大学物理 刚体力学基础自测题ppt课件
合集下载
大学物理第5章 刚体力学基础ppt课件

转轴的力臂。
z
or
d
F
P
Mz的方向平行于转轴,由右手螺旋定则确定。
2、F不在转轴平面内 把F分解为三个分量 Fz, Fr, Ft, Fr的力矩为零, Fz的力矩不为零, 但不影响刚体的定轴转动, Ft的力矩沿轴向, 它对角动量有贡献。
z
Fz
F
r
o
P Fr
Ft
3、多个力作用于刚体 各外力作用点各不相同,外力对转轴
1、转动定律适用条件:刚体定轴转动。 2、M 一定:作用不同刚体上,J 大时,β 小, 转速不宜
改变,转动惯性大。反之,J 小,转动惯性小。 — 转动惯量是物体转动惯性大小的量度。
M J 类比 F ma
3、刚体转动定律是解决刚体转动问题的重要定律。 应用时应注意以下问题: ① 力矩和转动惯量必须对同一转轴而言。
M
r
m1
对重物应用牛顿第二定律,得
T f m 2 g si n m 2 a
N
T
对滑轮应用转动定律,得
f
• o
T
MTrJ
m2g
关联方程为: a r
J
1 2
m1r 2
TT fN m 2gco s
联立得:
Mm2grsinm2gcos
1 2m1r2m2r2
由于 为常量,故滑轮作匀变速转动.则
2 2
an
l2
9gcos
4
例题5-10 一恒力矩M作用于斜面顶点的滑轮上,滑轮的半径为r,
质量为m1,质量为m2的重物通过一不可伸长的轻绳固定在轮的边
缘,重物沿倾角为α的斜面上升.重物与斜面间的摩擦系数为μ。
求:轮子由静止开始转过角 后获得多大的角速度?
z
or
d
F
P
Mz的方向平行于转轴,由右手螺旋定则确定。
2、F不在转轴平面内 把F分解为三个分量 Fz, Fr, Ft, Fr的力矩为零, Fz的力矩不为零, 但不影响刚体的定轴转动, Ft的力矩沿轴向, 它对角动量有贡献。
z
Fz
F
r
o
P Fr
Ft
3、多个力作用于刚体 各外力作用点各不相同,外力对转轴
1、转动定律适用条件:刚体定轴转动。 2、M 一定:作用不同刚体上,J 大时,β 小, 转速不宜
改变,转动惯性大。反之,J 小,转动惯性小。 — 转动惯量是物体转动惯性大小的量度。
M J 类比 F ma
3、刚体转动定律是解决刚体转动问题的重要定律。 应用时应注意以下问题: ① 力矩和转动惯量必须对同一转轴而言。
M
r
m1
对重物应用牛顿第二定律,得
T f m 2 g si n m 2 a
N
T
对滑轮应用转动定律,得
f
• o
T
MTrJ
m2g
关联方程为: a r
J
1 2
m1r 2
TT fN m 2gco s
联立得:
Mm2grsinm2gcos
1 2m1r2m2r2
由于 为常量,故滑轮作匀变速转动.则
2 2
an
l2
9gcos
4
例题5-10 一恒力矩M作用于斜面顶点的滑轮上,滑轮的半径为r,
质量为m1,质量为m2的重物通过一不可伸长的轻绳固定在轮的边
缘,重物沿倾角为α的斜面上升.重物与斜面间的摩擦系数为μ。
求:轮子由静止开始转过角 后获得多大的角速度?
《刚体力学基础》课件

2
刚体在作用力学和运动学中的应用
说明刚体在作用力学和运动学研究中的应用,如力的分析和刚体的运动分析。
3
刚体力学与其他学科的关系
探讨刚体力学与其他学科的关系,如力学、工程学和物理学等的联系。
六、总结
1 刚体力学基础的重要性
总结刚体力学基础的重要性,强调其在物体运动研究中的价值。
2 接下来的深入研究方向
介绍刚体力学研究中所采用 的基本假设和运动条件,以 便准确描述刚体的运动。
二、刚体的运动学
1
刚体的平动运动和定点运动
讲解刚体的平动运动和定点运动,包括平移和旋转的概念以及运动轨迹。
2
刚体的旋转运动和欧拉角
解释刚体的旋转运动和欧拉角的概念,阐明旋转的自由度和描述方法。
3
刚体的复合运动
讲述刚体的复合运动,即平动和旋转运动的组合,展示不同运动方式的例子。
ห้องสมุดไป่ตู้
刚体静力学的经典问题
介绍刚体的平衡和力的平衡条件, 解释如何使刚体保持静止。
探讨刚体静力学中的经典问题, 如杠杆原理和平衡木问题。
牛顿第三定律在刚体上的 应用
讲解牛顿第三定律在刚体运动中 的应用,如碰撞和反作用力。
五、实际应用
1
刚体在机械和结构工程中的应用
展示刚体在机械和结构工程中的应用案例,如建筑物和机械装置。
提出刚体力学研究中的深入方向,如刚体动力学和非线性刚体力学。
3 刚体力学研究的意义
归纳刚体力学研究的意义,展示其对工程和科学领域的贡献。
三、刚体的动力学
牛顿第二定律在刚体 上的应用
探讨牛顿第二定律在刚体力学 中的应用,包括力和加速度的 关系。
刚体的角动量和角动 量定理
大学物理 第5章 刚体力学基础习题课ppt课件

t 利用定轴转动中的转动定律
M Jβ
1 0
2 0 M 2 2 5 ( k g m ) J 0 .8 β
2018/11/8
13
补充: 刚体在平面力系作用下静止平衡 A 的条件: 作用于刚体平面力系的 矢量和为0,对与力作用平面⊥的 任意轴的力矩的代数和为0.
