3,
所以4<2+ 5<5,
所以2+ 5的整数部分为4,小数部分为2+ 5-4= 5-2,即a=4,b= 5-2,
所以a-b=4-( 5-2)= 6- 5.
举一反三
【7-1】若 2的整数部分为x,小数部分为y,则 2x-y的值是( C )
A.2 2-2
B.2
C.1
D. 2
【7-2】如图,用两个边长为 18cm的小正方形纸片拼成一个大的正方形纸
片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长
方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.
0
一个,为负数
3
a
可以为任何数
知识梳理
四、实数及其运算
有理数包括整数和分数,它们都可以写成有限小数或者无限循环小数的形
式.
5 3 27 11 9
, , , , .
2 5 4 9 11
5
2.5
2
3
0.6
5
27
6.75
4
.
11

七年级数学人教版下册第六章6.3.1实数及其分类课件

七年级数学人教版下册第六章6.3.1实数及其分类课件
101 001 000 1…(相邻两个1之间0的个数逐次加1), A.无理数包括正无理数、0和负无理数
正有理数



0
负 有 理 数
8, ,-4.
限小数或无限循环小数的形式.
正数:{ ,…};

,∴
是有理数.∵

8, ,…};
合作探究
知识点 1 无理数
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
3
2
(相邻两个1之间0的个数逐次加1), 3 9
,-
.
有理数:{ -7,0.32, 1 ,3.14·,0,…}; 2
3
无理数:{ 8 , 1 ,0.101 001 000 1…(相邻两个1 2
之间0的个数逐次加1), 3 9 ,- ,…}; 2
正实数:{ 0.32,1 3
,3.14·,
8

1 2
这样的无限不循环小数.
例1 下列各数:3.141 59, 3 8 ,0.131 131 113…(每相
邻两个3之间依次多1个1),-π,
2 5 ,
1 7
中,无
理数有( B )
A.1个
B.2个
C.3个
D.4个
导引:∵3.141 59是有限小数,∴3.141 59是有理数.
∵ 3 8 2 ,∴ 3 8 是有理数.∵ 25 5 ,
人教版数学七年级下册
第六章
6.3.1 实数及其分类
学习目标
1.了解无理数和实数的概念以及实数的分 类。
2.知道实数与数轴上的点具有一一对应的 关系。
复习导入
…};
(1)如图,OA=OB,数轴上点A对应的数是什么?它介

6.3.1实数的概念-人教版七年级数学下册教案

6.3.1实数的概念-人教版七年级数学下册教案
2.在举例说明时,尽量选择与学生们生活密切相关的例子,提高他们对实数学习的兴趣。
3.加强对讨论环节的引导,确保学生们围绕主题展开讨论,提高讨论效果。
4.关注沉默的学生,鼓励他们积极参与讨论,提高他们的自信心。
5.在教学过程中,注意观察学生的反应,及时调整教学方法,以提高教学效果。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“实数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
6.3.1实数的概念-人教版七年级数学下册教案
一、教学内容
本节课选自人教版七年级数学下册第六章第三节,标题为“6.3.1实数的概念”。教学内容主要包括以下三个方面:
1.实数的定义:介绍实数的概念,让学生了解实数是包含有理数和无理数的全体数,是数轴上的所有点对应的数。
2.实数的分类:将有理数和无理数进行分类,并举例说明。有理数包括整数、分数等,无理数如π、√2等。
-实数的精确表示:学生在表示无理数时可能会遇到困难,如何用有限的小数或分数精确表示无理数。
-实数运算的规则:尤其是无理数参与运算时,如何进行合理化简和计算。
-实数在数轴上的定位:在数轴上准确地找到无理数的位置,以及理解无理数与有理数之间的关系。
举例解释:
-对于无理数的理解,可通过π的近似值3.14的由来,说明π是无限不循环的小数,从而引出无理数的概念。
3.增强学生的空间观念:结合数轴,让学生在实际操作中感受实数与数轴的关系,提高空间想象力和直观感知能力。