2018/11/8
5. (P29 47) 一长为l、重W的均匀梯子,靠墙放置,如图, 梯子下端连一倔强系数为k 的弹簧。当梯子靠墙竖直放置 时,弹簧处于自然长度,墙和地面都是光滑的。当梯子 依墙而与地面成θ角且处于平衡状态时, (1)地面对梯子的作用力的大小为 。 B (2)墙对梯子的作用力的大小为 。 (3)W、k、l、θ应满足的关系式为 。 l
大学物理 第5 章 刚体力学基 础习题课
刚体力学基础
一、基本概念 1.刚体及其平动、转动、定轴转动 理想化的力学模型 特性:特殊的质点系(牛顿力学) 2.转动惯量
J mr
i
刚体对定轴的转动惯量等于刚体中每个质点的质量 与这一质点到转轴的垂直距离的平方的乘积的总和。
2 i i
J r dm
3.(p29. 45 ) 半径为20cm 的主动轮,通过皮带拖动半径 为50cm的被动轮转动。主动轮从静止开始作匀角加速转 动,在4s内,被动轮的角速度达到8πrad.s-1,则主动轮在 这段时间内转过了_____圈。
1 0 t t 解:t = 4s 时, 1 1 1 1 1则 1 t1 两轮边缘上点的线速度大小相等: r r 1 1 2 2
θ
1B
l
F 0 N F kl co 无平动: F 0 N W
i i x B
i i y A
M Jβ
1 0
2 0 M 2 2 5 ( k g m ) J 0 .8 β
2018/11/8
13
补充: 刚体在平面力系作用下静止平衡 A 的条件: 作用于刚体平面力系的 矢量和为0,对与力作用平面⊥的 任意轴的力矩的代数和为0.
2018/11/8
5. (P29 47) 一长为l、重W的均匀梯子,靠墙放置,如图, 梯子下端连一倔强系数为k 的弹簧。当梯子靠墙竖直放置 时,弹簧处于自然长度,墙和地面都是光滑的。当梯子 依墙而与地面成θ角且处于平衡状态时, (1)地面对梯子的作用力的大小为 。 B (2)墙对梯子的作用力的大小为 。 (3)W、k、l、θ应满足的关系式为 。 l
大学物理 第5 章 刚体力学基 础习题课
刚体力学基础
一、基本概念 1.刚体及其平动、转动、定轴转动 理想化的力学模型 特性:特殊的质点系(牛顿力学) 2.转动惯量
J mr
i
刚体对定轴的转动惯量等于刚体中每个质点的质量 与这一质点到转轴的垂直距离的平方的乘积的总和。
2 i i
J r dm
3.(p29. 45 ) 半径为20cm 的主动轮,通过皮带拖动半径 为50cm的被动轮转动。主动轮从静止开始作匀角加速转 动,在4s内,被动轮的角速度达到8πrad.s-1,则主动轮在 这段时间内转过了_____圈。
1 0 t t 解:t = 4s 时, 1 1 1 1 1则 1 t1 两轮边缘上点的线速度大小相等: r r 1 1 2 2
θ
1B
l
F 0 N F kl co 无平动: F 0 N W
i i x B
i i y A
大学物理B层次--第三章 刚体力学基础ppt课件

5
对比:
L L M dt
t 1 外 2
t2
1
F dtp p
t 1 外 2
t2
1
3.质点角动量守恒守律 根据上式,如果合外力矩零(即M外=0),则L1=L2 , 即 L=常矢量 这就是说,对一固定点o,质点所受的合外力矩为 零,则此质点的角动量矢量保持不变。这一结论 叫做质点角动量守恒定律。 对比: 角动量守恒定律是:M外=0,则L=常矢量。 动量守恒定律是: F外=0 ,则p=常矢量。 6
d r 2 r F=ma=-m2r a 2 dt M=rF=-m2rr =0
2
7
例题3-2 如图所示,一细绳穿过光滑水平桌面上 的小孔o,绳的一端系有一质量为m的小球并放在 桌面上;另一端用力往下拉住。设开始时小球以角 速度0绕孔o作半径r的匀速圆周运动,现在向下缓慢 拉绳,直到小球作圆周运动的半径为r/2时止,求这 一过程中拉力的功。 0 解 绳的拉力对o点的力矩为 o 零,故小球在运动中对o点的角 r m 动量守恒,于是有 mr2 0= m(r/2)2 F =40 由动能定理,拉力的功为
1r 22 1 2 2 3 2 2 A m () mr mr 0 0 22 2 2
8
例题3-3 在一光滑的水平面上,有一轻弹簧,倔强 系数为k=100N/m,一端固定于o点,另一端连接一质 量为m=1kg的滑块,如图所示。设开始时,弹簧的 长度为l0=0.2m(自然长度), 滑块速度0=5m/s, 方向与 弹簧垂直。当弹簧转过900时,其长度l=0.5m,求此 时滑块速度 的大小和方向。 解 对滑块运动有影响的力只有弹性力,故角动量 和机械能都守恒: l m l0=m lsin o m 1 2 1 2 1 2 m k ( l l ) 0 m 0 d l0 2 2 2 解得: =4m/s, =300。
对比:
L L M dt
t 1 外 2
t2
1
F dtp p
t 1 外 2
t2
1
3.质点角动量守恒守律 根据上式,如果合外力矩零(即M外=0),则L1=L2 , 即 L=常矢量 这就是说,对一固定点o,质点所受的合外力矩为 零,则此质点的角动量矢量保持不变。这一结论 叫做质点角动量守恒定律。 对比: 角动量守恒定律是:M外=0,则L=常矢量。 动量守恒定律是: F外=0 ,则p=常矢量。 6
d r 2 r F=ma=-m2r a 2 dt M=rF=-m2rr =0
2
7
例题3-2 如图所示,一细绳穿过光滑水平桌面上 的小孔o,绳的一端系有一质量为m的小球并放在 桌面上;另一端用力往下拉住。设开始时小球以角 速度0绕孔o作半径r的匀速圆周运动,现在向下缓慢 拉绳,直到小球作圆周运动的半径为r/2时止,求这 一过程中拉力的功。 0 解 绳的拉力对o点的力矩为 o 零,故小球在运动中对o点的角 r m 动量守恒,于是有 mr2 0= m(r/2)2 F =40 由动能定理,拉力的功为
1r 22 1 2 2 3 2 2 A m () mr mr 0 0 22 2 2
8
例题3-3 在一光滑的水平面上,有一轻弹簧,倔强 系数为k=100N/m,一端固定于o点,另一端连接一质 量为m=1kg的滑块,如图所示。设开始时,弹簧的 长度为l0=0.2m(自然长度), 滑块速度0=5m/s, 方向与 弹簧垂直。当弹簧转过900时,其长度l=0.5m,求此 时滑块速度 的大小和方向。 解 对滑块运动有影响的力只有弹性力,故角动量 和机械能都守恒: l m l0=m lsin o m 1 2 1 2 1 2 m k ( l l ) 0 m 0 d l0 2 2 2 解得: =4m/s, =300。
第三章刚体力学基础[1]PPT课件
![第三章刚体力学基础[1]PPT课件](https://img.taocdn.com/s3/m/21ab6d8ae45c3b3566ec8b80.png)
注意: F应该理解为外力在转动平面内的分力
如果有几个外力矩作用在刚体上,则合力矩等于
各个力矩的代数和
Mi riFi
i
i
力是引起质点运动状态变化的原因,而力矩是引起
转动物体运动状态变化的原因
二 刚体绕定轴的转动定律
刚体转动定律可由牛顿第二定律直接导出
F ifi m iai
外力的合力
内力的合力
假设 Fi和fi 都是位于质
点i所在的转动平面内
得到:
质点i的加速度 Z Mz
df
dF
Odr
dm
dF
F i fi m ia i m ir i
转动平面
dFn
转动定律
将力分解为作用在质量元△m上
的切向力和法向力
Z Mz
Fifim iai
dF df
Finfinmiain
将切向分量式两边同乘r,
例1、求质量为m、半径为R的均匀圆环的转动惯量。 轴与圆环平面垂直并通过圆心。
解: J r2dm
Z
R 2dm R 2 dm m2R O
J是可加的,所以若为薄圆筒 (不计厚度)结果相同。
R dm
例2、求质量为m、半径为R、厚为l 的均匀圆盘的转动 惯量。轴与盘平面垂直并通过盘心。
解:取半径为r宽为dr的薄圆环,
•转轴的位置
布,与转轴的位置结合决定转
•刚体的形状
轴到每个质元的矢径。
单个质点的转动惯量 J miri2 n
质点系的转动惯量 J (miri2)
i1
质量连续分布的刚 体的转动惯量
J r2dm m
国际单位制中转动惯量的单位为千克·米2(kg·m2)
转动惯量的定义及物理意义
刚体力学基础PPT课件

转动:分定轴转动和非定轴转动 刚体的平面运动
5
二、刚体定轴转动的描述
1.刚体定轴转动的特点 轴上各点都保持不动,轴外各点在同一时间间隔内转过的角度一样。
以某转动平面与转轴的交点为原点,转动平面上所有质元都绕着这个 原点作圆周运动。
2.描述 可类似地定义绕定轴转动的刚体的:
*角位置 (t)
i
ri
z
切向加速度 法向加速度
ai ri
ani ri 2
ri
vi
§3-2 定轴转动刚体的转动惯量
一、刚体定轴转动定律
(1)单个质点m
与转轴刚性连接
Ft mat mr
M rF sinθ
z
M
Ft
F
O
r
m
Fn
M rFt mr 2 M mr2
一、刚体运动分类
2.转动 如果刚体上的所有质元都绕某同一直线作圆周运动,这种运动就称之为转动,
这条直线称为转轴。
A
A
分为定轴转动和非定轴转动
*非定轴转动 若转轴方向或位置变化,这种转动称为非定轴转动
A
A
* 定轴转动 若转动轴固定不动,这种转动称为定轴转动. 这个转
轴称为固定轴,
转动平面:垂直于固定轴的平面
内力(F质i2j 量)元刚受体外力Fej ,
Mej Mij mjrj2
外力矩
内力矩
z
O rj
Fej
m j
Fij
Mej Mij mjrj2
j
j
Mij M ji Mij 0
j
大学物理刚体力学习题课ppt课件

0 3g/ L
(2)弹性碰撞过程,角动量守恒 m
J0 JmvL
机械能守恒
12J02
1J21mv2
22
.