第六章实数及相关概念的定义解题训练课件人教版七年级数学下册

第六章实数及相关概念的定义解题训练课件人教版七年级数学下册

10 已知 y= (x-4)2-x+5,当 x 分别取 1,2,3,…,2 024 时,所对应 y 值的总和是__2__0_3_6__.
【点拨】பைடு நூலகம்
当x<4时,y=4-x-x+5=-2x+9. 当x=1时,y=7;当x=2时,y=5; 当x=3时,y=3.当x≥4时,y=x-4-x+5=1, 故当x分别取1,2,3,…,2 024时,所对应y值 的总和是7+5+3+1+1+…+1 =15+1×2 021=2 036.
第六章 实数
实数及相关概念的定义 解题训练
1 【2023·遂宁】若|a-2|+ a+b=0,则 ab=__-__4__.
2 设a,b是一个等腰三角形的两边长,且满足|a-5|+|3 -b|=0,则该三角形的周长是__11_或__1_3__.
3 若(x+3)2=a-2,则a的值可以是( D )
A.-1
18 若实数 a 的相反数是-2,则 a 等于( )
A
A.2 B.-2 C.12 D.0
19 实数a,b,c,d在数轴上的对应点的位置如图所示, 这四个数中,绝对值最大的是____a____.
20 若实数 a,b 互为相反数,c,d 互为倒数,m 是 9 的平
3
方根,求- a+b+ cd+(m-1)2 的值.
22 数轴上表示 1, 2的点分别为 A,B,点 B 到点 A 的 距离与点 C 到原点的距离相等,设点 C 表示的数为 x(x>0).
(1)写出实数 x 的值; 解:实数 x 的值为 2-1.
(2)求(x- 2)2 的值. 解:当 x= 2-1 时,(x- 2)2=( 2-1- 2)2=1.
11 已知 x+3+ 2y-4=0,求(x+y)2 024 的值.

人教版七年级数学下册第六章《实数》知识点复习与小结优秀教学案例

人教版七年级数学下册第六章《实数》知识点复习与小结优秀教学案例
2.通过问题的提出和解决,引导学生发现实数知识之间的内在联系。
3.利用问题引导学生进行推理和证明,培养他们的逻辑思维能力。
4.鼓励学生主动寻找解决问题的方法,培养他们的自主学习能力和创新意识。
(三)小组合作1.将学生分为小ຫໍສະໝຸດ ,鼓励他们进行合作学习和讨论交流。
2.设计具有挑战性和综合性的任务,让学生在合作中解决问题,提高解决问题的能力。
(三)学生小组讨论
1.将学生分为小组,给出具有挑战性和综合性的任务,让学生在小组合作中解决问题。例如,可以让学生探讨实数的性质和运算规则,并尝试解决一些实际问题。
2.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。例如,可以让每个小组成员依次发表自己的观点,并进行讨论交流。
(四)总结归纳
三、教学策略
(一)情景创设
1.利用生活实际问题,创设情境,引发学生对实数的兴趣和好奇心。
2.通过图形、模型等直观教具,帮助学生形象地理解实数的概念和性质。
3.设计具有挑战性和针对性的问题,激发学生的思考和探索欲望。
4.创设互动交流的平台,让学生分享自己的思考过程和解决问题的方法。
(二)问题导向
1.引导学生提出问题,培养他们的问题意识和解决问题的能力。
3.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。
4.注重小组合作的过程和结果,对学生的合作学习和团队精神进行评价和反馈。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,发现自己的优点和不足,提高自我认知能力。
2.让学生通过自我评价和同伴评价,了解自己的学习进展和提高方向。
1.培养学生对数学学科的兴趣和热情,使他们愿意主动学习数学。
2.培养学生的团队合作意识,使他们能够在学习过程中相互帮助、共同进步。