v 1 3gL 2
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
2 23 2 3g
l
.
6. 如图所示的阿特伍德机装置中,滑轮和绳子间没
有滑动且绳子不可以伸长,轴与轮间有阻力矩,求
滑轮两边绳子的张力。已知m1=20 kg, m2=10 kg。
滑轮质量为m3=5 kg。滑轮半径为r=0.2 m。滑轮可视
为均匀圆盘,阻力矩Mf=6.6 Nm,圆盘对过其中心且
与盘面垂直的轴的转动惯量为
解:由于摩擦力矩恒定,因此轮子做匀角加速转动, 轮子上的各点做匀变速圆周运动
0t
t1, 0.80
0.20
t2,00.40
当轮子静止时 = 0
2022
2 0
2
02 0.40
2.50
.N 2 .5 0/2 5 0/4
4. 在恒力矩M=12 Nm作用下,转动惯量为4 kgm2 的圆盘从静止开始转动。当转过一周时,圆盘的转 动角速度为 2 3 rad/s。
与O点的距离为3l/4,求:(1)棒开始运动时的角速度;
(2)棒的最大偏转角。
o
解:对题中非弹性碰撞,角动量守恒,
mv 3 l J
4
J
m(3l)2 4
1 3Ml2
36ml
(27m16M)l
3
l 4
l
A
上摆过程, 机械能守恒
1J 2M l(1 g c o) sm3lg (1 c o)s
2
大学物理 第3章刚体力学基础(完全版)课件

环
(3)均质圆盘(m,R)绕中心轴转
动时,可将圆盘划分为若干个半
径r、宽dr的圆环积分 :
Jc
R
r2
m
0 R
2
2rdr
1 mR 2 2
R
d m
r dr
图5-7
学习交流PPT
25
例题5-3 以20N.m的恒力矩作用在有固定轴的 转轮上,在10s内该轮的转速均匀地由零增大到 100rev/min。此时撤去该力矩,转轮经100s而停止。 试推算此转轮对该轴的转动惯量。
实际问题中,当物体的形变很小可忽略时,就将物体
视为刚体。
刚体的特征:
(a)刚体上各质点之间的距离保持不变。
无论所受外力多大,不论转动多快,刚体的形 状都始终保持不变。
(b)刚体有确定的形状和大小。
(c)刚体可看作是由许多质点(质元)组成的质点系。
学习交流PPT
3
§5-1 刚体运动 学 一.刚体的平动和转动
学习交流PPT
19
二.转动惯量的计算
(1)质量离散分布刚体
J=Δmi ri2
(5-5)
即:刚体的转动惯量等于刚体上各质点的质量乘
以它到转轴距离的平方的总和。
(2)质量连续分布刚体
J r2dm (5-6)
式中: r为刚体上的质元dm到转轴的距离。
学习交流PPT
20
三.平行轴定理
Jo=Jc+Md2
第5章
Dynamics of Rigid
Bod刚y 体力学基础
(6)
学习交流PPT
1
本章的主要内容是研究刚体的转动,尤其是定轴 转动。
核心内容: • 定轴转动的转动定理 • 刚体的转动惯量 • 定轴转动的角动量守恒
(3)均质圆盘(m,R)绕中心轴转
动时,可将圆盘划分为若干个半
径r、宽dr的圆环积分 :
Jc
R
r2
m
0 R
2
2rdr
1 mR 2 2
R
d m
r dr
图5-7
学习交流PPT
25
例题5-3 以20N.m的恒力矩作用在有固定轴的 转轮上,在10s内该轮的转速均匀地由零增大到 100rev/min。此时撤去该力矩,转轮经100s而停止。 试推算此转轮对该轴的转动惯量。
实际问题中,当物体的形变很小可忽略时,就将物体
视为刚体。
刚体的特征:
(a)刚体上各质点之间的距离保持不变。
无论所受外力多大,不论转动多快,刚体的形 状都始终保持不变。
(b)刚体有确定的形状和大小。
(c)刚体可看作是由许多质点(质元)组成的质点系。
学习交流PPT
3
§5-1 刚体运动 学 一.刚体的平动和转动
学习交流PPT
19
二.转动惯量的计算
(1)质量离散分布刚体
J=Δmi ri2
(5-5)
即:刚体的转动惯量等于刚体上各质点的质量乘
以它到转轴距离的平方的总和。
(2)质量连续分布刚体
J r2dm (5-6)
式中: r为刚体上的质元dm到转轴的距离。
学习交流PPT
20
三.平行轴定理
Jo=Jc+Md2
第5章
Dynamics of Rigid
Bod刚y 体力学基础
(6)
学习交流PPT
1
本章的主要内容是研究刚体的转动,尤其是定轴 转动。
核心内容: • 定轴转动的转动定理 • 刚体的转动惯量 • 定轴转动的角动量守恒
刚体力学基础 ppt课件