人教版数学七年级下册6.3《实数》优秀教学案例

人教版数学七年级下册6.3《实数》优秀教学案例
2.运用启发式教学法,引导学生发现实数的性质,培养学生的问题解决能力。
3.采用小组合作学习法,让学生在讨论和交流中,共同完成实数性质的探究,培养学生的合作意识和团队精神。
4.设计丰富的教学活动,让学生在实践中感受实数的性质,提高学生的动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生树立自信心,相信自己能够掌握实数的知识。
4.引导学生总结实数的性质,培养学生的归纳总结能力,例如“实数的性质有哪些?如何描述有理数和无理数?”
(三)小组合作
1.让学生分组讨论实数的性质,鼓励学生发表自己的观点,培养学生的合作意识和团队精神。
2.设计小组活动,让学生共同探究实数的运算规则,例如“以小组为单位,总结实数的加法、减法、乘法、除法规则。”
在教学设计上,我遵循了由浅入深、循序渐进的原则,将知识点进行合理划分,使得学生能够逐步理解和掌握实数的概念和性质。在教学方法上,我采用了启发式教学法和小组合作学习法,鼓励学生主动发现问题、解决问题,培养学生的合作意识和团队精神。
在教学评价上,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况,及时调整教学策略,提高教学效果。通过本节课的教学,希望学生能够熟练掌握实数的相关知识,提高他们的数学素养。
三、教学策略
(一)情景创设
1.利用生活实例引入实数的概念,例如身高、体重、温度等,让学生感受到实数与生活的紧密联系。
2.通过设计有趣的数学问题,激发学生的学习兴趣,例如“小明身高1.6米,小红身高1.5米,请问小明比小红高多少?”
3.利用多媒体课件展示实数的应用场景,例如在平面直角坐标系中,展示实数表示的点的位置。
4.创设问题情境,引导学生思考实数的性质,例如“为什么实数可以分为有理数和无理数?”

人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点
实数是数学中非常重要的一个概念,其涉及到数学中的各个领域。

在七年级下册的第六章中,我们主要学习了实数的相关知识。

1. 实数的概念
实数是指所有可以表示成有限小数、无限循环小数或无限不循环小数的数。

简单来说,实数包括整数、分数、小数、无理数等。

2. 实数的分类
根据实数的性质,可以将实数分为有理数和无理数两类。

有理数是可以表示成分数形式的实数,包括整数、分数和循环小数。

无理数是不能表示成分数形式的实数,例如根号2、π等。

3. 实数的运算
实数的运算包括加、减、乘、除四种基本运算。

对于任意两个实数a和b,它们的和、差、积、商分别为:
a+b,a-b,ab,a÷b(b≠0)
此外还有实数的乘方运算,即a的n次方(n为正整数),表示a 连乘n次的结果。

4. 实数的比较
实数之间可以进行大小比较。

对于任意两个实数a和b,若a>b,则a称为大于b,b称为小于a。

若a=b,则a与b相等。

若a<b,则a称为小于b,b称为大于a。

5. 实数的表示
实数可以用数轴上的点表示。

数轴是一条直线,上面的每个点都
与一个实数一一对应。

数轴上的原点表示0,向右表示正数,向左表示负数。

以上就是七年级下册第六章实数的相关知识点。

实数是数学中非常基础的概念,掌握好实数的相关知识对于后续的学习非常重要。

6.3.1实数-人教版七年级数学下册课件

6.3.1实数-人教版七年级数学下册课件

你能求出下列各数的相反数、倒数和绝对值吗?
限 47 限 设点C表示的实数为x,则点A到点C的距离为-1-x,
5 . 8 7 5 2.会在实数范围内求一个数的相反数、倒数、绝对值.
小 8 循 思考: 是无理数吗?2.
反过来,数轴上的每一点都表示一个实数,即实数和数轴上的点是一一对应的。
数 环 ⑤无理数一定都带根号.
(√) (√) (√) (× ) (× ) (√) (× ) (√)
2、把下列各数分别填在相应的集合里
22 , 3.1415926, 7, 8, 3 2 , 0.6, 0,
7 36 ,
,
3
..
1.652,
0.3131131113
有理数集合
无理数集合
4. 下列说法不正确的是 A.|3-π|= 3-π C.2的相反数是-2
|-π|=___π_____,|3-π|=__π_-__3___.
2.我们在有理数范围内学过的运算法则和运算律是 否在实数范围内还能继续用呢?
在实数范围内,相反数、倒数、绝对值的意义和有理 数范围内的相反数、倒数、绝对值的意义完全一样。
学以致用 知行并进
你能求出下列各数的相反数、 倒数和绝对值吗?
7.如图所示,数轴上A,B两点表示的数分别为-1 和 3 ,点B关于点A的对称点为C,求点C所表示的 实数.
解:∵数轴上A,B两点表示的数分别为-1和 3 , ∴点B到点A的距离为1+ 3 ,则点C到点A的距离为 1+ 3 , 设点C表示的实数为x,则点A到点C的距离为-1-x, ∴-1-x=1+ 3 , ∴x=-2- 3
02002000200002… 有理数和无理数统称为实数
它们都是无限不循环小数,是无理数

人教版七年级数学下册《实数》专题PPT课件

人教版七年级数学下册《实数》专题PPT课件
为 2 的整数是 1,将这个数减去其整数部分,差就是 2 的小数部分,又例如:∵22<( 7)2<32,即2< 7<3,
∴ 7的整数部分为2,小数部分为( 7 2).
请解答:
(1) 如果 5 的整数部分为a, 13 的整数部分为b,
求(a b)2 b(a 1)的立方根; (2) 若- 5 x y,其中 x 是整数,且0<y<1, 求 x、y 的值; (3) 在(1)(2)的条件下求(x a)(1 b y)的值.
a b 3 ( 13 3) a b 6 13
【应对策略】估算 a (a>0)在哪两个整 数之间及整数、小数的部分:根据算术平 方根的定义,有 m2<a<n2,其中 m,n 是 连续非负整数,则m< a<n,则 a 的整 数部分为 m,小数部分为 a m .
练一练
阅读下面的文字,解决问题:大家知道 2 是无理数, 而无理数是无限不循环小数,因此 2 的小数部分我们 不可能全部地写出来,于是小明用 2 1 来表示 2 的 小数部分,事实上,小明的表示方法是有道理的,因
第六章 实数
综合专题讲解
专题目录 专题一:算术平方根的非负性 专题二:实数的估算 专题三:比较实数大小的方法
专题一:算术平方根的非负性
例1 若 a 4 2b 10 0 互为相反数,求 a+b 的
算术平方根.
算术平方根有什么性质呢?
分析:算术平方根具有非负性 两式都为 0
a4
a-4 = 0
a=4
2b 10 2b-10 = 0 b = 5
a b 9 a+b 的算术平方根为 3
例2 如果 a 1 与 2 b 互为相反数,那么 a+b 的绝
对值为____2___1__. 算术平方根和绝对值有什 么性质呢?

人教版七年级数学下册第6章实数小结优秀教学案例

人教版七年级数学下册第6章实数小结优秀教学案例
2.作业反馈:教师对学生的作业进行批改和反馈,给予及时的指导和鼓励,帮助学生发现并纠正错误,提高学生的学习效果。
3.课后思考:鼓励学生进行课后思考,思考实数在现实生活中的应用和意义,激发学生的学习兴趣和动力。
五、案例亮点
1.生活实例导入:通过引入与学生生活密切相关的情景,如购物、旅行等,引发学生对实数的兴趣和好奇心,激发学生的学习动力。这种生活化的教学方式能够使学生更好地理解实数的概念和运用,增强学生的学习兴趣和积极性。
2.讨论问题:设计具有思考性的问题,引导学生进行小组讨论,如“实数的加法和减法有什么相同点和不同点?”、“实数的乘法和除法有什么运算规律?”等。
3.小组分享:鼓励学生以小组为单位进行分享,展示他们的讨论成果和学习心得,培养学生的表达能力和合作意识。
(四)总结归纳
1.学生总结:让学生回顾所学内容,引导学生总结实数的概念、性质和运算规律,提高学生的归纳总结能力。
二、教学目标
(一)知识与技能
1.理解实数的概念,掌握实数的分类,能够正确区分整数、分数和无理数。
2.掌握实数的性质,包括实数的加法、减法、乘法、除法运算,能够熟练运用实数性质进行计算。
3.能够运用实数的性质和运算解决实际问题,提高解决问题的能力。
(二)过程与方法
1.通过生活实例和实际问题,引导学生主动探究实数的概念和性质,培养学生独立思考和解决问题的能力。
2.学生互评:鼓励学生进行互相评价,互相学习和借鉴,提高学生的评价能力和批判性思维能力。
3.教师评价:教师对学生的学习过程和结果进行评价,给予及时的反馈和指导,帮助学生发现并纠正错误,提高学生的学习效果和能力。
四、教学内容与过程
(一)导入新课
1.利用生活实例导入:以购物场景为例,引导学生思考如何计算商品的总价,引发学生对实数的兴趣和好奇心。