PPT课件
14
(2)用质量不计的细杆连接的五个质点, 如图55所示。转轴垂直于质点所在平面且通过o点, 转动 惯量为
JO=m.02 +2m(2l2) +3m(2l)2 +4ml2 +5m(2l2) =30ml2
2m
l
ml
l 3m
o
4m
l
5m
图5-5
PPT课件
15
例题5-2 质量连续分布刚体: J r 2dm
d( J )
dt
(5-3)
(Lz=J)
上式称为物体定轴转动方程。
对定轴转动的刚体, J为常量, d /dt=, 故式(6-16)
又可写成
M=J
(5-4)
这就是刚体定轴转动定理。
PPT课件
9
M=J
(5-4)
(5-4)表明, 刚体所受的合外力矩等于刚体的转动 惯量与刚体角加速度的乘积。
(5-6)
式中: r为刚体上的质元dm到转轴的距离。
PPT课件
12
三.平行轴定理
Jo=Jc+Md2
(5-7)
Jc 通过刚体质心的轴的转动 惯量;
M 刚体系统的总质量; d 两平行轴(o,c)间的距离。
Jo d Jc
o
C M
图5-3
PPT课件
13
例题5-1 质量离散分布刚体: J=Δmi ri2
fij ) 0
i
j( i j )
得
i
d ri Fi dt
i
( ri mii )
PPT课件
7
i
d ri Fi dt
i
《物理刚体力学》课件

体质量乘以角速 度乘以旋转半径。
角动量守恒的条 件:刚体在运动 过程中,不受外 力矩作用,或者 外力矩的矢量和 为零。
角动量守恒的应用: 在物理学、工程学 等领域,角动量守 恒定律被广泛应用 于分析刚体的运动 状态和设计机械设 备。
刚体的振动与波 动
体育器材:篮球架、足球 门、单杠等体育器材的结 构和支撑
医疗设备:手术床、轮椅、 担架等医疗设备的支撑和 连接
电子产品:手机、电脑、 电视等电子产品的外壳和 框架
刚体在体育运动中的应用
篮球:篮球架、篮球板等设备都是 刚体,它们需要承受运动员的撞击 和冲击。
田径:田径运动中的起跑器、跳高 杆等设备也是刚体,它们需要承受 运动员的撞击和冲击。
刚体在工程中的应用:设计、制造和维护各种机械设备,如汽车、飞机、桥梁等
刚体在生物力学中的应用:研究人体骨骼、肌肉等组织的力学性能,为医疗、康复等领域提 供科学依据
感谢您的观看
汇报人:PPT
添加标题
添加标题
添加标题
添加标题
转动惯量:刚体转动时,其转动惯 量与质量、形状、转动轴的位置有 关。
转动定律的局限性:转动定律只适 用于刚体,不适用于非刚体。
刚体的转动惯量
定义:刚体转动惯量是刚体转动时,其角动量与角速度的比值 公式:I=mr^2,其中m是刚体质量,r是刚体到转轴的距离 应用:刚体的转动惯量在物理学、工程学等领域有广泛应用 影响因素:刚体的形状、质量分布、转轴位置等因素都会影响其转动惯量
消失
基本假设:物体 在受到外力作用 时,其运动状态 保持不变,即物 体在受到外力作 用时,其速度、 加速度和位置保
持不变
局限性:刚体 力学只适用于 刚体,不适用 于流体、弹性 体等非刚体物
角动量守恒的条 件:刚体在运动 过程中,不受外 力矩作用,或者 外力矩的矢量和 为零。
角动量守恒的应用: 在物理学、工程学 等领域,角动量守 恒定律被广泛应用 于分析刚体的运动 状态和设计机械设 备。
刚体的振动与波 动
体育器材:篮球架、足球 门、单杠等体育器材的结 构和支撑
医疗设备:手术床、轮椅、 担架等医疗设备的支撑和 连接
电子产品:手机、电脑、 电视等电子产品的外壳和 框架
刚体在体育运动中的应用
篮球:篮球架、篮球板等设备都是 刚体,它们需要承受运动员的撞击 和冲击。
田径:田径运动中的起跑器、跳高 杆等设备也是刚体,它们需要承受 运动员的撞击和冲击。
刚体在工程中的应用:设计、制造和维护各种机械设备,如汽车、飞机、桥梁等
刚体在生物力学中的应用:研究人体骨骼、肌肉等组织的力学性能,为医疗、康复等领域提 供科学依据
感谢您的观看
汇报人:PPT
添加标题
添加标题
添加标题
添加标题
转动惯量:刚体转动时,其转动惯 量与质量、形状、转动轴的位置有 关。
转动定律的局限性:转动定律只适 用于刚体,不适用于非刚体。
刚体的转动惯量
定义:刚体转动惯量是刚体转动时,其角动量与角速度的比值 公式:I=mr^2,其中m是刚体质量,r是刚体到转轴的距离 应用:刚体的转动惯量在物理学、工程学等领域有广泛应用 影响因素:刚体的形状、质量分布、转轴位置等因素都会影响其转动惯量
消失
基本假设:物体 在受到外力作用 时,其运动状态 保持不变,即物 体在受到外力作 用时,其速度、 加速度和位置保
持不变
局限性:刚体 力学只适用于 刚体,不适用 于流体、弹性 体等非刚体物
最新大学物理第3章-刚体力学基础课件ppt

对所有质元的同样的式子求和:
∑Fi risini+ ∑ fi rsi ini = (∑ mi ri2 )
一对内力的力矩之和为零,所以有
∑ Fi ri sini = (∑mi ri2)
只与刚体的形状、质量分布和转轴位置有关
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
令J= ∑mi ri2 J为刚体对于定转轴的转动惯量
对平动的刚体列出牛顿第二定律方程,对定轴转动的刚体 列出定轴转动定律方程;
注意利用角量与线量的关系。
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
例5: 已知光滑桌面,滑轮半径R,质量为Mc,两物体质 量分别为m1 m2 ,求两物体的加速度和绳的张力.
m2
a
m1
g
m1 解:
m1 m 2
T m 1m 2 g
1 3
mLL2
Jo
2 5
mo
R2
mO
J L 2 J 0 m 0 d 2 J 0 m 0 ( L R ) 2
J1 3m L L 25 2m oR 2m o(L R )2
大学物理学A
第一篇 力学基础
大学物理学A
匀质矩形薄板
转轴通过中
心垂直板面
I=
m 12
(a2 + b2
)
匀质细圆环
转轴通过中 心垂直环面
FT 1mAa
m BgF T2 m Ba
RTF 2 RTF 1 J
a R
FN
PmAAO
FT1
x
第3章 刚体力学基础
FT1
FC
PC
FT 2
FT 2
O
mB
∑Fi risini+ ∑ fi rsi ini = (∑ mi ri2 )
一对内力的力矩之和为零,所以有
∑ Fi ri sini = (∑mi ri2)
只与刚体的形状、质量分布和转轴位置有关
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
令J= ∑mi ri2 J为刚体对于定转轴的转动惯量
对平动的刚体列出牛顿第二定律方程,对定轴转动的刚体 列出定轴转动定律方程;
注意利用角量与线量的关系。
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
例5: 已知光滑桌面,滑轮半径R,质量为Mc,两物体质 量分别为m1 m2 ,求两物体的加速度和绳的张力.
m2
a
m1
g
m1 解:
m1 m 2
T m 1m 2 g
1 3
mLL2
Jo
2 5
mo
R2
mO
J L 2 J 0 m 0 d 2 J 0 m 0 ( L R ) 2
J1 3m L L 25 2m oR 2m o(L R )2
大学物理学A
第一篇 力学基础
大学物理学A
匀质矩形薄板
转轴通过中
心垂直板面
I=
m 12
(a2 + b2
)
匀质细圆环
转轴通过中 心垂直环面
FT 1mAa
m BgF T2 m Ba
RTF 2 RTF 1 J
a R
FN
PmAAO
FT1
x
第3章 刚体力学基础
FT1
FC
PC
FT 2
FT 2
O
mB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚体力学基础自测题
1
(1)已知地球的质量为m,太阳的质量为M,地心与日心的距
离为R,引力常数为G,则地球绕太阳作圆周运动的轨道
角动量为
GMm
G
(A) m GMR (B) R (C) Mm R
GMm (D) 2R
解:
Lr =rr pr =Rr mvr
GMm R2
m
v2 R
v GM R
L m GMR
2. 体重、身高相同的甲乙两人,分别用双手握住跨过 无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为 零向上爬,经过一定时间,甲相对绳子的速率是乙相对 绳子速率的两倍,则到达顶点的情况是
(A)甲先到达. (B)乙先到达. (C)同时到达. (D)谁先到达不能确定。
解:选甲乙两人和绳子构成研究系统,所 受外力为重r力和滑r 轮对r绳子的支持力。 M rF
转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒 摆动到竖直位置的过程中,下述说法哪一种是正确的?