人教版数学七年级下册第六章综合与实践《体会实数在现实生活中的应用》课件

人教版数学七年级下册第六章综合与实践《体会实数在现实生活中的应用》课件

(2)如何在数轴上画出长度等于正方体的棱长的线段? 思考 如图1,在数轴上画一个边长为____1____dm的正方形,其 对角线长为____2____dm.以数轴原点为圆心,正方形对角线长为半径 画弧,与数轴正半轴交于一点,该点与数轴原点之间的线段长就等于 该正方体的棱长.
图1
(3)如何做出这个正方体纸盒? 如图2,选定一种正方体的展开图(11种展开图任选一种均可),要 求所有正方形的边长都为____2____dm,根据展开图,裁剪粘贴.
(3)如何在数轴上画出长度等于侧面展开图的长的线段? 思考 如图3,将一个直径为1个单位长度的圆从原点沿数轴向右滚 动一周,圆上的一点由原点到达点O′,则点O′对应的数是_____π___,即 线段OO′的长为____π____.(结果保留π) 所以要在数轴上画出长度为20π cm的线段,则所需圆的直径为 ___2_0____cm.
探究 你知道华罗庚是怎样迅速准确地计算出来的吗?请你按照
下面的问题试一试:
(1)由 103=1 000,1003=1 000 000,你能确定3 59 319 是几位数吗? 解:∵1 000<59 319<1 000 000,
∴3 1 000
3 < 59 319
3 < 1 000 000
,即__1_0___<3
图2
任务2 制作一个底面半径为10 cm,高为20 cm的圆柱形纸盒. (1)圆柱的侧面展开图是什么形状? 答:圆柱的侧面展开图是__长__方__形__. (2)这个侧面展开图各边的长分别是多少? 答:这个圆柱的侧面展开图的长为___2_0_π___cm,宽为____2_0___cm.(结 果保留π)
59 319
<__1_0_0__.

人教版数学七年级下册第六章实数教学课件

人教版数学七年级下册第六章实数教学课件
(2)在探索知识的过程中,你积累了哪些经验?
• 思维方法:求一个正数的算术平方根运算和开平方求 一个正数的二次幂运算互为逆运算.
• 探究策略:由特殊到一般,再由一般到特殊,是发现 问题和解决 问题的基本方法和途径.
第六章 实 数
6.1 平方根
第2课时 平方根
导入新课
讲授新课
当堂练习
课堂小结
学习目标
负数没有算术平方根.
典例精析 例1 分别求下列各数的算术平方根:
(1)100, (2)1265, (3) 0.49 .
解:(1)由于102=100,
因此 100 10;
(2)由于
4 5
2=1265

因此
16 4 ;
25 5
(3)由于0.72=0.49,
不难看出:被 开方数越大, 对应的算术平 方根也越大.这 个结论对所有 正数都成立.
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0,解得a=1.所 以这个数为(2a+1)2=(2+1)2=9.
方法归纳:一个正数有两个平方根,它们互为 相反数
回顾平方的概念
已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
+2
-2
4
+3
-3
9
二、开平方的概念 反之,已知一个数的平方,求这个数的运算是什么?
(3)0的平方根和算术平方根都是0.
平方根与算术平方根的区别: (1)定义不同:如果一个数x的平方等于a,那么这个
数x叫做 a的平方根,如果一个正数x的平方等于a, 即x2 =a,那么这个正数x叫做a的算术平方根. (2)个数不同:一个正数有两个平方根,而一个正