(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大。
解: (1)角速度由小到大
(如图所示),当小球与杆的端点发生完全非弹性碰撞后, 就与杆粘在一起运动,则这一系统碰撞后的转动角速度为
( A) Lv 12
A N2
G
N1
B
f1 图7
7.如图所示,一质量为m的匀质细杆AB,A端靠
在粗糙的竖直墙壁上,B端置于粗糙水平地面上而静
止,杆身与竖直方向成θ角,则A端对墙壁的压力大小
为
解(1)如果是光滑墙壁,其受力情况
如图所示。
f2
以B为支点,由于物体静止,所以合力
A
矩为0 mg l sin
2
端对墙的压力为
N2l cos
所受的合外力矩为0,角动量守恒。
rr
L甲 L乙 0
选向内为正 m甲v甲r m乙v乙r 0
甲
v甲 v乙
G甲
N
乙 G乙
(3)如图,有一木块物体,置于一个光 滑的水平桌面上,有一绳其一端连接此物 体,另一端穿过桌面中心的小孔,该物体 原以角速度ω在距孔为R的圆周上运动, 今将绳从小孔缓慢往下拉,则物体
r j
(D)
vr
r 31.4k 单位均为
cm
s-1
6r 0转6./2分8rad6./2s8rkrad / s vr r rrr r r r
6.28k r (3i 4rj 5k ) 25.1i 18.8 j
5 z P
ห้องสมุดไป่ตู้
vP
rP
o 3
4y
x
5、均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴
v R
,
逆时针
解:选人和转台为研究系统,则系统角
动量守恒
0 Rmvr Jr
r Rmvr mR2 ( vr )
J
JR
转动 平面
11、光滑的水平桌面上,有一长为2L、质量为m的匀质细 杆,可绕过其中点且垂直于杆的竖直光滑固定轴O自由转动, 其转动惯量为1/3(mL2),起初杆静止,桌面上有一个质 量为m的小球,在杆的垂直方向正对着杆的一端以速率v运动,
(4)一刚体以每分钟60转速率绕 z 轴逆时针匀速转动,设
某时刻刚体上某点 P 的位矢为:
rP 3i 4 j 5k cm
(若A)以vrcm/9s4为.2速ir 度1单25位.6,rj 则15该7.时0kr刻P(点B)的速vr 度为25:.1ir
18.8
r j
(C)
vr
r 25.1i
18.8
T右R T左R
T右 T左
一木棒斜靠在墙上处于静止状态,试分析木棒受力 情况。
f2
• 分析解答:“隔离”木棒,以 木棒为研究对象,如图所示。 木棒受重力mg;地面对木棒竖 直水端向平有上向向的 右 右支 的 运持 支 动力 持 趋N力势1N,;2B墙;端对木受木棒到棒B 地木面棒对A端它有水向平下向运左动的趋静势摩,擦A力端f1; 受到墙给它的竖直向上的静摩 擦力f2。
O
(2)至于角加速度β,可由
M J 计算。
由 M mg l cos (1 ml2 )
2
3
3g cos
G
2l
可知角加速度越来越小。
A
A
6、一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两 端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间 无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力
通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小
孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿
逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向
分别为
( A)
mR2 J
v R
,
顺时针
(B)
mR2 J
v R
,逆时针
(C)
J
mR2 mR2
v R
,顺时针(D)
J
mR2 mR2
(A)动能不变,动量改变 B)动量不变,动能改变 (C)角动量不变,动量不变 D)角动量改变,动量改变 (E)角动量不变,动能、动量都改变
解:以物体为系统,所受合外力为绳子的拉
力, 而绳子的拉力通过转轴(力矩为
0),所以角动量守恒。即角动量不变。
Lr =rr pr
rmv=常数
r
mv
Ek
1 2
mv2
N2
1 2
mgtg
(2) 对本题来说,因为f2并不清楚,所以无 法由合力矩为0求出N2.
同样f1也不清楚,无法利用质心定理求出 N2.
A N2
G
N1
B
f1 图7
8、 刚体角动量守恒的充分而必要的条件是 (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.
(A) 处处相等.
(B) 左边大于右边.
(C) 右边大于左边. (D) 哪边大无法判断.
N
O
解: (1)取两物体和绳子以及滑轮作
为一个研究系统, 所受的外力有
Mg
重力 G1,G2,Mg和支持力N,在 这些力的作用下,合力矩为
M m2 m1 gR J
方向向内
m1 m2
G1
G2
以定滑轮为对象,可得
答案 (B)
9、一块方板,可以绕通过其一个水平边的光滑固定轴自
由转动.最初板自由下垂.今有一小团粘土,垂直板面撞
击方板,并粘在板上.对粘土和方板系统,如果忽略空气
阻力,在碰撞中守恒的量是
(A) 动能.
(B) 绕木板转轴的角动量.
(C) 机械能. (D) 动量.
V
对转轴的合力矩为 0
10 质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕
1
(1)已知地球的质量为m,太阳的质量为M,地心与日心的距
离为R,引力常数为G,则地球绕太阳作圆周运动的轨道
角动量为
GMm
G
(A) m GMR (B) R (C) Mm R
GMm (D) 2R
解:
Lr =rr pr =Rr mvr
GMm R2
m
v2 R
v GM R
L m GMR
2. 体重、身高相同的甲乙两人,分别用双手握住跨过 无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为 零向上爬,经过一定时间,甲相对绳子的速率是乙相对 绳子速率的两倍,则到达顶点的情况是
(A)甲先到达. (B)乙先到达. (C)同时到达. (D)谁先到达不能确定。
解:选甲乙两人和绳子构成研究系统,所 受外力为重r力和滑r 轮对r绳子的支持力。 M rF
转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒 摆动到竖直位置的过程中,下述说法哪一种是正确的?
(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大。
解: (1)角速度由小到大
(如图所示),当小球与杆的端点发生完全非弹性碰撞后, 就与杆粘在一起运动,则这一系统碰撞后的转动角速度为
( A) Lv 12
A N2
G
N1
B
f1 图7
7.如图所示,一质量为m的匀质细杆AB,A端靠
在粗糙的竖直墙壁上,B端置于粗糙水平地面上而静
止,杆身与竖直方向成θ角,则A端对墙壁的压力大小
为
解(1)如果是光滑墙壁,其受力情况
如图所示。
f2
以B为支点,由于物体静止,所以合力
A
矩为0 mg l sin
2
端对墙的压力为
N2l cos
所受的合外力矩为0,角动量守恒。
rr
L甲 L乙 0
选向内为正 m甲v甲r m乙v乙r 0
甲
v甲 v乙
G甲
N
乙 G乙
(3)如图,有一木块物体,置于一个光 滑的水平桌面上,有一绳其一端连接此物 体,另一端穿过桌面中心的小孔,该物体 原以角速度ω在距孔为R的圆周上运动, 今将绳从小孔缓慢往下拉,则物体
r j
(D)
vr
r 31.4k 单位均为
cm
s-1
6r 0转6./2分8rad6./2s8rkrad / s vr r rrr r r r
6.28k r (3i 4rj 5k ) 25.1i 18.8 j
5 z P
ห้องสมุดไป่ตู้
vP
rP
o 3
4y
x
5、均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴
v R
,
逆时针
解:选人和转台为研究系统,则系统角
动量守恒
0 Rmvr Jr
r Rmvr mR2 ( vr )
J
JR
转动 平面
11、光滑的水平桌面上,有一长为2L、质量为m的匀质细 杆,可绕过其中点且垂直于杆的竖直光滑固定轴O自由转动, 其转动惯量为1/3(mL2),起初杆静止,桌面上有一个质 量为m的小球,在杆的垂直方向正对着杆的一端以速率v运动,
(4)一刚体以每分钟60转速率绕 z 轴逆时针匀速转动,设
某时刻刚体上某点 P 的位矢为:
rP 3i 4 j 5k cm
(若A)以vrcm/9s4为.2速ir 度1单25位.6,rj 则15该7.时0kr刻P(点B)的速vr 度为25:.1ir
18.8
r j
(C)
vr
r 25.1i
18.8
T右R T左R
T右 T左
一木棒斜靠在墙上处于静止状态,试分析木棒受力 情况。
f2
• 分析解答:“隔离”木棒,以 木棒为研究对象,如图所示。 木棒受重力mg;地面对木棒竖 直水端向平有上向向的 右 右支 的 运持 支 动力 持 趋N力势1N,;2B墙;端对木受木棒到棒B 地木面棒对A端它有水向平下向运左动的趋静势摩,擦A力端f1; 受到墙给它的竖直向上的静摩 擦力f2。
O
(2)至于角加速度β,可由
M J 计算。
由 M mg l cos (1 ml2 )
2
3
3g cos
G
2l
可知角加速度越来越小。
A
A
6、一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两 端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间 无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力
通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小
孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿
逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向
分别为
( A)
mR2 J
v R
,
顺时针
(B)
mR2 J
v R
,逆时针
(C)
J
mR2 mR2
v R
,顺时针(D)
J
mR2 mR2
(A)动能不变,动量改变 B)动量不变,动能改变 (C)角动量不变,动量不变 D)角动量改变,动量改变 (E)角动量不变,动能、动量都改变
解:以物体为系统,所受合外力为绳子的拉
力, 而绳子的拉力通过转轴(力矩为
0),所以角动量守恒。即角动量不变。
Lr =rr pr
rmv=常数
r
mv
Ek
1 2
mv2
N2
1 2
mgtg
(2) 对本题来说,因为f2并不清楚,所以无 法由合力矩为0求出N2.
同样f1也不清楚,无法利用质心定理求出 N2.
A N2
G
N1
B
f1 图7
8、 刚体角动量守恒的充分而必要的条件是 (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.
(A) 处处相等.
(B) 左边大于右边.
(C) 右边大于左边. (D) 哪边大无法判断.
N
O
解: (1)取两物体和绳子以及滑轮作
为一个研究系统, 所受的外力有
Mg
重力 G1,G2,Mg和支持力N,在 这些力的作用下,合力矩为
M m2 m1 gR J
方向向内
m1 m2
G1
G2
以定滑轮为对象,可得
答案 (B)
9、一块方板,可以绕通过其一个水平边的光滑固定轴自
由转动.最初板自由下垂.今有一小团粘土,垂直板面撞
击方板,并粘在板上.对粘土和方板系统,如果忽略空气
阻力,在碰撞中守恒的量是
(A) 动能.
(B) 绕木板转轴的角动量.
(C) 机械能. (D) 动量.
V
对转轴的合力矩为 0
10 质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