人教版七年级数学下册第六章实数的整理与复习教学设计

人教版七年级数学下册第六章实数的整理与复习教学设计
二、学情分析
针对人教版七年级数学下册第六章“实数的整理与复习”,学生在学习过程中已具备以下基础:掌握了有理数的概念和运算方法,了解简单的无理数,如π和√2等。在此基础上,学生对实数的认识逐步深入,但在实际应用和综合运用方面仍存在一定困难。
在此基础上,学情分析如下:
1.学生对实数的概念理解尚不透彻,容易混淆有理数和无理数的分类,需要通过具体实例和典型题目的讲解,帮助他们巩固和拓展实数的概念。
3.拓展题:设置一些综合性的题目,培养学生的创新思维和问题解决能力。
4.针对不同水平的学生,设计不同难度的题目,使每个学生都能在练习中得到有效的提高。
(五)总结归纳
在总结归纳环节,我将:
1.引导学生回顾本节课所学的实数知识,总结实数的概念、分类、运算性质和实际应用。
2.强调实数知识在日常生活中的重要性,激发学生学习数学的兴趣。
-研究实数运算的规律,总结乘方和开方运算的技巧,以报告的形式进行分享。
4.小组作业:
-以小组为单位,共同完成一份实数知识总结,包括概念、分类、运算性质和实际应用等方面,要求图文并茂,简洁明了。
-小组内互相出题、互相解答,开展实数知识竞赛,提高团队协作能力。
5.创新作业:
-鼓励学生利用实数知识解决自己感兴趣的问题,如科学探究、社会调查等,培养学生的创新思维和问题解决能力。
1.采用问题驱动的教学方法,激发学生的求知欲,引导学生通过自主探究、合作交流等方式,理解和掌握实数的概念和性质。
2.设计丰富的例题和练习,让学生在解题过程中,逐步掌握实数的运算方法和技巧,提高解题能力。
3.创设生活情境,让学生在实际问题中运用实数知识,感受数学与生活的紧密联系,培养学以致用的意识。
4.通过对实数知识点的整理和复习,引导学生总结规律,形成知识体系,提高数学思维能力。

人教版七年级下册数学知识点归纳:第六章实数

人教版七年级下册数学知识点归纳:第六章实数

人教版七年级下册数学知识点归纳第六章 实数6.1 平方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果; 一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小 (5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 实数
姓名:
一、选择题(每小题5分,共30分)
1、4
1的算数平方根是 ( ) (A )21 (B )21- (C )21± (D )16
1 2、2)7.0(-的平方根是( )
(A )7.0- (B ) ±0.7 (C ) 0.7 (D ) 0.49
3、下列结论正确的是 ( )
(A )64的立方根是4± (B )8
1-没有立方根 (C )立方根等于本身的数是0 (D )332727-=-
4、下列说法中正确的是 ( )
(A )带根号的数都是无理数 (B )无限小数都是无理数
(C )无理数是无限不循环小数 (D )无理数是开方开不尽的数
5、下列各数中,界于6和7之间的数是 ( )
(A )28 (B )43 (C )58 (D)
339
6、若a 2=25,3=b ,则a+b=( )
(A ) -8 (B ) ±8 (C ) ±2 (D ) ±8或±2
二、填空题(每小题5分,共20分)
7、在0,3.14159,3π,2,161-,722,39,23,•7.0中,其中______________是无理数;_________________________是有理数。

8、52-的相反数是___________,绝对值是_______________。

9、已知1.1001.102=,则0201.1±= ____________。

10、绝对值小于18的所有整数是_________________________。

三、解答题(共50分)
11、计算(每小题5分,共20分)
(1)25161-
(2)41804.03--+
(3)|23|23-- (4)232π-
(结果保留小数点后两位)
12、求下列各式中的x (每小题5分,共15分)
(1) 0027.03=-x (2) 25492=x
(3) 9)2(2=-x
13、比较下列各组数的大小(每小题5分,共15分)
(1)
35与6 (2)325-与3- (3)15-与2
3
四、附加题(每小题10分,共20分)
14、要生产一种容积为L π36的球形容器,这种球形容器的半径是多少分米?(球的体积公式是334R v π=,其中R 是球的半径。


15、一个正数x 的平方根是2a-3与5-a ,则a 和x 是多少?
初中数学试卷。

相关文档
最新文档